
Decentralized Sequencing of Jobs on a Single
Machine

Erwin Pesch∗,†, Mikhail Y. Kovalyov‡, Dominik Kress∗ and Sebastian Meiswinkel∗

∗University of Siegen, Management Information Science, Kohlbettstr. 15, 57068 Siegen, Germany,
Email: {erwin.pesch, dominik.kress, sebastian.meiswinkel}@uni-siegen.de

†Center of Advanced Studies in Management, HHL Leipzig, Jahnallee 59, 04109 Leipzig, Germany
‡United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus,

Email: kovalyov my@newman.bas-net.by

Abstract—There is a finite number of non-cooperating clients
competing for execution of their jobs by a single service provider
in order to minimize job completion time costs. The clients
can move their jobs to complete earlier in a given sequence.
However, they have to compensate the cost increase to the other
clients whose jobs are completed later due to this move. All
clients are assumed to be fully risk averse. A game mechanism
is suggested, such that no client has an incentive to claim false
cost and a social criterion, i.e. the minimization of the total cost
of all clients, is addressed. A polynomial time algorithm that
finds a game equilibrium is suggested and embedded into the
game mechanism. Computational tests analyze the performance
and practical suitability of the resulting mechanism. We outline
potential directions for future research in a similar setting in a
parallel service environment.

I. INTRODUCTION

Many service providers apply a centralized decision to
determine the timing of their clients’ processing. A typical
example involves logistics operators at seaports or rail-road
terminals. A drawback of this setting is that the clients are not
always satisfied with the centralized decision. They oftentimes
would like to have an influence on their positions in the
processing sequence. In this context, this paper analyzes a
game decision mechanism that has been introduced in [1]. This
mechanism is such that the clients are involved in the decision
process but are forced to be truthful if they do not accept a
risky decision. Furthermore, it addresses a social criterion.

A. Notation and Problem Description

We study a problem in which n clients, each having a single
job, compete for early execution of their jobs in the processing
sequence of a single service provider that processes jobs one
after another with no idle time between them. We denote the
set of clients by N = {1, . . . , n} and refer to job j as the “job
of client” j.

The clients are assumed to be non-cooperative. They there-
fore cannot form coalitions to exchange information and
generate a group decision. Furthermore, we assume that the
clients are rational and fully risk averse. That is, they do not
lie if this may induce a decrease of their utility function or if
lying does not increase their utility.

All jobs are ready for processing at time zero. A processing
time pj and a non-decreasing cost function fj(t) are associated
with job j, j = 1, . . . , n. The values pj , j = 1, . . . , n, are
truly claimed by the service provider because his revenue
from processing any job is fixed. The cost function fj(t),
however, is claimed by client j and can differ from the true
cost function, f truej (t), j = 1, . . . , n. Because of business
confidentiality constraints, the values pj , j = 1, . . . , n, are
not revealed to the clients, and the cost functions fj(t) and
f truej (t) of client j are not revealed to the other clients.

In [1], a game mechanism for the above setting is suggested.
This mechanism determines an initial job processing sequence
as well as rules of moving jobs to earlier positions within this
sequence. If a job is moved, the corresponding client is obliged
to compensate the cost increase to the other clients whose jobs
are completed later due to this move. After a certain number
of moving operations, a final sequence is obtained and the jobs
are processed in this sequence.

We denote the completion time of job j in a given job
sequence by Cj . It corresponds to the sum of the processing
times of all jobs preceding and including job j. Client j aims
at maximizing the utility function Fj := V +

j −V
−
j −f truej (Cj),

where V +
j is the total compensation paid to him and V −j is

the total compensation paid by him, j = 1, . . . , n. Note that∑n
j=1(V +

j − V
−
j) = 0.

We consider minimizing the total claimed cost of all clients,∑n
j=1 fj(Cj), as a social criterion that the service provider

would like to address. The problem of finding a job sequence
that minimizes the total cost is denoted by 1||

∑
fj(Cj) in the

scheduling literature; see [2]. For an introduction to scheduling
problems in general, see [3].

