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Abstract—We describe the regulatory algorithm (RGA), a two 
dimensional extension of standard evolutionary algorithms. Its 
possibilities are shown by an application to the problem of 
optimizing timetabling for exams with real data from the 
University Duisburg-Essen (Germany). The results of the RGA 
application show that the room allocation problem for written 
exams can be satisfactory solved in a few minutes. In addition we 
compared the RGA with a standard GA. The RGA was 
significantly better in all experiments; in particular the GA could 
not fulfill all distribution demands in contrast to the RGA. 

Keywords—optimization, evolutionary algorithms, regulatory 
algorithm, genetic algorithm, constraints, room allocation plans 

I.  INTRODUCTION 
The problem of optimizing room allocation plans or 

optimizing timetables is a well-known problem of the class of 
NP-complete problems. Especially so-called hard and soft 
constraints are a major challenge for the administrators and/or 
for computer programs accordingly. Because of its practical 
importance many approaches have been developed for its 
solution, for example graph theoretical ones, the usage of 
specific neural networks, evolutionary algorithms, and 
simulated annealing (cf. e.g. [1] - [7]).  

A similar problem occurs for the problem of exam 
timetabling (cf. e.g. [8] – [12]). This task is even more difficult 
for the administration because it has only a little time to 
organize the rooms for all written exams during a short period.  

In this article we describe the application of a new 
evolutionary algorithm to this problem, namely the Regulatory 
Algorithm (RGA) that was developed by our research group 
CoBASC1 [13]. We obtained from the administration of our 
University Duisburg-Essen the complete data for one semester, 
e.g. number of lecturers, number of exams, number of students 
per examination, and applied the RGA to construct an optimal 
room allocation plan for the written exams. To demonstrate the 
thickness of the algorithm only the timetabling for student 
teachers are considered because they have the plan priority at 
the university.  

The aim of the article is twofold: on the one hand we 
present the basic logic of RGA because it is still a relative new 
system; on the other the chief goal of the article is a 
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demonstration how to solve an important practical and rather 
complex problem with the RGA. The obvious practical success 
of the RGA is an important indicator for its validity as a suited 
tool for solving complex optimization problems. 

We first describe the RGA; in the following section the 
situation at the university is given; subsequently we show the 
RGA model for the room allocation problem for exams and 
describe the experimental design, and present the most 
important results. Finally we show the results of comparisons 
with a standard GA. 

II. THE REGULATORY ALGORITHM (RGA) 
The usual evolutionary algorithms like in particular Genetic 

Algorithms (GA), Evolution Strategies (ES), and Genetic 
Programming (GP) are, as is well known, biologically 
orientated to the Modern Synthesis [14], i.e. the integration of 
Darwin’s theory of evolution and Mendelian genetics. There 
are, according to this classical paradigm, genes as the 
fundamental units of evolution and all genes are insofar from 
the same type as they determine the development of the 
different parts of the organism. According to this fundamental 
conception the evolutionary algorithms inspired by it are 
basically one-dimensional systems, namely strings or vectors 
respectively, consisting of components as the formal 
representatives of genes. To be sure, the components may 
consist themselves of different units as, e.g., in GP where the 
components consist of “trees”, but the basic logic is always the 
same. 

When applying evolutionary algorithms to a certain 
optimization problem it is usually represented, as we 
mentioned, in form of a vector or string respectively. Hence we 
have basically a one-dimensional representation, which can be 
visualized as follows (Fig. 1): 

 

 

 
Fig. 1. A one-dimensional vector representation of two „individuals“, upon 
which mutation and crossover perform the variation, determined by the 
according fitness or evaluation function 

Crossover  

Mutation 



In terms borrowed from biology the vector frequently is 
called an “individual” and its components are the “genes”. 
Hence a population of individuals is a set of such vectors. 

