
A Regulatory Algorithm (RGA) for Optimizing
Examination Timetabling

Christina Klüver
University of Duisburg-Essen

Institute for Computer Science and Business Administration
Essen, Germany

christina.kluever@uni-due.de

Jürgen Klüver
University of Duisburg-Essen

Computer Based Analysis of Social Complexity
Essen, Germany

juergen.kluever@uni-due.de

Abstract—We describe the regulatory algorithm (RGA), a two
dimensional extension of standard evolutionary algorithms. Its
possibilities are shown by an application to the problem of
optimizing timetabling for exams with real data from the
University Duisburg-Essen (Germany). The results of the RGA
application show that the room allocation problem for written
exams can be satisfactory solved in a few minutes. In addition we
compared the RGA with a standard GA. The RGA was
significantly better in all experiments; in particular the GA could
not fulfill all distribution demands in contrast to the RGA.

Keywords—optimization, evolutionary algorithms, regulatory
algorithm, genetic algorithm, constraints, room allocation plans

I. INTRODUCTION
The problem of optimizing room allocation plans or

optimizing timetables is a well-known problem of the class of
NP-complete problems. Especially so-called hard and soft
constraints are a major challenge for the administrators and/or
for computer programs accordingly. Because of its practical
importance many approaches have been developed for its
solution, for example graph theoretical ones, the usage of
specific neural networks, evolutionary algorithms, and
simulated annealing (cf. e.g. [1] - [7]).

A similar problem occurs for the problem of exam
timetabling (cf. e.g. [8] – [12]). This task is even more difficult
for the administration because it has only a little time to
organize the rooms for all written exams during a short period.

In this article we describe the application of a new
evolutionary algorithm to this problem, namely the Regulatory
Algorithm (RGA) that was developed by our research group
CoBASC1 [13]. We obtained from the administration of our
University Duisburg-Essen the complete data for one semester,
e.g. number of lecturers, number of exams, number of students
per examination, and applied the RGA to construct an optimal
room allocation plan for the written exams. To demonstrate the
thickness of the algorithm only the timetabling for student
teachers are considered because they have the plan priority at
the university.

The aim of the article is twofold: on the one hand we
present the basic logic of RGA because it is still a relative new
system; on the other the chief goal of the article is a

1 Computer Based Analysis of Social Complexity

demonstration how to solve an important practical and rather
complex problem with the RGA. The obvious practical success
of the RGA is an important indicator for its validity as a suited
tool for solving complex optimization problems.

We first describe the RGA; in the following section the
situation at the university is given; subsequently we show the
RGA model for the room allocation problem for exams and
describe the experimental design, and present the most
important results. Finally we show the results of comparisons
with a standard GA.

II. THE REGULATORY ALGORITHM (RGA)
The usual evolutionary algorithms like in particular Genetic

Algorithms (GA), Evolution Strategies (ES), and Genetic
Programming (GP) are, as is well known, biologically
orientated to the Modern Synthesis [14], i.e. the integration of
Darwin’s theory of evolution and Mendelian genetics. There
are, according to this classical paradigm, genes as the
fundamental units of evolution and all genes are insofar from
the same type as they determine the development of the
different parts of the organism. According to this fundamental
conception the evolutionary algorithms inspired by it are
basically one-dimensional systems, namely strings or vectors
respectively, consisting of components as the formal
representatives of genes. To be sure, the components may
consist themselves of different units as, e.g., in GP where the
components consist of “trees”, but the basic logic is always the
same.

When applying evolutionary algorithms to a certain
optimization problem it is usually represented, as we
mentioned, in form of a vector or string respectively. Hence we
have basically a one-dimensional representation, which can be
visualized as follows (Fig. 1):

Fig. 1. A one-dimensional vector representation of two „individuals“, upon
which mutation and crossover perform the variation, determined by the
according fitness or evaluation function

Crossover

Mutation

In terms borrowed from biology the vector frequently is
called an “individual” and its components are the “genes”.
Hence a population of individuals is a set of such vectors.