B. Applications and Related Literature

Consider a cargo carrier company which possesses a sea
liner to perform voyages from a single base port to several
destination ports. Each voyage is direct in the sense that its
route is from the base port to a destination port and back to
the base port. At the beginning of a financial year, the carrier
negotiates n long-term service contracts with the shipping
companies. Each contract specifies the delivery of a given

cargo from the base port to one of the destination ports. The
return trips are filled with cargo of the spot market. Due to
business constraints, cargo of different long-term contracts
cannot be assigned to the same voyage. For the shipping
company, each long-term contract j is associated with the
cargo target delivery date Dj and an extra profit wj , which the
shipping company earns if and only if this cargo is delivered
by Dj . For the carrier, a long-term contract is associated with
the direct trip duration aj , the backward trip duration bj , and
a fixed revenue. Revenues from the spot market contracts are
not considered here. During the negotiation process, the carrier
would like to work out a timetable for the n voyages which
is satisfactory to the interested shipping companies, and then
to specify it in the corresponding contracts.

In terms of the problem we study, the long-term contracts
are the jobs, the total trip durations aj +bj are the job process-
ing times pj , and f truej (t) = wjUj is the true cost function
associated with the long-term contract j, where Uj = 0 if
t− bj ≤ Dj , or equivalently, t ≤ dj := Dj + bj , and Uj = 1
if t > dj , j = 1, . . . , n. Here, if job j completes at time t, then
the corresponding cargo arrives at its port at time t− bj . The
problem of minimizing the sum of functions wjUj is denoted
by 1||

∑
wjUj , values dj are called due dates and values wj

are called weights in the scheduling literature; see [2].
Another example is the problem of determining an execution

sequence for n computer tasks accepted by a computing
service provider between two adjacent time points of making a
decision of task acceptance or rejection and consequent execu-
tion of accepted tasks. Each accepted task j is associated with
its execution time pj and the money value wj lost by the task
owner per unit of time elapsed since the acceptance decision
is made (time zero) and before its execution completes (time
Cj). The owner of task j would like to minimize the total
loss wjCj . The corresponding scheduling problem to minimize∑
wjCj is denoted by 1||

∑
wjCj ; see [2].

Lately, there has been a growing interest in decentralized
supply chain management decisions and their comparison with
centralized decisions; see, for example, [4]–[9]. Studies of
decentralized decisions in scheduling deal with application
areas as, for example, computer grids and clouds [10], par-
allel and distributed computer systems [11], crane scheduling
[12], semiconductor manufacturing [13], resource constrained
multi-project scheduling [14], mobile robots scheduling [15],
and supply chain coordination [16]. Game-theoretic models are
often employed to handle decentralized scheduling problems.
We refer to [1] for the relevant references.

C. Contribution and Structure of this Paper

In [1], the authors focus on theoretical insights. They do
not provide a computational analysis of the game mechanism.
The main contribution of this paper is to close this gap by
performing a corresponding computational study. The compu-
tational results demonstrate that the game mechanism enables
a service provider to provide high quality solutions that feature
an appropriate level of communication between the service
provider and the clients. We will furthermore outline potential

directions for future research in a similar setting in a parallel
service environment.

The remainder of this paper is structured as follows. In Sec-
tion II, we will present the game mechanism described in [1]
along with some important insights. The computational study
is then presented in Section III. Future research directions are
given in Section IV.

II. GAME DECISION MECHANISM

In [1], we propose the following game mechanism for the
service provider to find a job sequence which is satisfactory
to all clients.

At the beginning, the clients claim cost functions fj(t), j =
1, . . . , n. The functions are assumed to be represented such
that a constant number of elementary arithmetic operations is
needed to calculate any value fj(t) for j ∈ {1, . . . , n} and
0 ≤ t ≤

∑n
i=1 pi.