At least since the fundamental work of Jacob and Monod 
[9] one has in biology to distinguish between different types of 
genes: The genes that are responsible for the development of 
the organism are no autonomous units but are dependent from 
regulatory genes that “switch on and off” the first genes (Jacob 
and Monod called these first genes structural genes). 
Therefore, the genome must be understood as a system that 
consists of different levels where each level consists of a 
particular type of genes with different functions (cf. e.g. [15]). 
The result of an orientation to these insights is the Regulatory 
Algorithm (RGA).2 

An “individual” that is constructed for the usage of a RGA 
is more complex because it must be a (at least) two-
dimensional representation. It consists of a) a “regulatory 
vector” (RV), whose elements are “regulatory genes” (rg), b) 
of a second vector, namely the “structural vector” (SV), 
containing the “structural genes” (sg), and c) a set or vector of 
connections (CV) between the regulatory genes and the 
structural genes (Fig. 2). By using the terms “regulatory genes” 
and “structural genes” we take over the original terminology of 
Jacob and Monod.  

Fig. 2. Two RGA individuals constructed as two-dimensional 
representations; crossover is performed according to the arrows between the 
different parts of the individuals. 

Fig. 2 should be understood the following way: In each 
individual the regulatory genes are connected with one or 
several structural genes but not vice versa. This means that the 
regulatory genes have effects on the structural genes, i.e. 
determine their values or their position in the vector, but the 
structural genes do not influence the regulatory genes. Hence 
an individual is a simple two-dimensional topological space 
whose topology is defined by the connections between the 
components of RV and SV. The kind of effects on the 
structural genes depends on the specific problem. In the 
simplest form the structural genes are just “switched on” and 
“switched off” by the regulatory genes, according to the 
biological terminology. If for example the regulatory genes are 
just binary coded then a regulatory gene in a state of 1 might 
leave the structural genes in their original state; if the 
regulatory gene is in a state of 0 then the connected structural 
genes will for example also become zero or they will be 
omitted from the fitness function and so on. There are several 
possibilities already in this simple case. 

In the case of coding with real numbers other possibilities 
exist to define the effects of the regulatory genes on the 
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proposed e.g. by [17] - [19]. 

structural genes, for example multiplying the state value of a 
regulatory gene with that of the connected structural genes. 
Which possibility a user chooses depends of course again on 
the specific problem. Finally one might also “weight” the 
connections, i.e. define each connection not only by its 
topological function but also by a specific weight value. In this 
case a RGA individual becomes similar to a two-level feed 
forward neural network; the effects of the regulatory genes on 
the connected structural genes might be computed in 
orientation to well-known activation functions in such neural 
nets.  

In addition to such “numerical” effects the regulatory genes 
might have on the structural genes it is also possible to define 
the regulatory genes as “shifting orders”, i.e. as rules for a 
recombination of the structural genes. Other possibilities can 
easily be imagined (for details cf. [13]).  

According to the specific problems the fitness function 
could a) be applied to the whole individual or b) to specific 
components, for example the set of connections. Usually the 
evaluation of the whole individual would be the most natural 
form of evaluation in such cases. In our application only SV is 
evaluated, i.e. the fitness value of the individual is that of SV. 

The application of the usual genetic operators, i.e. mutation 
and crossover, to a RGA individual can be done in seven 
different ways: (1) Only the RV is varied; (2) only the CV is 
varied; (3) only the SV is varied; (4) RV and CV are both 
varied; (5) RV and SV are both varied; (6) CV and SV are both 
varied; (7) all three parts are varied. Variation of two or more 
parts of a RGA individual means that in a predetermined order 
first one part is varied and then the next. If for example both 
RV and CV should be varied then a natural order would be first 
the variation of RV and then of CV; in this case of course the 
CV for the variation operations is defined by the result of the 
previous variation of RV.  

On a first sight it would seem that possibility (3), namely 
just varying the SV, is the same as just using a GA (or an ES). 
Yet this is only the case if one blocks all other parts of the 
RGA individual, i.e. if there are no influences of RV and CV 
on SV. If all parts of the individual are still connected then a 
variation of the SV would connect its components with 
different elements of the RV, which frequently would change 
the values of the components of SV.  

