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Abstract—The idea of localization, e.g., mating restriction, local
search, is often employed in the design of evolutionary multi-
objective algorithms, and has been demonstrated effective in
many studies. This paper proposes a localized penalty boundary
intersection (PBI) method which is then used in the seminal
decomposition based algorithm, i.e., MOEA/D. The localized
PBI (LPBI) method works in a pre-defined hypercone, that is,
solutions compete with its neighbors in the same hypercone for
survive. The size of the hypercone is determined automatically
prior to the search. Experimental results show that i) the LPBI
method improves the performance of MOEA/D-PBI for a wide
range of penalty parameter values, in particular, for small penalty
values; ii) for most of test problems, MOEA/D-LPBI with a
small penalty value offers the best performance; and iii) The
LPBI tends to be less sensitive than the PBI method on penalty
parameter values.

I. INTRODUCTION

MANY real world optimization problems are multi-
objective in nature where more than one objectives

are required to be optimized, simultaneously. Since these
objectives are often conflicting with each other, the optimal
solution of a multi-objective problem (MOP) is a set of trade-
off solutions (so called the Pareto optimal set). Evolutionary
multi-objective (EMO) algorithms are well-suited for address-
ing MOPs as they can approximate the trade-off surface (so
called the Pareto front, PF) in a single run [1].
In the last three decades, a variety of EMO algorithms

have been proposed. Pareto-dominance based algorithms, e.g.,
NSGA-II [2] are one of the earliest approaches for evolution-
ary multi-objective optimization, which have been demonstrat-
ed as effective for MOPs with two and three objectives. How-
ever, their performance degrades significantly as the number of
objectives increases [3]. In addition to Pareto-dominance based
algorithms, there are performance indicator based algorithms,
e.g., HypE [4]; preference-inspired algorithms, e.g., PICEA-g
[5], [6], PICEA-w [7], [8], decomposition based algorithms,
e.g., C-MOGA [9], MOEA/D [10]. Performance of these
algorithms is not much deteriorated for MOPs with more than
three objectives.
Amongst these algorithms, decomposition based algorithms

become increasingly popular in recent years. Typically, a de-
composition based algorithm decomposes a MOP into a set of
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sub-problems, and solves these sub-problems in a collaborative
manner. The sub-problem could either be single-objective
[10] or multi-objective [11]. In the seminal decomposition
based algorithm, i.e., MOEA/D, the sub-problem is single-
objective, and is realized by means of scalarizing methods.
MOEA/D has been intensively studied. The algorithm is shown
to have high search ability for combinatorial optimization,
high compatibility with local search and good performance
on problems with complex Pareto sets [12], [13].
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Fig. 1. The d1 and d2 distances in the PBI method.

The penalty boundary intersection (PBI) method is a fre-
quently used scalarizing method in decomposition based al-
gorithms. It returns a penalized distance value of the form
d1+θd2 for a solution x with respect to a weightw (also called
reference direction or search direction) wherein d1 denotes
the distance along the reference line, and d2 denotes the
perpendicular distance to w, see Fig. 1 and Eq. (1). θ is a
user-defined penalty parameter.

d1 =
‖(F(x)− z∗)Tw‖

‖w‖

d2 = ‖F(x)− (z∗ + d1
w

‖w‖
)‖

(1)

MOEA/D with PBI method (MOEA/D-PBI) performs well
when a suitable θ is chosen. Usually, the smaller the θ value,
the faster the algorithm converges [14]. However, a small θ
might not work effectively on non-convex PFs [12].
This study is going to examine the performance of a

localized PBI method (LPBI) in MOEA/D. The LPBI works
within a pre-defined hypercone. The size of the hypercone is



determined automatically prior to the search. MOEA/D with
LPBI (MOEA/D-LPBI) is compared against MOEA/D-PBI
on a set of benchmarks. Experimental results show that the
localized version is much more efficient than the standard
version of PBI method, especially when a small penalty value
is used. The LPBI method can nicely work on non-convex PFs.
LPBI with a small penalty value tends to perform better than
PBI with a large penalty value. Additionally, though LPBI is
also impacted by the choice of a penalty value, its impact is
not as much as PBI exhibits.
The rest of the paper is structured as follows: Section II

provides some background knowledge. Section III introduces
the localized PBI method. This is followed, in Section IV, by
a description of MOEA/D-LPBI. Section V and Section VI
present the experiment descriptions , results and discussions.
Section VII concludes this paper and identifies some future
studies.