The mechanism is a decision process that generates a final
job sequence. First, an initial job sequence is generated. Any
approach can be used here. For example, if the clients would
like to have equal chances to take any position in the initial
sequence, it can be randomly generated. If the clients agree
that the mechanism applies any rule to generate the initial
sequence, then we suggest that it is the best sequence with
respect to minimizing the total claimed cost

∑n
j=1 fj(Cj),

which the mechanism can find within a given time limit. The
rules of developing this sequence can be known to the clients
or not.

Then, if the initial sequence was developed aimed at
minimizing the total cost, the mechanism updates the initial
sequence by swapping the jobs in the first and the second
positions. This is done to prevent any client from claiming
a false cost function in order to take the first position such
that it cannot be taken by any other job because of a large
compensation payment.

Denote the updated sequence by Sold = (i1, . . . , in). Sold

is the input sequence for the first iteration of the decision
process. Each client ij , whose job is not in the first position,
receives the completion time of his job in this sequence and a
set of possible completion times obtained by placing his job
in every earlier position assuming that the relative sequence
of the other jobs remains unchanged. He also receives a set
E(ij) of eligible local strategies. For a client ij , whose job is
not in the last position, this set includes every strategy (ij , s)
of moving his job to an earlier position s, 1 ≤ s ≤ j − 1, in
Sold, such that his claimed savings that emerge from applying
this strategy are positive. The definition of claimed savings is
given below.

Denote by Snew the sequence obtained from Sold by
applying a job moving strategy (ij , s), 1 ≤ s ≤ j − 1.
The claimed savings D(ij , s) of client ij associated with this
strategy are calculated as follows:

D(ij , s) = A−B, (1)

where
A = fold(ij)− fnew(ij)

is the reduction of the claimed cost of client ij , and

B =

j−1∑
k=s

(
fnew(ik)− fold(ik)

)
is the compensation of client ij to the other clients. fold(ik)
and fnew(ik), k = s, s + 1, . . . , j, are the claimed costs of
client ik, calculated using completion time of job ik in the
sequences Sold and Snew, respectively.

If every job moving strategy results in non-positive claimed
savings for client ij , then “no move” (E(ij) = {(ij , j)}) is
the only eligible strategy. For the client, whose job is last, the
set E(in) consists of the job moving strategies with positive
claimed savings and the “no move” strategy (in, n) because
staying last does not affect actions of other clients.

Each client ij submits one eligible local strategy of the set
E(ij), 2 ≤ j ≤ n. The service provider selects and applies
one of them. Again, any approach to the selection can be used
here, for example, random selection. If the clients agree that
the mechanism applies any selection rule, then we suggest
that it selects the strategy that minimizes the total claimed
cost

∑n
j=1 fj(Cj). The resulting sequence serves as the input

sequence Sold in the next iteration of the decision process.
When making a choice, the client can rank his eligible local
strategies. For example, he may consider maximizing savings
as the choice criterion. Alternatively, moving closer to the
beginning of the sequence can be the choice criterion. Note
that these criteria can be contradictory.

The decision process is repeated until a final job sequence
is obtained, for which no set E(ij), j = 2, . . . , n, contains an
eligible job moving strategy different from “no move”. The
jobs are processed by the service provider in the order deter-
mined by the final job sequence. All compensation payments
are realized.

We call the described process as a sequence updating game
with compensations and jobs competing for earlier positions.
It is summarized as follows:

Step 1 Each client j ∈ {1, . . . , n} claims a cost function
fj(t).

Step 2 Calculate an initial job sequence S with a given al-
gorithm. Depending on the algorithm used, potentially
update S by interchanging the jobs in the first and
second position of the job sequence.

Step 3 Determine the set E(ij) of eligible local strategies
for each client ij . If E(ij) = {“no move”} for all
clients ij , then go to Step 4. Else, each client ij
with E(ij) 6= {“no move”} submits exactly one local
strategy. Apply one of the strategies, which is selected
based on a given algorithm, to update schedule S.
Update the compensation payments of all players. Go
to Step 3.

Step 4 Apply sequence S. Realize the compensation pay-
ments.

In this game, clients are players. We define an Equilibrium
(EQ) of this game as a job sequence such that no client can

obtain positive claimed savings by applying an eligible job
moving strategy.