At least since the fundamental work of Jacob and Monod
[9] one has in biology to distinguish between different types of
genes: The genes that are responsible for the development of
the organism are no autonomous units but are dependent from
regulatory genes that “switch on and off” the first genes (Jacob
and Monod called these first genes structural genes).
Therefore, the genome must be understood as a system that
consists of different levels where each level consists of a
particular type of genes with different functions (cf. e.g. [15]).
The result of an orientation to these insights is the Regulatory
Algorithm (RGA).2

An “individual” that is constructed for the usage of a RGA
is more complex because it must be a (at least) two-
dimensional representation. It consists of a) a “regulatory
vector” (RV), whose elements are “regulatory genes” (rg), b)
of a second vector, namely the “structural vector” (SV),
containing the “structural genes” (sg), and c) a set or vector of
connections (CV) between the regulatory genes and the
structural genes (Fig. 2). By using the terms “regulatory genes”
and “structural genes” we take over the original terminology of
Jacob and Monod.

Fig. 2. Two RGA individuals constructed as two-dimensional
representations; crossover is performed according to the arrows between the
different parts of the individuals.

Fig. 2 should be understood the following way: In each
individual the regulatory genes are connected with one or
several structural genes but not vice versa. This means that the
regulatory genes have effects on the structural genes, i.e.
determine their values or their position in the vector, but the
structural genes do not influence the regulatory genes. Hence
an individual is a simple two-dimensional topological space
whose topology is defined by the connections between the
components of RV and SV. The kind of effects on the
structural genes depends on the specific problem. In the
simplest form the structural genes are just “switched on” and
“switched off” by the regulatory genes, according to the
biological terminology. If for example the regulatory genes are
just binary coded then a regulatory gene in a state of 1 might
leave the structural genes in their original state; if the
regulatory gene is in a state of 0 then the connected structural
genes will for example also become zero or they will be
omitted from the fitness function and so on. There are several
possibilities already in this simple case.

In the case of coding with real numbers other possibilities
exist to define the effects of the regulatory genes on the

2 The idea to combine regulatory genes with Genetic Algorithms was also

proposed e.g. by [17] - [19].

structural genes, for example multiplying the state value of a
regulatory gene with that of the connected structural genes.
Which possibility a user chooses depends of course again on
the specific problem. Finally one might also “weight” the
connections, i.e. define each connection not only by its
topological function but also by a specific weight value. In this
case a RGA individual becomes similar to a two-level feed
forward neural network; the effects of the regulatory genes on
the connected structural genes might be computed in
orientation to well-known activation functions in such neural
nets.

In addition to such “numerical” effects the regulatory genes
might have on the structural genes it is also possible to define
the regulatory genes as “shifting orders”, i.e. as rules for a
recombination of the structural genes. Other possibilities can
easily be imagined (for details cf. [13]).

According to the specific problems the fitness function
could a) be applied to the whole individual or b) to specific
components, for example the set of connections. Usually the
evaluation of the whole individual would be the most natural
form of evaluation in such cases. In our application only SV is
evaluated, i.e. the fitness value of the individual is that of SV.

The application of the usual genetic operators, i.e. mutation
and crossover, to a RGA individual can be done in seven
different ways: (1) Only the RV is varied; (2) only the CV is
varied; (3) only the SV is varied; (4) RV and CV are both
varied; (5) RV and SV are both varied; (6) CV and SV are both
varied; (7) all three parts are varied. Variation of two or more
parts of a RGA individual means that in a predetermined order
first one part is varied and then the next. If for example both
RV and CV should be varied then a natural order would be first
the variation of RV and then of CV; in this case of course the
CV for the variation operations is defined by the result of the
previous variation of RV.

On a first sight it would seem that possibility (3), namely
just varying the SV, is the same as just using a GA (or an ES).
Yet this is only the case if one blocks all other parts of the
RGA individual, i.e. if there are no influences of RV and CV
on SV. If all parts of the individual are still connected then a
variation of the SV would connect its components with
different elements of the RV, which frequently would change
the values of the components of SV.

