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Abstract— Simulation-based non-linear active suspension
control design for MacPherson systems is considered. A non-
linear dynamic model for the MacPherson suspension sys-
tem is derived. The model nonlinearities and the dynamic
behaviour of the system is illustrated by simulations. The
design of controllers and state estimators using finite state
Markov models is briefly outlined, and applied for nonlinear
active suspension control system. The study illustrates the
potential of the finite Markov chains approach in non-linear
active suspension control, emphasizing the possibility to move
computational load due to simulations to off-line design.

I. INTRODUCTION

Active suspension control has been a topic of intensive
academic research for several decades. The active (or semi-
active) control systems have become an important tool for
reaching better ride comfort and handling performance. With
the increasing robustness and decreasing price of sensors,
communication, and computing power in modern vehicles,
more and more complex systems are being considered for
practical implementations.

The main requirements of vehicle suspension systems [1]
are related to ride comfort (vs. road roughness), vehicle
handling (agility) and posture (when subject to breaking,
turning, etc), and suspension stroke limits. These can be ex-
pressed in terms of sprung mass acceleration (ride comfort),
tyre deflection (vehicle handling), and suspension deflection
(rattle space). Most advanced control concepts are model-
based, and consequently dynamic modelling of the system
plays a key role. Active suspension system modelling then
considers the dynamic components of the system consisting
of springs, dampers and actuators in various configurations,
leading to quantification of performance objectives. LQ op-
timal control is particularily popular and usually based on
the linear quarter-car model. Cao et al [2] review intelligent
active suspension control systems, which typically involve
non-linear components.

The MacPherson suspension [3][4] is widely used in small
and medium sized vehicles and poses a challenging problem
due to its nonlinear asymmetric behaviour. The variable
geometry provokes a nonlinear behaviour related to both
kinematics and dynamics. While modelling the system as a
three dimensional one is a complex problem and simulations
are computationally expensive, a two-dimensional planar
model can capture the nonlinear effects of the McPherson
suspension. In this paper, a dynamic model for a MacPherson
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suspension system is developed by analysing the system
kinematics and deriving the dynamics using the Euler-
Lagrange approach. The text is inspired by the paper by
Hurel and co-authors [4], but the resulting expressions are
significantly simpler than in [4] or [3], making the model
attractive for simulation-based nonlinear control design. The
model is applied for the design of a finite state and action
optimal controller using Markov chains modelling and value
iteration for solving the optimal controller.

The reminder of the paper is structured as follows. The
next Section derives the model equations by examination
of system kinematics and dynamics via the Euler-Lagrange
equations. The model nonlinearities are illustrated by plots
in Section III, and dynamic behaviour of the system is
simulated with kerbstrike and pothole road profiles. The
second half of the paper describes the design of a finite
state and action Markov chain based optimal controller (Sec
IV) applied for active suspension control (Sec V). The
performance of the active and passive systems is compared
in simulations. A summary and discussion ends the paper.

II. DERIVATION OF THE MODEL EQUATIONS

The set-up and notation used in the modelling of the
MacPherson suspension system are adopted from [4], and
shown in Figs. 1-2. The sprung mass connection points are
Q and M. Suspension key points in a plane are denoted
by C (center of wheel assembly) and P (control arm). The
origo of the y-z-coordinate system is in point Q0, where
subscript ’0’ denotes the initial equilibrium position. The
points in the plane can be defined by Cartesian coordinates
(Yi, Zi), i = {C,P,Q,M}. In addition, two angles φ
(camber angle) and θ (control arm) are shown in the figure.
The angle θ is positive anticlock-wise, while the camber
angle φ is by convention positive clock-wise. The generalized
coordinates are vertical displacements of the sprung mass Zs
and unsprung mass Zu, Zr is the vertical displacement of the
road.

A. Kinematics

System kinematics are obtained with ’matrix displacement
method’ [3] [4]: YN YT YP

ZN ZT ZP
1 1 1

 = A

 YN0 YT0 YP0

ZN0 ZT0 ZP0

1 1 1


where

A =

 cosφ sinφ YC − (YC0 cosφ+ ZC0 sinφ)
− sinφ cosφ ZC − (ZC0 cosφ− YC0 sinφ)

0 0 1





Fig. 1. Kinematic model.