A. Truthfulness of Clients

In the described game the clients can claim false cost
functions if there is no risk that this action will decrease their
utility. Let us show that no client has an incentive to do this.

Consider a client j who lies about his cost function. Recall
that all the cost functions are claimed before the sequence
updating procedure starts. In any iteration of this procedure,
including the first iteration, there is a chance that job j is
not in the first position. Assume that job j is not in the first
position and a certain strategy is applied. There are three cases
to consider: 1) job j is moved to an earlier position, 2) job j
is moved to a later position, 3) the position of job j does not
change.

In case 3), the utility of client j does not change irrespec-
tively of the claimed cost function.

In case 1), denote by Sfalse the claimed savings of client
j. Denote by Strue his claimed savings calculated for the true
cost function and the same earlier position. Note that Sfalse >
0 because the applied move is an eligible strategy. If Sfalse ≤
Strue, then Strue > 0. This implies that the same move would
be eligible for the true cost function of client j and, moreover,
his utility would be the same or larger than that for the false
cost function.

Assume Sfalse > Strue. Since the cost functions and the
job processing times of other clients are unknown and arbitrary
for client j, there is a risk that, in the case of the false cost
function, job j overtakes jobs whose cost increase client j
is not able to compensate from his true cost reduction, i.e.,
Strue < 0. In this case, lying can decrease the utility of client
j. For example, let job j be sequenced immediately after job
i, pi = pj , both jobs have the same due date which is equal to
the completion time of job i, the true and claimed weights of
job j be equal to wj and wj +δ, respectively, and the claimed
weight of job i be equal to wj + δ/2. The cost functions
are wiUi and wjUj . Assume that job j is moved to stand
immediately before job i. Then the claimed savings of client
j are Sfalse = δ/2, while his true savings are −δ/2.

In case 2), client j is paid by another client whose job is
moved to stand before job j. Denote by Ifalse and Itrue the
cost increase of client j calculated with respect to his claimed
and true cost functions, respectively. The compensation paid
to client j in case 2) is equal to Ifalse, and the decrease
of his utility function is equal to Itrue. If Ifalse ≤ Itrue,
then lying may not be profitable. Furthermore, there is no
guarantee that case 2) in which Ifalse > Itrue will always
happen, because a large cost increase of client j can make job
moving strategies of other clients ineligible. Hence, case 1) can
happen and the client can loose. Consider the example from
the previous paragraph. Now assume that job j is sequenced
immediately before job i and that job i is moved to stand
immediately before job j. In this situation, the cost increase
of client j with respect to his claimed cost function is equal to
Ifalse = wj + δ and the cost increase with respect to his true

cost function is equal to Itrue = wj . Job i cannot overtake
job j in the case of its false cost function because savings of
client i are equal to −δ/2 in this case.

Thus, we have shown that no client has an incentive to claim
a false cost function, unless he is risky. We assumed that the
clients do not take a risky decision. Therefore, in the suggested
game they should claim true cost functions.

B. Implementing Step 2 of the Game Mechanism

An interesting question when analyzing the sequence up-
dating game is as follows: Does it pay off to carefully design
an algorithm to be applied in Step 2, with respect to the
number of iterations of Step 3 that the game mechanism needs
to terminate? The importance of this question stems from
the fact that in potential applications one typically wants to
avoid being faced with communication intensive processes. If
1||
∑
fj(Cj) is NP-hard, it seems to be a natural choice to

develop a polynomial time heuristic algorithm that terminates
with an EQ. In this case, one may hypothesize that this results
in only a few iterations of Step 3.

For the remainder of this paper, we will consider cost
functions of the form wjUj , j = 1, . . . , n (cf. already Section
I for the related notation and an application). It is well known
that 1||

∑
wjUj is NP-hard [17]. Now, consider the following

Algorithm, which we refer to as GreedyWeight:

Step 1 Renumber jobs such that w1 ≥ · · · ≥ wn, breaking
ties arbitrarily. Initialize an empty sequence of early
and on-time jobs Searly and am empty sequence of
late jobs Slate. Set k := 1.