Factually things are even more complex. The seven 
combinatorial possibilities require that the genetic operators, 
i.e. crossover and mutation, are always applied to the according 
levels in the same manner. If for example option (4) is chosen, 
i.e. the variation of both RV and CV, and if both operators 
should be used on RV, then the same must be the case with the 
variation of CV. This restriction is of course not necessary. 
Other possibilities are, for example, to vary in this example RV 
with both operators and CV just with mutation. Hence, if we 
take into account these additional variation possibilities we get 
not only seven, which is complicated enough, but altogether 27 
= 128. In most practical applications, however, one of the 
seven basic options is sufficient. 

When using a RGA for a specific task a variation schema 
VS = ((x,y), (x,y), (x,y)) can be defined as a pragmatic overall 

 



view; x = 1 and y = 0 for example in the first bracket means 
that crossover shall be applied to RV and mutation not; the 
second bracket refers the same way to the variation of CV and 
the third bracket refers to the possible variation of SV. When 
taking, e.g., the option (4) with the variation just described we 
have 

 VS = ((1,1), (0,1), (0,0)), (1) 

namely both operators shall be applied to the RV, only 
mutation to CV, and no operator to SV.  

The variation schema of the basic option (7), i.e. varying all 
components of RGA individuals with both operators would 
accordingly be 

 VS = ((1,1), (1,1), (1,1)). (2) 

According to the seven basic options of varying RGA 
individuals there are also seven basic options to introduce 
elitist versions of the RGA, namely taking over into the next 
generation from the best individual(s) (1) the RV, (2) the CV, 
(3) the SV, (4) RV and CV, (5) RV and SV, (6) CV and SV, 
and finally (7) the whole individual.  

Without doubt the RGA is a much more complex algorithm 
than, e.g. a GA or an ES. Therefore, the question suggests itself 
why one should use such a complex algorithm if simpler ones 
are at one’s disposal, which have been already analyzed for 
several decades. In our opinion the usage of a RGA might have 
several advantages:  

(a) The very different sizes of the RV and the SV, as found 
in biological experiments, suggest the possibility that at least 
sometimes biological evolution might have operated chiefly on 
the RVs and, because a RV is much smaller than the according 
SV, could perform significantly faster. Hence a RGA might be 
faster than a GA or an ES if only the RV is varied. This must 
not be necessarily true with all problems but the possibility is 
rather promising. Indeed, in some cases, which we analyzed 
[cf. 7], a RGA was significantly faster than a usual GA, whose 
performance we compared with the performance of the RGA. 

(b) It is well known that in many problems like the TSP 
specific constraints must be taken into account. The difficulty 
is that in particular the crossover operator frequently generates 
“wrong” individuals, for example in case of the TSP routes 
where one town might appear twice and other towns not at all. 
Already Michalewicz [20] described three classical ways of 
dealing with this problem, namely the “penalty approach”, the 
“decoder approach”, and the “repair approach”. As far as we 
know, the penalty approach, namely the “punishment” of 
wrong individuals by reducing their values in the fitness 
function, and the repair approach, namely the introduction of 
additional rules for removing wrong individuals from the 
population, are the mostly used techniques. But both 
approaches are usually very problem specific and not very 
elegant, as already Michalewicz observed. 

By using a RGA problems like TSP can be dealt with 
without any additional rules. The RV is in such cases defined 
as a “shifting order”, namely as an instruction how to 

recombine the structure genes; only the RV is varied by 
mutation and crossover. Because there are no variations of the 
SV wrong combinations in the sense mentioned above cannot 
appear and hence no additional rules like penalty or repair ones 
are necessary.  

(c) The third possibility is the modeling and optimizing of 
many leveled systems. Consider for example a social 
organization with at least two different levels, namely superiors 
(= RV) and employees (= SV). Obviously such a system could 
very easily be represented by a RGA; if this system should be 
optimized according to certain criteria it is “just” a question of 
the practical possibilities of variation the system allows, which 
of the RGA components should be varied by the genetic 
operators. If, for example, only the level of employees can in 
reality be varied then the RGA must take this into account; if it 
is possible to change the relations between superiors and 
employees the connection vector CV should be varied, and if 
the superiors might be changed, i.e. their position on their 
level, RV is open to variations.  