from where the relation betwen points P and C can be written
as

YP − YC = (YP0 − YC0) cosφ+ (ZP0 − ZC0) sinφ

ZP − ZC = (ZP0 − ZC0) cosφ− (YP0 − YC0) sinφ

Assuming small angles (cosφ ' 1 and sinφ ' φ ) leads to

YP − YC ' (YP0 − YC0) + (ZP0 − ZC0)φ (1)
ZP − ZC ' (ZP0 − ZC0)− (YP0 − YC0)φ (2)

Assume that the chassis moves only in the vertical dimen-
sion,

ZQ = ZQ0 + Zs, (3)
YQ = YQ0 (4)
ZM = ZM0 + Zs (5)
YM = YM0 (6)

and
ZC = ZC0 + Zu (7)

For the point P, the system geometry gives

YP = L1 cos (θ0 + θ)

ZP = L1 sin (θ0 + θ) + Zs

Using the angle summation rules for cosine and sine:
cos (θ0 + θ) = cos θ0 cos θ − sin θ0 sin θ and sin (θ0 + θ) =
sin θ0 cos θ + cos θ0 sin θ and assuming small angles, an
approximation is obtained:

YP ≈ L1 cos θ0 − (L1 sin θ0) θ

ZP ≈ L1 sin θ0 + (L1 cos θ0) θ + Zs

Fig. 2. Suspension motion.

Since Q0 is the origo, we have that (L1 sin θ0) = ZP0 and
(L1 cos θ0) = YP0, and the expressions simplify to

YP = YP0 − ZP0θ (8)
ZP = ZP0 + YP0θ + Zs (9)

The linear system consists of 9 equations with 12
unknowns (coordinates (YC , ZC), (YP , ZP ), (YQ, ZQ),
(YM , ZM ); angles φ and θ; and generalized coordinates Zs
and Zu). The equations can be solved in terms of Zs, Zu
and φ. The Euler-Lagrange will provide two more equations.
One more equation is still required, and it will be provided
by a link between the camber angle φ and the generalized
variables Zs and Zu.

1) Camber angle: Assume that the camber angle is zero
(φ = 0) at the initial position (Zu = Zs = 0). The
simplest approximation is to take φ ' 0 for all Zu and
Zs. More realistic descriptions can be obtained based on
system geometry, see e.g. [3] equation (7), or approximations
to avoid excessively complex solutions. The ’choice’ on φ
provides a tuning handle for balancing between simplicity
and geometric accuracy of the model. Even if φ = 0 seems
overly simplistic and ’trivializes’ the displacement matrix,
it enables to develop some nonlinear characters for the
suspension system. A better approximation is obtained with

sinφ ' φ ' YP0 − YP
L03

(10)

based on the system geometry but neglecting the variable
component in the strut length.

The 10 equations with 12 unknowns can now be solved



in terms of Zu and Zs. In particular, we obtain:

YC = YC0 + kC (Zs − Zu) (11)
ZC = ZC0 + Zu (12)

and

θ = kθ (Zs − Zu) (13)
φ = kφ (Zs − Zu) (14)

For the simple choice φ = 0 : kC = ZP0

YP0
, kθ = −1

YP0

and kφ = 0. Choosing (10) the coefficients are kC =
γZP0 (ZP0 − zC0 + L03), kθ = γL03 and kφ = −γZP0

with γ−1 = YP0ZP0 − YC0ZP0 + YP0L03. With these
choices, the mappings remain linear.

2) Strut deflection and tyre lateral deflection: In order
to construct the Euler-Lagrange equations, some further
terms are required. The strut deflection is given by δl =

L3 − L03, where L3 =

√
(YM − YP )2 + (ZM − ZP )2 and

L03 =

√
(YM0 − YP0)

2
+ (ZM0 − ZP0)

2
. Solving these

three equations together with the equations for points M and
P in terms of θ: (5),(6), (8) and (9), one obtains

YP = YP0 − ZP0θ

ZP = ZP0 + YP0θ + Zs

and

L3 =
√
(Y 2
P0 + Z2

P0) θ
2 + 2 (YM0ZP0 − YP0ZM0) θ + L2

03

A reasonable approximation for small angles is obtained by
assuming θ2 ≈ 0 :

δl =
√
L2
03 + kLθ − L03 (15)

with kL = 2 (YM0ZP0 − YP0ZM0). Equation (15) is non-
linear vs. θ.