Step 2 Add job k to the sequence Searly. Re-arrange jobs of
this sequence in their EDD order, breaking ties arbi-
trarily. If at least one job in the sequence Searly does
not complete by its due date, remove job k from Searly

and add it to an arbitrary position of the sequence
Slate. If k = n, then return S0 := (Searly, Slate)
and stop. If k ≤ n− 1, then set k := k+ 1 and repeat
Step 2.

GreedyWeight constructs a job sequence S0. Note that the
Earliest Due Date (EDD) order of jobs is such that a job with
smaller due date appears earlier than a job with larger due
date.

GreedyWeight can be implemented to run in O(n2) time
as follows. Let Searly = (i1, . . . , ir) be the sequence of early
and on-time jobs arranged in their EDD order at the beginning
of iteration k of Step 2. With each job of this sequence, store
its completion time Cij , j = 1, . . . , r. When job k is added,
the sequence Searly can be updated in O(log n) time to keep
the EDD order by a bisection search over the range 1, . . . , r
of job positions. In each iteration of the bisection search, dk
is compared with dit for a trial value t ∈ {1, . . . , r}. Let job
k be inserted between jobs ih−1 and ih. The completion times
of jobs i1, . . . , ih−1 remain unchanged, the completion time
of job k is equal to Ck = Cih−1

+pk and the completion times
of jobs ih, . . . , ir increase by pk. These computations require
O(n) time. Having job completion times, the feasibility of the

new sequence with respect to the due dates can be verified in
O(n) time. Thus, each iteration of Step 2 requires O(n) time,
and the run time of algorithm GreedyWeight is O(n2).

Proposition 1. S0 is an EQ for cost functions fj(Cj) = wjUj ,
j = 1, . . . , n.

Proof: Consider the sequence S0 returned by Greedy-
Weight and denote the set of jobs in the sequence Searly in
iteration k of Step 2 by X(k). Furthermore, denote the social
value of a given job sequence S by F (S). Observe that, by
definition of GreedyWeight and the fact that the EDD sequence
minimizes maximum job tardiness, if job k is late in S0, then
at least one job of the set X(k), which comprises this job and
all early and on-time jobs considered before job k in Step 2,
will be late in any sequence. Assume that S0 is not an EQ.
Then there exists a job k′, such that F (S′) < F (S0) for the
sequence S′ obtained from S0 by moving job k′ to an earlier
position. Consider the jobs of the set X(k) in the sequence S′.
We have shown that at least one job of this set is late in any
sequence, including S′. By definition of this set, the weight
of this job is at least wk. Since the cost reduction of job k′

emerged from its moving to an earlier position is at most wk,
F (S′) ≥ F (S0), which is a contradiction. Hence, S0 is an
EQ.

Another interesting property of GreedyWeight is proven in
[1]. Denote by FOpt the objective function value of a social
optimum Opt. An algorithm for the problem 1||

∑
fj(Cj) is

a ∆-approximation algorithm if it computes a solution with
value F 0 ≤ ∆FOpt for any problem instance. The bound
∆ is called tight if F 0 = ∆FOpt for some instance of the
problem.

Proposition 2. Algorithm GreedyWeight is a (n − 1)-
approximation algorithm for the problem 1||

∑
wjUj and this

bound is tight.

Note that there exist polynomial time approximation algo-
rithms for the problem 1||

∑
wjUj with approximation ratio

∆ < n−1, in particular an FPTAS presented in [18], in which
∆ = 1 + ε for any given ε > 0. However, it is not known if
any of these algorithms produces an EQ.

Moreover, there exist other algorithms that solve
1||max{wjUj} in O(n2) time, e.g. Lawler’s algorithm
[19]. Lawler’s algorithm repeatedly assigns a job with
minimum cost fj(Pk) to position k, where Pk is the total
processing time of unscheduled jobs, k = n, n − 1, . . . , 1.
Ties are broken arbitrarily.