Factually things are even more complex. The seven
combinatorial possibilities require that the genetic operators,
i.e. crossover and mutation, are always applied to the according
levels in the same manner. If for example option (4) is chosen,
i.e. the variation of both RV and CV, and if both operators
should be used on RV, then the same must be the case with the
variation of CV. This restriction is of course not necessary.
Other possibilities are, for example, to vary in this example RV
with both operators and CV just with mutation. Hence, if we
take into account these additional variation possibilities we get
not only seven, which is complicated enough, but altogether 27
= 128. In most practical applications, however, one of the
seven basic options is sufficient.

When using a RGA for a specific task a variation schema
VS = ((x,y), (x,y), (x,y)) can be defined as a pragmatic overall

view; x = 1 and y = 0 for example in the first bracket means
that crossover shall be applied to RV and mutation not; the
second bracket refers the same way to the variation of CV and
the third bracket refers to the possible variation of SV. When
taking, e.g., the option (4) with the variation just described we
have

 VS = ((1,1), (0,1), (0,0)), (1)

namely both operators shall be applied to the RV, only
mutation to CV, and no operator to SV.

The variation schema of the basic option (7), i.e. varying all
components of RGA individuals with both operators would
accordingly be

 VS = ((1,1), (1,1), (1,1)). (2)

According to the seven basic options of varying RGA
individuals there are also seven basic options to introduce
elitist versions of the RGA, namely taking over into the next
generation from the best individual(s) (1) the RV, (2) the CV,
(3) the SV, (4) RV and CV, (5) RV and SV, (6) CV and SV,
and finally (7) the whole individual.

Without doubt the RGA is a much more complex algorithm
than, e.g. a GA or an ES. Therefore, the question suggests itself
why one should use such a complex algorithm if simpler ones
are at one’s disposal, which have been already analyzed for
several decades. In our opinion the usage of a RGA might have
several advantages:

(a) The very different sizes of the RV and the SV, as found
in biological experiments, suggest the possibility that at least
sometimes biological evolution might have operated chiefly on
the RVs and, because a RV is much smaller than the according
SV, could perform significantly faster. Hence a RGA might be
faster than a GA or an ES if only the RV is varied. This must
not be necessarily true with all problems but the possibility is
rather promising. Indeed, in some cases, which we analyzed
[cf. 7], a RGA was significantly faster than a usual GA, whose
performance we compared with the performance of the RGA.

(b) It is well known that in many problems like the TSP
specific constraints must be taken into account. The difficulty
is that in particular the crossover operator frequently generates
“wrong” individuals, for example in case of the TSP routes
where one town might appear twice and other towns not at all.
Already Michalewicz [20] described three classical ways of
dealing with this problem, namely the “penalty approach”, the
“decoder approach”, and the “repair approach”. As far as we
know, the penalty approach, namely the “punishment” of
wrong individuals by reducing their values in the fitness
function, and the repair approach, namely the introduction of
additional rules for removing wrong individuals from the
population, are the mostly used techniques. But both
approaches are usually very problem specific and not very
elegant, as already Michalewicz observed.

By using a RGA problems like TSP can be dealt with
without any additional rules. The RV is in such cases defined
as a “shifting order”, namely as an instruction how to

recombine the structure genes; only the RV is varied by
mutation and crossover. Because there are no variations of the
SV wrong combinations in the sense mentioned above cannot
appear and hence no additional rules like penalty or repair ones
are necessary.

(c) The third possibility is the modeling and optimizing of
many leveled systems. Consider for example a social
organization with at least two different levels, namely superiors
(= RV) and employees (= SV). Obviously such a system could
very easily be represented by a RGA; if this system should be
optimized according to certain criteria it is “just” a question of
the practical possibilities of variation the system allows, which
of the RGA components should be varied by the genetic
operators. If, for example, only the level of employees can in
reality be varied then the RGA must take this into account; if it
is possible to change the relations between superiors and
employees the connection vector CV should be varied, and if
the superiors might be changed, i.e. their position on their
level, RV is open to variations.