To be sure, such an organization frequently consists of 
more than two levels – three, four or even more. Yet as already 
Jacob and Monod, as we mentioned, proposed a three level 
model, it is easily possible to extend the RGA to three or more 
levels. In such cases the initial RV would become a “second 
level” SV with a “second level” RV above him and so on. Of 
course, the connections between the different levels would 
become more complicated but in any case the modeling of such 
multi level systems would be much easier than the usage of a 
GA or an ES and the construction of a suited model. In 
particular, if one has already a RGA shell at one’s disposal 
with the possibility to increase the number of levels, as we 
have, the mapping of systems like social hierarchically 
structured systems on an according RGA would be a very 
natural way of modeling and a rather easy one too.3 

To be sure, at present it is not possible to define general 
ways, which of the different possibilities should be used when 
dealing with a specific problem. Yet for example the problem 
of room allocations for written exams, as we shall show, 
demonstrates that a variation of RV is not useful and hence a 
variation schema VS = ((0,0), (x,y), (x,y)) should be applied. 
According to our experience the structure of the specific 
problem usually determines a suited VS. 

III. SITUATION AT THE UNIVERSITY DUISBURG-ESSEN 
The University Duisburg-Essen with approx. 36.000 

students consists of the Campus Duisburg and the Campus 
Essen with different courses of study; for example mathematics 
and physics are offered at Campus Duisburg, medicine, 
chemistry, and biology at Campus Essen. Essen and Duisburg 
are two large towns in the Ruhrgebiet, an industrial region in 
the western part of Germany. Each campus is separately 
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proposed, namely the usage of so-called Multi Level Evolutionary 
Algorithms (MLEA) or more specifically Multi Level Genetic Algorithms 
(MLGA) (e.g. [21] and [22]). Despite the striking semantical similarity this 
approach is factually an inverse way: In MLEA a problem is decomposed 
in different “levels” and on each level an EA is applied. The algorithms 
remain one-dimensional in contrast to the RGA where the algorithm itself 
consists of different levels. 



administered although in some courses students have to travel 
from one town to the other; the distance is about 20 km. The 
students have two time periods for the examinations, at the end 
of the term, and before the beginning of the next semester. A 
particular problem is that the teacher education students have 
lectures at both locations, and the exams take place 
accordingly. In addition, the exams have to be finished during a 
time period of two weeks; after this period the other exams, 
according to the number of students, have to be planed.  

In total only a few weeks are at disposal to finish the first 
examination period. All students must have the results of their 
exams before the beginning of the registration time for the 
second time period, and they generally have the possibility to 
cancel the examination one week before the fixed examination 
date.  

The lecturers have to inform the administration in a long 
lead time about the expected number of students, the requested 
day, the duration time of the examination, and needed special 
rooms like PC- or lab-rooms. In addition, many lecturers wish 
a factor for the space between two students to avoid cheating: 
e.g. factor 4 means that according four free places must be 
available between two students. This has of course an influence 
on the needed capacity: if 300 students are expected, and the 
space factor is 4 the administration has to reserve a location 
with a capacity for 1,200 students. Additional problems are if 
the administration has to rent a location outside of the 
university and that only one week before the examination date 
a lot of students cancel the exam registration. 

The following Table I shows the dimension of the whole 
problem: 

TABLE I.  OVERVIEW OF THE EXAM ANNOUNCEMENTS 

Exams for teacher education students NR. 

Subjects 261 

Exam registrations 14,273 

Space factor 1 – 4 

Students per exam 1 – 1,795 

Required room capacity (with a space factor) 4 – 5,000 

Duration time of the exams 1 – 10 hours 

 

An additional serious problem in practice and for the RGA 
is the fact that the requests for rooms with a specific capacity 
are very unevenly distributed. For example, the numbers of the 
expected teacher education students vary from 1 to 1,795 with 
a different factor for the free space between the students. 

The problem, hence, for each day was to allocate suitable 
rooms that fulfill all or the most important demands for every 
announced request, i.e. the exams with specific wishes of day, 
time, and so forth.  

We applied the RGA only to the allocation problem of the 
Campus Essen to demonstrate its possibilities.  