II. BACKGROUND
Without loss of generality, a minimization MOP can be

written as follows:

Minimize F(x) = {f1(x), f2(x), · · · , fm(x)} (2)

where m is the number of objectives, F(x) is the m-
dimensional objective vector, fi(x) is the i-th objective to be
minimized, and x ∈ Ω is the decision vector.

A. Basics of multi-objective optimization
Definition 1: x is said to Pareto dominate y, denoted by

x � y, if and only if ∀i ∈ {1, 2, . . . ,m}, fi(x) ≤ fi(y) and
fj(x) < fj(y) for at least one index j ∈ {1, 2, . . . ,m}.
Definition 2: A solution x∗ ∈ Ω is said to be Pareto optimal

if and only if �x ∈ Ω such that x � x∗.
Definition 3: The set of all Pareto optimal solutions is called

the Pareto optimal set (PS). The set of all Pareto optimal
vectors, PF = {F(x) ∈ Rm|x ∈ PS}, is called the Pareto
optimal front (PF).
Definition 4: The ideal objective vector z∗ = (z∗

1
, . . . , z∗m),

where z∗i is the infimum of fi(x) for every i ∈ {1, 2, . . . ,m}.
Definition 5: An utopian objective vector zu is an infeasible

objective vector whose component can be formed by zui =
z∗i − εi, i = 1, 2, ...,m, where z∗i is the component of the
ideal objective vector, and εi > 0 is a relatively small but
computationally significant scalar.
Definition 6: The nadir objective vector znad =

(znad
1

, . . . , znadm ), where znadi is the supremum of fi(x),x ∈
PS for every i ∈ {1, 2, . . . ,m}.

B. Principle of decomposition based EMO algorithm
Decomposition based EMO algorithms1 decompose a MOP

into a number of sub-problems. These sub-problems are then
solved in a collaborative manner. In most of the existing
studies, sub-problems are single-objective, and are defined by
means of scalarizing methods. Take the PBI method as an
example, the following single-objective problem is defined.

1Hereafter we use decomposition based algorithms for short

gpbi (x|w, zu) = d1 + θd2

x ∈ Ω
(3)

where d1 and d2 are defined in Eq. (1). The goal is to push
gpbi (x|w, zu) as low as possible so that it can reach the
boundary of the attainable objective set, see Fig. 1.
The optimal solution of each single objective problem corre-

sponds to a Pareto optimal solution of the MOP [15, pp.98-99].
By minimizing the scalarizing function with different weight
vectors, a set of diversified Pareto optimal solutions could be
obtained.
Since objectives might have totally different scales, the

following normalization procedure is often applied:

f i =
fi − z∗i

znadi − z∗i
(4)

When z∗i and znadi are not available, we could use the smallest
and largest fi of all non-dominated solutions found so far to
estimate z∗i and znadi , respectively. However, this might not be
always accurate especially in the early stage of the evolution.

C. Related studies on the PBI method
The PBI method is built on the normal-boundary intersec-

tion method [16] whose equality constraint is handled by a
penalty function [10], as shown in Eq. (3). Due to its simplicity
and promising performance on MOPs reported in [12], [14],
[17], the PBI method has been applied in many recently
proposed decomposition based approaches such as [18], [19],
[20], [21].
Fig. 2 illustrates contour lines of PBI methods in 2-D cases

with θ = 0, θ = 1, θ = 10. Drawn from Fig. 2 and literature,
the following remarks with respect to the PBI method are
obtained:

• Different penalty values, i.e., θ, exhibit different contour
lines, resulting in different search behaviours;

• For PBI with a small θ value, a move of a solution away
from the reference line w (an increase of d2 distance) is
acceptable if it decreases the distance from the reference
point, i.e., d1 distance. That is, the optimal solution
could be far away from its corresponding reference line.
Meanwhile, this also implies that a small penalty value
is more prone to convergence performance.