To be sure, such an organization frequently consists of
more than two levels – three, four or even more. Yet as already
Jacob and Monod, as we mentioned, proposed a three level
model, it is easily possible to extend the RGA to three or more
levels. In such cases the initial RV would become a “second
level” SV with a “second level” RV above him and so on. Of
course, the connections between the different levels would
become more complicated but in any case the modeling of such
multi level systems would be much easier than the usage of a
GA or an ES and the construction of a suited model. In
particular, if one has already a RGA shell at one’s disposal
with the possibility to increase the number of levels, as we
have, the mapping of systems like social hierarchically
structured systems on an according RGA would be a very
natural way of modeling and a rather easy one too.3

To be sure, at present it is not possible to define general
ways, which of the different possibilities should be used when
dealing with a specific problem. Yet for example the problem
of room allocations for written exams, as we shall show,
demonstrates that a variation of RV is not useful and hence a
variation schema VS = ((0,0), (x,y), (x,y)) should be applied.
According to our experience the structure of the specific
problem usually determines a suited VS.

III. SITUATION AT THE UNIVERSITY DUISBURG-ESSEN
The University Duisburg-Essen with approx. 36.000

students consists of the Campus Duisburg and the Campus
Essen with different courses of study; for example mathematics
and physics are offered at Campus Duisburg, medicine,
chemistry, and biology at Campus Essen. Essen and Duisburg
are two large towns in the Ruhrgebiet, an industrial region in
the western part of Germany. Each campus is separately

3 In the last years a new approach to use evolutionary algorithms has been

proposed, namely the usage of so-called Multi Level Evolutionary
Algorithms (MLEA) or more specifically Multi Level Genetic Algorithms
(MLGA) (e.g. [21] and [22]). Despite the striking semantical similarity this
approach is factually an inverse way: In MLEA a problem is decomposed
in different “levels” and on each level an EA is applied. The algorithms
remain one-dimensional in contrast to the RGA where the algorithm itself
consists of different levels.

administered although in some courses students have to travel
from one town to the other; the distance is about 20 km. The
students have two time periods for the examinations, at the end
of the term, and before the beginning of the next semester. A
particular problem is that the teacher education students have
lectures at both locations, and the exams take place
accordingly. In addition, the exams have to be finished during a
time period of two weeks; after this period the other exams,
according to the number of students, have to be planed.

In total only a few weeks are at disposal to finish the first
examination period. All students must have the results of their
exams before the beginning of the registration time for the
second time period, and they generally have the possibility to
cancel the examination one week before the fixed examination
date.

The lecturers have to inform the administration in a long
lead time about the expected number of students, the requested
day, the duration time of the examination, and needed special
rooms like PC- or lab-rooms. In addition, many lecturers wish
a factor for the space between two students to avoid cheating:
e.g. factor 4 means that according four free places must be
available between two students. This has of course an influence
on the needed capacity: if 300 students are expected, and the
space factor is 4 the administration has to reserve a location
with a capacity for 1,200 students. Additional problems are if
the administration has to rent a location outside of the
university and that only one week before the examination date
a lot of students cancel the exam registration.

The following Table I shows the dimension of the whole
problem:

TABLE I. OVERVIEW OF THE EXAM ANNOUNCEMENTS

Exams for teacher education students NR.

Subjects 261

Exam registrations 14,273

Space factor 1 – 4

Students per exam 1 – 1,795

Required room capacity (with a space factor) 4 – 5,000

Duration time of the exams 1 – 10 hours

An additional serious problem in practice and for the RGA
is the fact that the requests for rooms with a specific capacity
are very unevenly distributed. For example, the numbers of the
expected teacher education students vary from 1 to 1,795 with
a different factor for the free space between the students.

The problem, hence, for each day was to allocate suitable
rooms that fulfill all or the most important demands for every
announced request, i.e. the exams with specific wishes of day,
time, and so forth.

We applied the RGA only to the allocation problem of the
Campus Essen to demonstrate its possibilities.