IV. THE RGA MODEL 
Each room suitable for a specific request must fulfill the 

conditions that characterize the request as nearly as possible. 
For the RGA model we defined these conditions as constraints 
that determine the success of the proposals of the RGA. A 
violation of a constraint, e.g. if the proposed room is too small 
for the expected number of students, will be “punished”, i.e. 
the room proposal by the RGA receives an unfavorable fitness 
value (see below). Because not all requests of the exams are of 
equal importance we divided the whole set of constraints into 
“hard constraints” and “soft constraints”. For example, the 
expected number of students is a hard constraint because 
obviously an exam in a room too small cannot be properly 
carried through; the request for a specific room is defined as a 
soft constraint because it is not very important, with the 
exceptions of PC- or lab-rooms. The violations of hard 
constraints are punished more severely than a violation of soft 
constraints. The constraints taken into account in the model 
are: 

Hard constraints: 

(1) One exam one time: One specific exam could be 
announced only for one specific time at a certain day. 

(2) One exam one room: At a specific time only one exam 
might be delivered in a certain room. 

(3) No double exams: A specific exam must be planned 
only once at a specific time. This means a consistency 
check for all exams. 

(4) Capacity: Each room proposed by the RGA must 
contain sufficient space, i.e. chairs and tables, for the 
number of students. 

(5) All exams: A proposed plan for room allocation must 
contain all exams announced by the lecturers. This is 
an additional consistency check. 

Soft constraints: 

(6) Desired day: The day wished by the lecturer. 

(7) Desired time start and necessary end: The starting time 
wished by the lecturer. 

(8) Desired room: A specific room wished by the lecturer. 

It must be noted, however, that the number of rooms in the 
university is never sufficient for the written exams. That is 
why the university has to rent additional rooms outside, for 
example in the halls of the Essen fair. These additional rooms 
are also taken into the database of the RGA. The wish of the 
administration not to rent additional rooms or at least as few as 
possible outside of the university can be taken into account 
too. A proposal for an according enlargement of the RGA 
model is given at the end of this article. 

A violation of one of the hard constraints will be punished 
by a value of 1.0, a violation of a soft constraint by values from 
0.125 to 0.9, depending on the importance of the constraint. 

 



In the RGA model the 8 constraints are implemented as 
regulatory genes (rg). The RV, hence, is a 8-dimensional vector 
RV = (con1, con2, …, con 8). 

The requests are implemented as structural genes sg. Each 
gene consists of the components (requested) time, capacity, 
day, lecturer, and exam; the RGA substitutes for “capacity” a 
specific room with characteristics of its capacity, the factual 
equipment, and possibly if it is a room explicitly wished by the 
lecturer. Hence sg = (time, room, day, lecturer, exam), i.e. each 
gene is represented by a five-dimensional vector. 

Accordingly, the following result is desired (Fig. 3): 

Fig. 3. Desired result for one exam: 

As there are (for teacher education students) 261 requests 
all these requests are combined in the structural vector SV, i.e. 
SV = (sg1, sg2, …, sg261); hence each sg is itself a vector. An 
RGA individual, therefore, for the room allocation problem 
consists of an 8-dimensional RV, a SV of 261 dimensions, and 
a vector CV of different connections between RV and SV.  

Fig. 4 shows an according RGA-individual:  

Fig. 4. A RGA individual. HC = Hard Constraints; SC = Soft Constraints for 
lectureri; SGi = Structural Gene (resulti); 'All exams' and 'Only 1 exam in a 
room' are constraints, which check all structural genes. 

The constraints, i.e. regulatory genes, are binary coded; 
mutation, hence, means simply switching them on and off. If a 
constraint is switched off it plays no role for the structural 
genes connected with this regulatory gene; accordingly the 
constraint is not taken into account by the fitness evaluating of 
these structural genes (see below). However, the results given 
below refer to a version where the regulatory genes are not 
varied (see above) and are all switched on. It is possible to use 
other versions where some constraints should not be taken into 
regard and are accordingly switched off. The connections are in 
a figurative sense weighted: The weight values describe the 
probabilities of the variation of those structural genes that are 
captured by the specific connections. Mutation of the 
connections means the exchange of connections. 