The tyre lateral deflection due to MacPherson mechanism
(under the small angle assumption) is obtained from

δYtl = YC − YC0 − φR

(recall that φ is positive clockwise), and substituting for YC .
With (11) and (14) this results in

δYtl = (kC − kφR) (Zs − Zu) = kY (Zs − Zu) (16)

Finally, the deflection between the tyre and the road is:

δZt = Zu − Zr (17)

B. Dynamics
The system dynamics are obtained from the Euler-

Lagrange equations [4]. Denote kinetic energy by T , po-
tential energy by V and dissipation by D. The Lagrangian
relates the kinetic and potential energies, L = T − V ,

L =
1

2
ms

(
Żs

)2
+

1

2
mu

((
ẎC

)2
+
(
Żu

)2)
+
1

2
IC

(
φ̇
)2
− 1

2
Ks (δl)

2

−1

2
Kt (δZt)

2 − 1

2
Ktl (δYtl)

2

where ms and mu are the sprung and unsprung masses
[kg], IC the wheel intertia [kg2m], Ks, Kt and Ktl are the
suspension stiffness and tyre vertical and lateral stifnesses
[N/m]. The dissipation D is given by

D =
1

2
Bs ˙(δl)

2
+

1

2
Bt

(
˙δZt

)2
where Bs and Bt are the suspension and tyre damping
[Ns/m]. The system dynamics are determined by the Euler-
Lagrange equations

d

dt

(
∂L

∂Żs

)
− ∂L

∂Zs
+
∂D

∂Żs
= 0

d

dt

(
∂L

∂Żu

)
− ∂L

∂Zu
+

∂D

∂Żu
= 0

Calculation of the derivatives for the components in the
sums L and D is straightforward. Using (11) and (13)-(17)
for φ, δl, δYtl and δZt we have for L:(

ẎC

)2
= k2C

(
Żs − Żu

)2
(
φ̇
)2

= k2φ

(
Żs − Żu

)2
(δl)

2
=

(
L03 −

√
L2
03 + kLkθ (Zs − Zu)

)2

(δZt)
2

= (Zr − Zu)2

(δYtl)
2

= k2Y (Zs − Zu)2

and for D :(
δ̇l
)2

=
k2Lk

2
θ

4 (L2
03 + kLkθ (Zs − Zu))

(
Żs − Żu

)2
˙(δZt)

2
=

(
Żr − Żu

)2
Taking the derivatives leads to the following equations for
the MacPherson system:

msZ̈s + k2Cmu

(
Z̈s − Z̈u

)
+ ICk

2
φ

(
Z̈s − Z̈u

)
−KsFK (Zs − Zu) (18)
+Ktlk

2
Y (Zs − Zu)

+BsFB

(
(Zs − Zu) ,

(
Żs − Żu

))
= 0

muZ̈u −muk
2
C

(
Z̈s − Z̈u

)
− ICk2φ

(
Z̈s − Z̈u

)
+KsFK (Zs − Zu) (19)

+Kt (Zu − Zr)
−Ktlk

2
Y (Zs − Zu)

−BsFB
(
(Zs − Zu) ,

(
Żs − Żu

))
+Bt

(
Żu − Żr

)
= 0

where

FK (x) =
kLkθ

(
L03 −

√
L2
03 + kLkθx

)
2
√
L2
03 + kLkθx

FB (x, y) =
k2Lk

2
θy

4 (L2
03 + kLkθx)
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Fig. 3. Nonlinearity of the model: spring.

The coefficients (kC , kθ, kφ and kL, kY ) can be obtained
from the initial position of the system (see Sec II II-A.1 and
II-A.2).

The system is nonlinear due to the terms FK (Zs − Zu)
and FB

(
Zs − Zu, Żs − Żu

)
. The model is compact and

very easy to simulate given any ode-solver.

III. SIMULATION ANALYSIS

The model, assuming φ given by (10), was examined
in simulations. Parameters given in Hurel et al. [4] were
adopted: ms = 453kg, mt = 71kg, Ks = 17658N/m,
Bs = 1950Ns/m, Kt = 183887N/m, Ktl = 50, 000N/m,
Bt = 2500Ns/m, R = 0.29m, and IC = 0.021 kg2m,
based on Adams database for MacPherson simulation. The
key points are given by YC0 = 0.3721m, ZC0 = 0.0275m,
YQ0 = 0.0000m, ZQ0 = 0.0000m, YM0 = 0.1074m,
ZM0 = 0.5825m, YP0 = 0.2490m, ZP0 = −0.0608m.

The nonlinearity due to terms FK and FB (vs linear)
is depicted in Figs. 3-4. At small deflections the gains
of the system approach those of the linear system, which
approximates the system well when |Zs − Zu| < 0.05m.
The system non-linearities appear as asymmetries for large
deflections.