IV. THE RGA MODEL
Each room suitable for a specific request must fulfill the

conditions that characterize the request as nearly as possible.
For the RGA model we defined these conditions as constraints
that determine the success of the proposals of the RGA. A
violation of a constraint, e.g. if the proposed room is too small
for the expected number of students, will be “punished”, i.e.
the room proposal by the RGA receives an unfavorable fitness
value (see below). Because not all requests of the exams are of
equal importance we divided the whole set of constraints into
“hard constraints” and “soft constraints”. For example, the
expected number of students is a hard constraint because
obviously an exam in a room too small cannot be properly
carried through; the request for a specific room is defined as a
soft constraint because it is not very important, with the
exceptions of PC- or lab-rooms. The violations of hard
constraints are punished more severely than a violation of soft
constraints. The constraints taken into account in the model
are:

Hard constraints:

(1) One exam one time: One specific exam could be
announced only for one specific time at a certain day.

(2) One exam one room: At a specific time only one exam
might be delivered in a certain room.

(3) No double exams: A specific exam must be planned
only once at a specific time. This means a consistency
check for all exams.

(4) Capacity: Each room proposed by the RGA must
contain sufficient space, i.e. chairs and tables, for the
number of students.

(5) All exams: A proposed plan for room allocation must
contain all exams announced by the lecturers. This is
an additional consistency check.

Soft constraints:

(6) Desired day: The day wished by the lecturer.

(7) Desired time start and necessary end: The starting time
wished by the lecturer.

(8) Desired room: A specific room wished by the lecturer.

It must be noted, however, that the number of rooms in the
university is never sufficient for the written exams. That is
why the university has to rent additional rooms outside, for
example in the halls of the Essen fair. These additional rooms
are also taken into the database of the RGA. The wish of the
administration not to rent additional rooms or at least as few as
possible outside of the university can be taken into account
too. A proposal for an according enlargement of the RGA
model is given at the end of this article.

A violation of one of the hard constraints will be punished
by a value of 1.0, a violation of a soft constraint by values from
0.125 to 0.9, depending on the importance of the constraint.

In the RGA model the 8 constraints are implemented as
regulatory genes (rg). The RV, hence, is a 8-dimensional vector
RV = (con1, con2, …, con 8).

The requests are implemented as structural genes sg. Each
gene consists of the components (requested) time, capacity,
day, lecturer, and exam; the RGA substitutes for “capacity” a
specific room with characteristics of its capacity, the factual
equipment, and possibly if it is a room explicitly wished by the
lecturer. Hence sg = (time, room, day, lecturer, exam), i.e. each
gene is represented by a five-dimensional vector.

Accordingly, the following result is desired (Fig. 3):

Fig. 3. Desired result for one exam:

As there are (for teacher education students) 261 requests
all these requests are combined in the structural vector SV, i.e.
SV = (sg1, sg2, …, sg261); hence each sg is itself a vector. An
RGA individual, therefore, for the room allocation problem
consists of an 8-dimensional RV, a SV of 261 dimensions, and
a vector CV of different connections between RV and SV.

Fig. 4 shows an according RGA-individual:

Fig. 4. A RGA individual. HC = Hard Constraints; SC = Soft Constraints for
lectureri; SGi = Structural Gene (resulti); 'All exams' and 'Only 1 exam in a
room' are constraints, which check all structural genes.

The constraints, i.e. regulatory genes, are binary coded;
mutation, hence, means simply switching them on and off. If a
constraint is switched off it plays no role for the structural
genes connected with this regulatory gene; accordingly the
constraint is not taken into account by the fitness evaluating of
these structural genes (see below). However, the results given
below refer to a version where the regulatory genes are not
varied (see above) and are all switched on. It is possible to use
other versions where some constraints should not be taken into
regard and are accordingly switched off. The connections are in
a figurative sense weighted: The weight values describe the
probabilities of the variation of those structural genes that are
captured by the specific connections. Mutation of the
connections means the exchange of connections.

Variations of the structural genes mean basically the
exchanges of one component of a gene by a component from
another gene, for example the exchange of the exam

(mutation). Crossover in a varied form of “one-point-
crossover” of course means the exchange of parts of the whole
structural vector with parts from another individual, avoiding
wrong duplications.