Variations of the structural genes mean basically the 
exchanges of one component of a gene by a component from 
another gene, for example the exchange of the exam 

(mutation). Crossover in a varied form of “one-point-
crossover” of course means the exchange of parts of the whole 
structural vector with parts from another individual, avoiding 
wrong duplications. 

Obviously a RGA individual is optimal if it fulfills all 
conditions for all requests, i.e. if no constraints are violated. 
The task of the RGA in this case is accordingly to minimize the 
number of violated constraints as far as possible, i.e. to search 
for a minimum. The fitness function takes this into regard by 
steering the system to fitness values as low as possible. Only 
the structural genes are of course evaluated. A RGA individual 
hence gets its fitness value by a) computing the number of 
violated constraints for each gene, multiplied by the 
punishment values for each constraint, and b) by summing the 
fitness values of the genes of the whole individual: 

 fit(ind) = ∑i(vci * pvi)  (3) 

vci is the number of violated constraints and pvi the 
punishment values of the different constraints. 

Factually the model is a bit more complicated than shown 
in this description but for a basic understanding of the model it 
is sufficient to show the general principles. 

Fig. 5 shows the RGA model for this problem: 

Fig. 5. Schema of the RGA model for the room allocation problem 

V. EXPERIMENTS AND RESULTS 
The hard constraints, as mentioned, all have the punishment 

values of 1.0. The soft constraints are valued with 0.9 for 
wished day, 0.5 for wished room (with the exception of PC- 
and lab-rooms with a value of 1.0), and 0.8 for wished time. To 
be sure, in particular the values for the soft constraints are an 
additional parameter that could – and perhaps should – be 
changed, for example the value for “wished room”. This 
condition is very difficult to fulfill, especially for the 
examination tabling. 

Because the variation of the regulatory genes makes with 
regard to content not much sense for this problem we decided 
to omit this vector from the variation operations. According to 
the general variation schema VS described in section 2 we 
chose the option VS = ((0,0), (1,1), (1,1)), i.e. mutation and 
crossover were applied to both the connection vector and the 

 



structural vector. According to our experiences we chose rather 
small values of the genetic operators, as shown in Table II: 

TABLE II.  PARAMETER VALUES FOR THE RGA 

Parameters Parameter-Values 

Mutation structural vector (SV) 0,01 

Crossover structural vector (SV) 0,5 

Mutation vector of connections (VC) 0,1 

Crossover vector of connections (VC) 0,1 

Mutation regulator genes (RG) 0,0 

Crossover regulator genes (RG) 0,0 

Population size 200 

Iterations 250 

 

We used an elitist version by taking over the best two 
individuals to the next generation.  

For the experiments each time a population of 200 
individuals was generated at random. According to preliminary 
experiments 250 iterations were always enough because the 
RGA obtained no significant improvements after 250 steps. 
Figs. 6 - 9 show the best-obtained result, namely the optimum 
of 0.0, and the possibility to organize all exams within a week; 
it can be noted that the RGA has solved the task in an 
unexpected short time: 

Fig. 6. Fitnesstrend of the RGA. After 150 steps the system reaches the 
optimum of 0.0.  

 

 

 

 

 

 

Fig. 7. Needed time for the result 

 

 

 

 

 

 

 

Fig. 8. Development of the hard constraints  

Fig. 9. Development of the soft constraints  

Fig. 8 shows in particular that the most difficult problem 
for the RGA was the constraint of the capacity of the 
necessary rooms. Fig. 9 demonstrates that the solutions of the 
soft constraints varied rather much before the RGA found a 
solution for these constraints too. 