Fig. 5 simulates the system dynamics for a road profile
consisting of two pulses (a kerbstrike and a pothole) of
amplitude 0.10m. Both the vertical and lateral displacements
of the key points {Q, P, C, M} are given by the model.
Note that the control arm and camber angles have opposite
positive directions and that the strut length (here the distance
between points M and P) is given in [dm]. The response of
the system appears reasonable. The computation times are
very affordable, dictated by solution of the two ode’s.

IV. OPTIMAL CONTROL DESIGN USING FINITE MARKOV
CHAINS

Finite Markov chains and dynamic programming, (a.k.a.
Markov Decision Processes, MDP), are powerful tools for
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Fig. 4. Model nonlinearity: damping.

design and analysis of dynamic systems [5], [6], [7], and
applications [8], [9], [10].

Control with Markov chains is based on a state space
description of the system

x (k + 1) = f (x (k) ,u (k) ,w (k)) (20)
y (k) = h (x (k) ,v (k)) (21)

where f : <nx×<nu×<nw −→ <nx and h : <nx×<nv −→
<ny are nonlinear functions, w (k) and v (k) are i.i.d. vectors
of random variables with known probability density functions
(pdf), and nx, nu and ny are the dimensions of the system
state, control and measurement vectors. The goal is that of
optimal control, to find a controller such that the anticipated
future behavior of the plant will be optimal (i.e., minimize
a cost function or maximize profits). Constrats on states and
actions can be considered by associating violations with high
penalties.

Three important assumptions are underlying the Markov
chain approach: i) the system is markovian, ii) the space
of the states, actions, and measurements is discretized into a
finite set of values, and iii) the cost function has a sequential
form, such as J =

∑
c (x,u).

A. Markov transition modelling

In discretization, the state space of x ∈ X is partitioned
into s disjoint regions Xs: X = ∪Ss=1Xs and Xs ∩ Xs′ = �
∀s 6= s′, s, s′ ∈ S . Many discretization principles can used.
In what follows, the cells s are characterized by a set of S
centroids and the cell index is determined from a mapping
x→ s:

s = bargmin
s∈S
‖x− xc

s‖Wc (22)

where xc
s are the centroids. ||.||W denotes the Euclidean

distance with dimensions of x weighted by a diagonal
nx × nx matrix W, and b.c denotes picking the smallest
integer in case of multiple optima. Discretization is then
determined by the location of the centroids. An efficient



0 2 4 6 8 10time [s]
-20

-10

0

10

20

φ
, θ 

[o ] an
d st

rut 
[dm

]
φ

 θ
 L3

0 0.1 0.2 0.3 0.4lateral y [m]
0
2
4
6
8

10

time
 [s]

P CQ M

0 2 4 6 8 10time [s]
-0.4

-0.2

0

0.2

0.4

0.6

0.8
ver

tica
l z [

m]

C

M

P
Q

road

Fig. 5. Free model response in simulations as a function of time. Left: Vertical positions of the key points of the system. Top right: Horizontal coordinates
for key points. Bottom right: Angles θ and φ and strut length L3.

approach for discretization was proposed in [11], based on
iterative k-means clustering of closed-loop simulation data.

The measurement space can be discretized in a similar
way by {y1,y2, ...,yM}, resulting in (measurement) cells
m ∈ M = {1, 2, ...,M} and Y = ∪Mm=1Ym. A finite set
of A distinct manipulations on how to act on the system is
assumed, u (k) ∈ {u1,u2, ...,ua, ...,uA}.

The time-evolution of the stochastic state space model
can now be described by transitions from x (k) ∈ Xs to
x (k + 1) ∈ Xs′ where s, s′ ∈ S = {1, 2, ..., S}. This is
conveniently described by a transition matrix P = [ps,s′ ],
where ps,s′ is the probability that the system will map to
s′, if currently in s. This mapping is a priori different for
each control action ua, so there will be A such matrices
denoted by Pa =

[
pas,s′

]
, a ∈ A = {1, 2, ..., A}. The state

cell propagation equation

q (k + 1) = q (k)Pa(k) (23)

is the finite-state version of (20), q (k) = [qs (k)] is a
row vector of probabilities for the system to occupy cell
s at instant k. The finite state version of (21) is given by
o (k) = q (k)L (k), where L = [ls,m] and o is the vector of

probabilities for the measurement to occupy cell m.
A major computational effort in building Markov transi-

tion models is the construction of the probability transition
matrices, Pa. Given a simulation model, the necessary statis-
tics can be built by simply counting the number of observed
state-action pairs (s, a) that lead to a particular state s′, and
normalizing the count by the total number of transitions from
the pair.