Obviously a RGA individual is optimal if it fulfills all
conditions for all requests, i.e. if no constraints are violated.
The task of the RGA in this case is accordingly to minimize the
number of violated constraints as far as possible, i.e. to search
for a minimum. The fitness function takes this into regard by
steering the system to fitness values as low as possible. Only
the structural genes are of course evaluated. A RGA individual
hence gets its fitness value by a) computing the number of
violated constraints for each gene, multiplied by the
punishment values for each constraint, and b) by summing the
fitness values of the genes of the whole individual:

 fit(ind) = ∑i(vci * pvi) (3)

vci is the number of violated constraints and pvi the
punishment values of the different constraints.

Factually the model is a bit more complicated than shown
in this description but for a basic understanding of the model it
is sufficient to show the general principles.

Fig. 5 shows the RGA model for this problem:

Fig. 5. Schema of the RGA model for the room allocation problem

V. EXPERIMENTS AND RESULTS
The hard constraints, as mentioned, all have the punishment

values of 1.0. The soft constraints are valued with 0.9 for
wished day, 0.5 for wished room (with the exception of PC-
and lab-rooms with a value of 1.0), and 0.8 for wished time. To
be sure, in particular the values for the soft constraints are an
additional parameter that could – and perhaps should – be
changed, for example the value for “wished room”. This
condition is very difficult to fulfill, especially for the
examination tabling.

Because the variation of the regulatory genes makes with
regard to content not much sense for this problem we decided
to omit this vector from the variation operations. According to
the general variation schema VS described in section 2 we
chose the option VS = ((0,0), (1,1), (1,1)), i.e. mutation and
crossover were applied to both the connection vector and the

structural vector. According to our experiences we chose rather
small values of the genetic operators, as shown in Table II:

TABLE II. PARAMETER VALUES FOR THE RGA

Parameters Parameter-Values

Mutation structural vector (SV) 0,01

Crossover structural vector (SV) 0,5

Mutation vector of connections (VC) 0,1

Crossover vector of connections (VC) 0,1

Mutation regulator genes (RG) 0,0

Crossover regulator genes (RG) 0,0

Population size 200

Iterations 250

We used an elitist version by taking over the best two
individuals to the next generation.

For the experiments each time a population of 200
individuals was generated at random. According to preliminary
experiments 250 iterations were always enough because the
RGA obtained no significant improvements after 250 steps.
Figs. 6 - 9 show the best-obtained result, namely the optimum
of 0.0, and the possibility to organize all exams within a week;
it can be noted that the RGA has solved the task in an
unexpected short time:

Fig. 6. Fitnesstrend of the RGA. After 150 steps the system reaches the
optimum of 0.0.

Fig. 7. Needed time for the result

Fig. 8. Development of the hard constraints

Fig. 9. Development of the soft constraints

Fig. 8 shows in particular that the most difficult problem
for the RGA was the constraint of the capacity of the
necessary rooms. Fig. 9 demonstrates that the solutions of the
soft constraints varied rather much before the RGA found a
solution for these constraints too.

Comparison with a Genetic Algorithm
 For a comparison of the RGA with a Genetic Algorithm
(GA) we have introduced in the GA a "repair mechanism" to
make sure that the constraints are also taken into account and
that each individual is a correct one. In the first experimental
comparison we have used the same parameters for the GA as
for the RGA in the previous experiments, namely a population
of 200 individuals, 250 iterations, 0,01 for mutation and 0,5 for
crossover (cf. Table I). The GA was not able to perform the
task in a satisfactory way. Fig. 10 and 11 show the results:

Fig. 10. Development of fitness values

Fitness

Time

Hard Constraints

Soft Constraints

Fitness

Fig. 11. Needed time for the results

The optimization results show that the fitness value of the
GA remains near to 80 (Fig. 10), and that it reaches this local
optimum after 6 seconds (Fig. 11).

In the next experiments we choose the most favorable
parameters according to our experiments for the GA and the
same values for the RGA, shown in Table III:

TABLE III. PARAMETERS FOR THE GA

Parameters Parameter-Values

Mutation 0,5

Crossover 0,9

Population size 500

Iterations 800

The results are shown in the Fig. 12 and 13:

Fig. 12. Development of the fitness trend GA and RGA in comparison

Fig. 13. Development of the needed time GA and RGA in comparison

One sees that the GA reaches a fitness value of 18, which is
a very good result, and the RGA reaches a fitness value of 12.
The time needed for the results is again different, as the GA
needs only 300 seconds, the RGA about 640. This result is
typical for all experiments. The GA never reaches the fitness
values of the RGA, but is faster in the processing time, because
of the needed number of iteration.