The following example shows that Lawler’s algorithm may
produce a solution which is not an EQ and which cannot be
transformed to an EQ by moving a single job to an earlier
position. In the example, there are three jobs with parameters
p1 = 3, p2 = 2, p3 = 1, d1 = 2, d2 = d3 = 3 and
w1 = w2 = w3 = 1. For this example, Lawler’s algorithm
may output sequence (1, 2, 3), which is not an EQ because
the savings from moving job 2 or job 3 to the first position
are equal to 1 (the cost of the moved job reduces by 1 and the
costs of the other jobs do not change). None of the sequences

(3,1,2), (1,3,2) and (2,1,3) that are obtained from (1,2,3) by
moving one job to an earlier position is an EQ as well. The
EQ sequences are (2,3,1) and (3,2,1).

III. COMPUTATIONAL STUDY

With regard to our research question, we conducted a series
of computational experiments on randomly generated instances
to analyze the quality of GreedyWeight with respect to the
social criterion

∑n
j=1 wjUj when being used in Step 2 of

the sequence updating game. We implemented all algorithms
in C++ and performed the computational experiments on a
PC with 16 GB of memory and an Intel R© CoreTM i7 CPU,
running at a speed of 3.4 GHz. The operating system was
Windows 8.1, 64 bit.

In order to generate benchmark solutions, we implemented
three versions of the sequence updating game. They differ
in the way they generate the initial job sequence (Step 2).
We implemented a random generation procedure, algorithm
GreedyWeight, and a complete enumeration approach that
determines optimal sequences of the underlying scheduling
problem 1||

∑
wjUj . We refer to the resulting versions of

the sequence updating game by gamerand, gameGW and
gameemum, respectively. With respect to Step 3 of the se-
quence updating game, we assume that the clients act in a
greedy manner, i.e. they always pick a move with largest
saving among their list of eligible moves. We additionally
assume that the service provider applies a strategy with largest
saving out of the set of strategies that have been submitted
by the clients. The sequence updating game terminates if no
player has an eligible move different from “no move”, i.e.
when an EQ is reached.

We generated two groups of test instances. The first group
features small instances with n ∈ [10, 30], for which we were
able to generate optimal initial sequences with respect to the
social criterion

∑n
j=1 wjUj with the complete enumeration

approach. The second group relates to large instances with
n ∈ [40, 400], that we could not solve to optimality. For both
groups, processing times pj , weights wj , and due dates dj ,
j ∈ N , were randomly drawn from uniform distributions over
the intervals [1, 100], [100, 200], and [pj , P/m], respectively,
where P :=

∑n
j=1 pj . If pj > P/m, we set dj = pj .

For each n, we generated a total of ten test instances. For
each of the resulting instance sets, we rate the performance of a
specific variant of the sequence updating game by calculating
the arithmetic mean of the corresponding solution qualities,
which are defined as F ∗/F ′, where F ∗ is the total scheduling
cost of the solution determined by the specific variant of the
game mechanism, and F ′ is the scheduling cost of the best
solution obtained by any of the considered algorithms. Note
that the algorithms that apply complete enumeration are solely
considered in the first test set.

As mentioned above, we specifically want to analyze the
number of iterations that the game mechanism needs to termi-
nate, because the corresponding updating procedures include
potentially time consuming communication processes between
the clients and the operator. Hence, runtime comparisons are of

0 0.5 1

0

0.5

1

n

gamerand gameGW gameenum

10 15 20 25 30

1

2

3

4

5

6

7

n

So
lu

tio
n

qu
al

ity

Fig. 1. Small instances - solution quality

0 0.5 1

0

0.5

1

n

gamerand gameGW gameenum

10 15 20 25 30

0

2

4

6

n

N
um

be
r

of
ite

ra
tio

ns

Fig. 2. Small instances - number of iterations of Step 3

minor interest, which is supported by the fact that all variants
of the sequence updating game, except the ones that apply
the complete enumeration approach, terminated in less than
0.6 seconds, even for the largest instances with n = 400,
in our computational tests. For our comparisons, we use the
arithmetic mean of the number of iterations that the game
mechanism needs to terminate for each set of instances.