B. Optimal control design

Suppose that the cost function consists of a sequence of
immediate costs

J =
∑

k′=0,1,...,K

λk
′
c (x (k + k′) ,u (k + k′)) (24)

where the indexes in the sum cover a set of time instants
in the future horizon. The horizon may be infinitely long,
and the costs further in the future may be discounted by λ.
These assumptions, together with the finite state and action
formulation, allow to use dynamic programming to solve
the otherwise easily intractable optimization problem. ’Value
iteration’ is an iterative algorithm for solving the problem for
stationary immediate costs. It will always find the optimal



solution to the minimization of J , and the solution is a look-
up table giving the optimal a for each s [6], a = π (s).

C. State estimation

In real life applications, noise in system state and measure-
ments is inevitable. The measured variables y are specified
by the measurement equation. The choice of working in
discrete spaces enables to feasibly compute the recursive
time (prediction) and measurement (update) steps of the
Bayesian state estimation. Note that, in general, finding a so-
lution to the Bayesian state estimation problem is intractable
in continuous spaces, and only possible under the linear-
Gaussian assumptions (Kalman filter). Numerical solutions
are possible with, e.g., the particle filters [12], [13], [14], but
the on-line computational burden is significant; consequently
Extended and Unscented Kalman filtering (EKF, UKF) are
more common in practical applications. In a finite state space,
the Bayesian state estimation can be written as a cell filter
[15]

q (k|k − 1) = q (k − 1|k − 1)Pa(k−1) (25)
q (k|k) ∼ l>m(k) · q (k|k − 1) (26)

where lm(k) is the m (k)’th column of the likelihood matrix
(corresponding to the observation m (k)); and · denotes
component-wise multiplication. In practice, zero likelihoods
may occur due to modelling inaccuracies, in which case
the prior predictions can be used to complete posterior
probabilities with all states that could result in the observed
measurement, and scaling to preserve the probability mea-
sure.

The finite state and action stochastic state feedback control
problem in its full complexity is considered in partially
observable MDP (POMDP) [16], but solutions of the full
problem require discretization of the so-called belief space,
and have remained unfeasible. In practice, the maximum
likelihood approach can be taken, choosing the control
action which corresponds to the most likely state s (k),
s (k) = argmaxs qs (k|k), a (k) = π (s (k)). Alternatively,
the probability of choosing the correct control action can be
maximized:

a (k) = argmax
a

∑
s∈S,a=πs

qs (k|k) (27)

where the summation is over all cell probability masses
which result in a control action a.

V. NONLINEAR ACTIVE SUSPENSION CONTROL

An optimal controller was designed for the active sus-
pension problem using finite Markov chains. Simulations
illustrate the behaviour of the closed-loop system.

A. System set-up

The system state vector was given by

x =
[
(Zs − Zu) , (Zu − Zr) , Żs, Żu

]T
the dynamic evolution of which can be obtained from the
model (18)-(19). Markov transition models (Pa∀a, L) were

Fig. 6. MDP with iterative discretization.

constructed by exhaustive one-step-ahead simulations of the
system using the model, with a sampling time of 25ms.
Actions were distributed equally as {−4.4,−3.3, ..., 4.4}
[kN], A = 9. For each state-action pair, E simulations
from a random point within the domain of each state cell
were constructed, and statistics computed to build the overall
state transition matrix. For simplicity, a deterministic control
and state estimation problem was considered; a zero road
profile was assumed during modelling, Żr = 0, the road
characteristics were not modelled. The MTM discretization
was done iteratively using the iterative k-means approach
[11], see Fig. 6 , using weights W = [10/9, 5, 1/2, 1/6], and
solving for the optimal controller using value iteration. The
number of clusters (≈ S) was gradually increased (+1000
clusters/iteration) as well as the number of evaluations/cell
E (+10 evaluations/iteration).

The goal of the active suspension can be expressed in
terms of the sprung mass acceleration

∣∣∣Z̈s∣∣∣, suspension
deflection |Zs − Zu|, and the road holding ability |Zu − Zr|.
Assuming an idealized control actuator in the vertical direc-
tion, a controller was designed to improve the passive suspen-
sion system. The (immediate) cost function was composed
as

c (x,u) =
1

40

∣∣∣Z̈s
∣∣∣+ 1

0.3
|Zs − Zu|+

1

0.2
|Zu − Zr| (28)

where the weighting coefficients adjust the scales of the
respective terms in the cost. A discount factor of λ = 0.99
(i.e., equivalent horizon 100 samples = 2.5 [s]) was used.