Taking into account that the RGA does not need a
population larger than 200 and only 150 iterations to get the
global optimum, the RGA obviously performs significantly
better. Apparently the GA and the RGA need different
parameter values to achieve their respective best results. This is
also the case with the necessary and suited size of the
populations; the GA needed a much larger population than the
RGA. Best values for the RGA with suited parameters show an
impressive advantage of the RGA: The RGA reached a global
optimum; the GA could never do this but remained in local
optima.

We are of course aware that there are many different meta
heuristics that could be compared with the RGA, in particular
approaches that are similar to the RGA. Yet in this rather short
article we had to be content with only one of the best-known
techniques, namely a standard GA, as comparison.

Of course the problem of examination timetabling can be
solved by other algorithms too (cf. the list of references). Yet
the obvious practical success of the RGA is a positive
indication that it is worthwhile to investigate the possibilities of
the RGA by its application to other complex optimization
problems. In addition, we compared the RGA with an
according GA with respect to several other problems. In most
cases the RGA performed significantly better and in several
cases only the RGA found a solution at all [13], as is also the
case in this example.

Fitness

Time Time

VI. FINAL REMARKS
The positive results of the RGA are in accord with results

from previous experiments, namely that perhaps the RGA
because of its topological structure performs best in the case of
problems that can be structured the same way, i.e. as a two-
dimensional topological space [13]. At present this is just a
hypothesis but it is temporarily confirmed by the results of a
room allocation problem [7] and the examination timetabling.
We shall analyze this hypothesis in further experiments and
applications.

The RGA described in this article is still a prototype in the
sense that several user-friendly improvements are necessary for
its usage in practice. The most important one is optimizing the
time between the exams and to make sure that the students
have not more than one exam per day, which is not the case at
present.

An additional enlargement is to vary the RGA by allowing
double or more exams in the same room to avoid rented
locations: The mentioned factor, e.g. 4, means that the room
must have at least four times as many places as there are
students. In other words, between two students there should be
four empty places. If one organizes four exams of four
different disciplines then it would be possible to place students
of different disciplines together without empty places between
them. If the lecturers, hence, wish to have a factor 4 than four
different exams can be written at the same time if the students
are placed accordingly – for example a student of chemistry
besides one of sociology, this one besides a student of
literature, and so on. In this case, if there are 300 students for
each exam, only one room with 1,200 places is needed, but for
four exams. The RGA has then the task to put together
different exams like physics, literature, arts and pedagogics.

The RGA looks on a first sight as a rather complicated
system, but it is obviously very efficient and it enables solving
the constraint problems in a very elegant and simple way. It
will be interesting and worthwhile to investigate its potential
further.

REFERENCES
[1] E. Burke, J.P. Newall, and R.F. Weare, "A memetic algorithm for

university exam timetabling", in: G. Goos, J. Hartmanis, J. Leeuwen, E.
Burke, and P. Ross, Eds, Practice and Theory of Automated
Timetabling, vol. 1153. Berlin, Heidelberg: Springer (Lecture Notes in
Computer Science), 1996, pp. 241-250.

[2] E. Burke, J.P. Newall, "A multistage evolutionary algorithm for the
timetable problem", in: IEEE Transactions on Evolutionary Computation
3 (1), 1999, pp. 63-74. DOI: 10.1109/4235.752921.