We will first analyze the results for the small instances. In
Fig. 1, we plot the algorithms’ corresponding average qualities
over the number of jobs.

As to be expected, integrating the complete enumeration
approach results in the best overall solution quality. However,
applying GreedyWeigtht to determine an initial sequence re-
sults in fairly good solution qualities. Moreover, in comparison
to the random generation of initial solutions, the average
solution quality degrades significantly slower when increasing
the number of jobs.

Fig. 2 plots the average number of iterations of Step 3 over
the number of jobs for the small instances.

The algorithms based on an initial sequence generated by

0 0.5 1

0

0.5

1

n

gamerand gameGW

40 80 120 160 200 240 280 320 360 400

1

5

9

13

17

21

25

n

So
lu

tio
n

qu
al

ity

Fig. 3. Large instances - solution quality

0 0.5 1

0

0.5

1

n

gamerand gameGW

40 80 120 160 200 240 280 320 360 400

0

10

20

30

n

#
ite

ra
tio

ns

Fig. 4. Large instances - number of iterations of Step 3

GreedyWeight or by complete enumeration clearly outperform
gamerand. We believe that the former is a result of Proposition
1, i.e. the fact that the solutions determined by GreedyWeight
are EQs. These solutions are only slightly modified in Step 2
of the game mechanism, so that less iterations of Step 3 are
needed in order to restore the EQ.

We will now turn our attention to the large test instances.
Fig. 3 plots the corresponding results on the average solution
quality.

Again, generating initial sequences by using GreedyWeight
clearly pays off when compared to random generation of initial
sequences.

Fig. 4 depicts the average number of iterations of Step 3 of
the sequence updating game over the number of jobs for the
large instances.

Again, applying GreedyWeight outperforms random gen-
eration of initial sequences. While, on average, gameGW

needs less than 1 iteration for all considered n, the number
of iterations of Step 3 seems to increase almost linear in n
for gamerand. This substantiates our believe that the game
mechanism performs best when carefully generating an initial
sequence that is an EQ.

IV. SUMMARY AND FUTURE RESEARCH

In this paper, we have analyzed a game mechanism that has
recently been introduced in [1] for sequencing jobs on a single
machine. Applications arise in planning problems at logistics
companies, as for example cargo carriers. Our main result is
that this game mechanism results in high quality solutions
when it is carefully designed with respect to generating initial
job sequences. In this case, it is moreover well suited from a
practical perspective because it results in an appropriate level
of communication between operator and clients.

For future research it will especially be interesting to
generalize the setting presented in this paper to the case of
more than one machine, i.e. assuming that there is a finite
number of non-cooperating clients competing for execution
of their jobs not later than by their respective due dates in
a parallel service environment. This may be motivated by
planning operations of a railway container unloading terminal
(see, for example, [20]). There are m parallel railway tracks
and each track is served by an associated single hoist crane.
Each crane can process at most one container train at a time.
For a given planning period, the terminal financial manager
negotiates n service contracts with the shipping agents. Each
contract specifies the unloading of a train. For a shipping
agent j, the contract is associated with the train unloading
due date dtruej and a cost wtrue

j , which is paid if and only if
the train misses the due date dtruej . For the terminal owner,
this contract is associated with the train unloading time pj and
a fixed revenue. During the negotiation process, the manager
would like to work out a schedule for unloading n trains by m
cranes which is satisfactory to the interested shipping agents,
and then to specify it in the corresponding contracts.

Other generalizations and modifications of the sequencing
environment can also be considered. For example, precedence
constraints on the set of jobs are an interesting path for future
research. Moreover, it is interesting to analyze clients that
accept risky decisions. Finally, there is a wide variety of cost
and objective functions that can be analyzed in analogy to the
above case, where we considered cost functions of the form
wjUj , j = 1, . . . , n.