In practice, measuring all states is not necessary nor
feasible. Therefore, the set of measured variables was taken
to be the suspension deflection and sprung mass velocity
[17],

y =

[
1 0 0 0
0 0 1 0

]
x

The measurement space was discretized using a fixed rectan-
gular grid with edges at [−∞,−0.233,−0.167, ..., 0.233,∞]
for (Zs − Zu) and [−∞,−1.556,−1.111..., 1.111,∞] for
Żs (i.e., M = 81). A Bayesian cell filter was designed to



construct the state from the available measurement and past
estimate.

Altogether, five controller design iterations (up to S =
5000) took a couple of hours of off-line computations, on a
modest laptop PC ( i5 2.6GHz, Matlab 2015b), where almost
all the time was spent in solving the ode’s.

B. Simulations

Figure 7 illustrates the active and passive system responses
for various bumps and potholes. It can be observed that:
the optimal control reduces the cost function to 54% of the
passive case, acceleration is reduced 12%, and deflection
settling times are reduced to less than half of those of the
passive system. Some oscillation remains (see e.g. top right
plot), as the small resolution of the finite state/action system
did not enable to compensate for such small deviations.
Increasing the resolution (M and A) should not pose any
problems, but was not tested as the performance was already
considered sufficient for illustration purposes. Looking at the
motion of the vehicle chassis (top right plot in Fig. 7), the
behaviour of the system seems smooth and calm.

VI. SUMMARY AND DISCUSSION

The paper considered simulation-based non-linear active
suspension control design for MacPherson systems. A non-
linear dynamic model for the MacPherson suspension sys-
tem was derived. Simplified kinematics were obtained from
system geometry and assuming small angles. The system
dynamic equations were derived for two linear approxima-
tions of the camber angle using the standard Euler-Lagrange
method. The nonlinearities were analyzed, and the dynamic
behaviour of the system was illustrated by simulations.
The design of controllers and state estimators using finite
state Markov models was briefly outlined, and applied for
nonlinear active suspension control system.

Albeit nonlinear, the resulting expressions are much sim-
pler than in [3][4], at the expense of loss of details pre-
sumably in particular vs the track width and at large angles.
The results appeared adequate in terms of modelling perfor-
mance and computational load, for use in simulation-based
design of nonlinear active suspension control systems. Future
work should assess the performance of the simplified model
vs. other planar and full system models (e.g., via Adams
simulations). However, the emphasis of the work was in
modeling the vertical dynamics of the sprung mass for active
suspension control, and future work should take into account
not only more precise kinematics but also the modeling of
uncertainties and disturbances associated with the system, as
well as the actuator.

The MDP control design example illustrated the power
of the finite Markov chains approach in non-linear active
suspension control. Significant improvement in closed-loop
performance over a passive system was obtained. Major
benefits of the MDP-based non-linear control design are
in that the computations are off-line, and can be readily
extended to consider stochastic components in the system.
For simplicity, the simulations assumed an ideal actuator and

the system was assumed to be free of state and measurement
noise. We expect to report results under stochastic road and
measurement noise in the near future.

Active suspension systems provide greatly improved
means for improving ride comfort and vehicle handling, but
at the same time there are significant drawbacks [1] due
to higher energy consumption, cost, complexity and opera-
tional requirements due to startup/shutdown, diagnostics and
component failures. In the current practice, often only some
parameters of the suspension systems are adjusted (semi-
active control). In preview control, for example, knowledge
of the future road disturbance profile can be used to adjust
the stiffness of the shock absorber damping in advance. As
pointed out by Tseng and Hrovat [1], main challenges for
widespread usage of active suspensions still lies in the area
of actuator design and implementation.

Vehicle suspension systems can also be exploited in addi-
tional tasks, such as levelling (lowering vehicle at highway
speeds), improving safety (cornering), or minimization of
road or bridge damages in the case of heavy vehicles.
Vehicle-to-vehicle and vehicle-to-infrastucture communica-
tions have been proposed recently, e.g., for building up-to-
date road maps for preview control [1], and visions on robotic
cars and convoys have already been demonstrated in practice.
Indeed, there are a number of interesting links between the
’basic low-level’ problem of suspension control and the tasks
at higher level optimization of transportation systems.
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