[3] J.A. Soria-Alcaraz, E. Özcan, J. Swan, G. Kendall, M. Carpio, "Iterated
local search using an add and delete hyper-heuristic for university course
timetabling", Applied Soft Computing, 40, 2016, pp. 581-593

[4] R. Bellio, S. Ceschia, L. Di Gaspero, A. Schaerf, T. Urli, "Feature-based
tuning of simulated annealing applied to the curriculum-based course
timetabling problem", Computers & Oerations Research, 65, 2016, pp.
83-92

[5] H. Babaei, J., Karimpour, A. Hadidi, "A survey of approaches for
university course timetabling problem, Computers & Industrial
Engineering, 86, 2015, pp. 43-59

[6] J. Lee, S.-P. Ma, L. F. Lai, N. L. Hsueh, and Y.-Y. Fanjiang, University
Timetabling through Conceptual Modeling, International Journal of
Intelligent Systems, Vol. 20, 2005, pp. 1137-1160

[7] M. Kleine-Boymann, C. Klüver, and J. Klüver, Optimization of Room
Allocation Plans at the University Duisburg-Essen with a Regulatory
Algorithm, Proceedings of IEEE CEC 2016, in press

[8] M. W. Carter, G. Laporte and S. Y. LEE, Examination Timetabling:
Algorithmic Strategies and Applications Journal of the Operational
Research Society 47, 1996, pp. 373-383

[9] R. Qu, E.K. Burke, B. McCollum, L.T.G. Merlot, and S.Y. Lee, A
survey of search methodologies and automated system development for
examination timetabling, Journal of scheduling, 12, 2009, pp. 55-89

[10] S. Larabi Marie-Sainte, A survey of Particle Swarm Optimization
techniques for solving university Examination Timetabling Problem,
Artificial Intelligence Review, 44: 537, 2015, DOI: 10.1007/s10462-
015-9437-7

[11] M.A.H. Hassan, and O.A.H. Hassan, Constraints Aware and User
Friendly Exam Scheduling System, International Arab Journal of
Information Technology (IAJIT), Vol. 13, No. 1A, 2016.

[12] W. Erben, "A Grouping Genetic Algorithm for Graph Colouring and
Exam Timetabling", in: E. Burke and W. Erben, Eds, Practice and
theory of automated timetabling. Third international conference, PATAT
2000, Konstanz, Germany, August 16-18, Berlin, New York: Springer
(Lecture Notes in Computer Science), 2001, pp. 132-156.

[13] J. Klüver, and C. Klüver, "The Regulatory Algorithm (RGA): A two-
dimensional Extension of Evolutionary Algorithms", Soft Computing.
Springer, 2015 DOI: 10.1007/s00500-015-1624-6.

[14] J.S. Huxley, "Evolution, The Modern Synthesis", London: Allen and
Unwin, 1942.

[15] F. Jacob and J. Monod, "Genetic regulatory mechanisms in the synthesis
of proteins". Mol. Bio. 1961, vol. 3, pp. 318-356.

[16] S.B. Carroll, "Endless Forms Most Beautiful. The New Science of Evo
Devo and the Making of the Animal Kingdom". London: Weidenfeld
and Nicolson, 2006.

[17] Z. Michalewicz, "Genetic Algorithms + Data Structures = Evolution
Programs", 1994, Berlin: Springer.

[18] D. Ashlock and W. Ashlock, "Impact of regulatory genes on
optimization behavior," Evolutionary Computation (CEC), 2012 IEEE
Congress on, Brisbane, QLD, 2012, pp. 1-8.
DOI: 10.1109/CEC.2012.6252981

[19] S. Vijayvargiya and P. Shukla, "A Structured Evolutionary Algorithm
for Identification of Transcription Factor Binding Sites in Unaligned
DNA Sequences". International Journal of Advancements in
Technology, 2011 (1) pp. 100-107

[20] S. Cussat-Blanc, K. Harrington, and J. Pollack, Gene Regulatory
Network Evolution Through Augmenting Topologies, IEEE
Transactions on Evolutionary Computation, Vol. 19, Nr. 6, 2015, 823-
837

[21] A. J. Soper, C. Walshaw, and M. Cross, "A Combined Evolutionary
Search and Multi Level Optimisation Approach to Graph Partitioning",
University of Greenwich, Mathematics Research Report 00/IM/ 58,
2000.

[22] C. Antonio, "A multi level genetic algorithm for optimization of
geometrically nonlinear stiffened composite structures", Structural and
Multidisciplinary Optimization, 2002, vol. 24 (5), pp. 372-386.