Comparison with a Genetic Algorithm 
 For a comparison of the RGA with a Genetic Algorithm 
(GA) we have introduced in the GA a "repair mechanism" to 
make sure that the constraints are also taken into account and 
that each individual is a correct one. In the first experimental 
comparison we have used the same parameters for the GA as 
for the RGA in the previous experiments, namely a population 
of 200 individuals, 250 iterations, 0,01 for mutation and 0,5 for 
crossover (cf. Table I). The GA was not able to perform the 
task in a satisfactory way. Fig. 10 and 11 show the results: 

 
Fig. 10. Development of fitness values  
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Fig. 11. Needed time for the results 

The optimization results show that the fitness value of the 
GA remains near to 80 (Fig. 10), and that it reaches this local 
optimum after 6 seconds (Fig. 11).  

In the next experiments we choose the most favorable 
parameters according to our experiments for the GA and the 
same values for the RGA, shown in Table III: 

TABLE III.  PARAMETERS FOR THE GA 

Parameters Parameter-Values 

Mutation 0,5 

Crossover 0,9 

Population size 500 

Iterations 800 

 

The results are shown in the Fig. 12 and 13: 

 

Fig. 12. Development of the fitness trend GA and RGA in comparison 

 

Fig. 13. Development of the needed time GA and RGA in comparison 

One sees that the GA reaches a fitness value of 18, which is 
a very good result, and the RGA reaches a fitness value of 12. 
The time needed for the results is again different, as the GA 
needs only 300 seconds, the RGA about 640. This result is 
typical for all experiments. The GA never reaches the fitness 
values of the RGA, but is faster in the processing time, because 
of the needed number of iteration. 

Taking into account that the RGA does not need a 
population larger than 200 and only 150 iterations to get the 
global optimum, the RGA obviously performs significantly 
better. Apparently the GA and the RGA need different 
parameter values to achieve their respective best results. This is 
also the case with the necessary and suited size of the 
populations; the GA needed a much larger population than the 
RGA. Best values for the RGA with suited parameters show an 
impressive advantage of the RGA: The RGA reached a global 
optimum; the GA could never do this but remained in local 
optima.  

We are of course aware that there are many different meta 
heuristics that could be compared with the RGA, in particular 
approaches that are similar to the RGA. Yet in this rather short 
article we had to be content with only one of the best-known 
techniques, namely a standard GA, as comparison. 

Of course the problem of examination timetabling can be 
solved by other algorithms too (cf. the list of references). Yet 
the obvious practical success of the RGA is a positive 
indication that it is worthwhile to investigate the possibilities of 
the RGA by its application to other complex optimization 
problems. In addition, we compared the RGA with an 
according GA with respect to several other problems. In most 
cases the RGA performed significantly better and in several 
cases only the RGA found a solution at all [13], as is also the 
case in this example. 
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VI. FINAL REMARKS 
The positive results of the RGA are in accord with results 

from previous experiments, namely that perhaps the RGA 
because of its topological structure performs best in the case of 
problems that can be structured the same way, i.e. as a two-
dimensional topological space [13]. At present this is just a 
hypothesis but it is temporarily confirmed by the results of a 
room allocation problem [7] and the examination timetabling. 
We shall analyze this hypothesis in further experiments and 
applications. 

The RGA described in this article is still a prototype in the 
sense that several user-friendly improvements are necessary for 
its usage in practice. The most important one is optimizing the 
time between the exams and to make sure that the students 
have not more than one exam per day, which is not the case at 
present. 

An additional enlargement is to vary the RGA by allowing 
double or more exams in the same room to avoid rented 
locations: The mentioned factor, e.g. 4, means that the room 
must have at least four times as many places as there are 
students. In other words, between two students there should be 
four empty places. If one organizes four exams of four 
different disciplines then it would be possible to place students 
of different disciplines together without empty places between 
them. If the lecturers, hence, wish to have a factor 4 than four 
different exams can be written at the same time if the students 
are placed accordingly – for example a student of chemistry 
besides one of sociology, this one besides a student of 
literature, and so on. In this case, if there are 300 students for 
each exam, only one room with 1,200 places is needed, but for 
four exams. The RGA has then the task to put together 
different exams like physics, literature, arts and pedagogics.   

The RGA looks on a first sight as a rather complicated 
system, but it is obviously very efficient and it enables solving 
the constraint problems in a very elegant and simple way. It 
will be interesting and worthwhile to investigate its potential 
further.  
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