REFERENCES

[1] M. Y. Kovalyov and E. Pesch, “A game mechanism for single machine
sequencing with zero risk,” Omega, vol. 44, pp. 104–110, 2014.

[2] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rin-
nooy Kan, “Optimization and approximation in deterministic sequencing
and scheduling: a survey,” Annals of Discrete Mathematics, vol. 5, pp.
287–326, 1979.

[3] J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Handbook
On Scheduling: From Theory to Applications. Berlin: Springer, 2007.

[4] O. Kaya, “Outsourcing vs. in-house production: a comparison of supply
chain contracts with effort dependent demand,” Omega, vol. 39, no. 2,
pp. 168–178, 2011.

[5] T. Hosoda and S. M. Disney, “A delayed demand supply chain: Incen-
tives for upstream players,” Omega, vol. 40, no. 4, pp. 478–487, 2012.

[6] Jonrinaldi and D. Zhang, “An integrated production and inventory model
for a whole manufacturing supply chain involving reverse logistics with
finite horizon period,” Omega, vol. 41, no. 3, pp. 598–620, 2013.

[7] A. Varmaz, A. Varwig, and T. Poddig, “Centralized resource planning
and yardstick competition,” Omega, vol. 41, no. 1, pp. 112–118, 2013.

[8] Q. Qiang, K. Ke, T. Anderson, and J. Dong, “The closed-loop supply
chain network with competition, distribution channel investment, and
uncertainties,” Omega, vol. 41, no. 2, pp. 186–194, 2013.

[9] J. Zhang, W.-Y. K. Chiang, and L. Liang, “Strategic pricing with
reference effects in a competitive supply chain,” Omega, vol. 44, pp.
126–135, 2014.

[10] Y. Huang, N. Bessis, P. Norrington, P. Kuonen, and B. Hirsbrunner,
“Exploring decentralized dynamic scheduling for grids and clouds
using the community-aware scheduling algorithm,” Future Generation
Computer Systems, vol. 29, no. 1, pp. 402–415, 2013.

[11] M. Tchiboukdjian, N. Gast, and D. Trystram, “Decentralized list
scheduling,” Annals of Operations Research, vol. 207, no. 1, pp. 237–
259, 2013.

[12] O. Sharif and N. Huynh, “Yard crane scheduling at container terminals:
A comparative study of centralized and decentralized approaches,”
Maritime Economics & Logistics, vol. 14, no. 2, pp. 139–161, 2012.

[13] S. Yao, Z. Jiang, N. Li, N. Geng, and X. Liu, “A decentralised multi-
objective scheduling methodology for semiconductor manufacturing,”
International Journal of Production Research, vol. 49, no. 24, pp. 7227–
7252, 2011.

[14] J. Homberger, “A (µ, λ)-coordination mechanism for agent-based multi-
project scheduling,” OR Spectrum, vol. 34, no. 1, pp. 107–132, 2012.

[15] S. Giordani, M. Lujak, and F. Martinelli, “A distributed multi-agent
production planning and scheduling framework for mobile robots,”
Computers & Industrial Engineering, vol. 64, no. 1, pp. 19–30, 2013.

[16] X. Qi, J. F. Bard, and G. Yu, “Supply chain coordination with demand
disruptions,” Omega, vol. 32, no. 4, pp. 301–312, 2004.

[17] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations (Proc. Sympos., IBM Thomas J. Watson
Res. Center, Yorktown Heights, N.Y., 1972). New York: Plenum, 1972,
pp. 85–103.

[18] G. V. Gens and E. V. Levner, “Fast approximation algorithm for job
sequencing with deadlines,” Discrete Applied Mathematics, vol. 3, no. 4,
pp. 313–318, 1981.

[19] E. L. Lawler, “Optimal sequencing of a single machine subject to
precedence constraints,” Management Science, vol. 19, no. 5, pp. 544–
546, 1973.

[20] D. Kress, S. Meiswinkel, and E. Pesch, “The partitioning min-max
weighted matching problem,” European Journal of Operational Re-
search, vol. 247, no. 3, pp. 745–754, 2015.