• For PBI with a large θ value, a small increase in d2 is not
compensable for a large decrease in d1. That is, a large
θ value makes the PBI robust on various PF shapes.

• As θ decreases the search behaviour of PBI tends to be
similar to the weighted sum method. That is, PBI with
a small θ might encounter the same difficulty as the
weighted sum method on non-convex PFs. Effectively,
the impact of θ in the PBI method is similar to the p
value in Lp scalarizing methods [22], [23].

Although many studies have demonstrated that PBI with dif-
ferent θ values show different search behaviours, surprisingly,
scholars tend to employ θ = 5 in their studies, e.g., [18], [20].
None of studies (to the best of the authors’ knowledge) have
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Fig. 2. Illustration of contour lines of PBI with different penalty values. θ = 0, 1, 10 from the left to right.

investigated issues such as how to appropriately select the θ
value. Specifically, how to utilize the advantages of PBI with a
small θ value, i.e., its fast convergence. This is study is going
to answer this question.

III. LOCALIZED PBI METHOD

Motivations for the localized PBI methods are that i) PBI is
sensitive to the choice of a penalty value, ii) PBI with a small
penalty value has a fast convergence, but encounters difficulty
on non-convex PF shapes. It is expected that a localized PBI
method can handle non-convex PF shapes and maintain a fast
convergence. Also, it can be less sensitive to the choice of a
penalty value.
As the name says, the localized PBI method, denoted as

LPBI, implements the PBI method in a local manner. Similar
discussions on this issue are [24], [25]. Specifically, the newly
generated solution is not compared with the entire population
but only with solutions that are inside the same hypercone.
Each weight w is associated with a hypercone, see Fig. 3.
The center line of the hypercone is identical to the weight. The
apex angle (Φi) of the hypercone for a weight wi is defined
as the average angle between w and its m closest weights
(where m is the number of objectives), see Eq. (5):
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Fig. 3. Illustration of the localized PBI method.

Φi =

∑j=m

j=1
φj
i

m
(5)

where φj
i is the angle of the j-th closest weight vector to

weight wi. Given two weights, e.g. w1 and w2, the cosine
value of the acute angel φ between the two vectors can be
calculated as follows:

φ =
w1 ·w2

‖w1‖‖w2‖
(6)

When weight vectors are evenly distributed, Φi is almost iden-
tical for different hypercones. That is, the size of hypercone
for each weight is almost identical.
In the LPBI method, the solution corresponding to each w

is selected from solutions that are only inside the hypercone
of this weight. For example, in Fig. 3, the solution for w1 is
selected from x1 and x2 only. Therefore, the obtained solution
would not be very far away from its corresponding reference
line. Even in the worst case, the angle between the obtained
solution and its associated reference line is Φ

2
. This enables the

LPBI to handle non-convex PFs. Specifically, implementation
of the LPBI is as follows: PBI values of solutions that are
outside the hypercone are set as ∞; while PBI values of
solutions that are inside the hypercone are kept unchanged.
Overall, by the LPBI method, the PF is divided into N sub-

regions (assuming that the number of weight vectors is N ),
each LPBI is responsible for searching for an optimal solution
within its associated sub-region, i.e., hypercone. Ideally, LPBI
methods with different weight vectors would find different
optimal solutions, and thus, providing a set of diversified
solutions.

IV. MOEA/D-LPBI
Pseudo-code of MOEA/D-LPBI is shown in Algorithm 1.

Prior to the evolution (lines 1 to 6), the following operations
are conducted: generate N evenly distributed weight vectors
w1,w2, . . . ,wN where the canonical simplex lattice design
method [10] is employed; initialize the same size of solutions
S ← {x1,x2, . . . ,xN}; assign a randomly selected candidate
solution to each weight vector; find the neighboring weight



vectors B(w) for each weight vector; and identify the asso-
ciated neighboring solutions B(x) of x; and compute apex
angle of the hypercone for each weight. Then, all solutions
are evolved for maxGen generations (lines 7 to 30).

Algorithm 1: MOEA/D-LPBI
Input: N candidate solutions, S ← {x1,x2, . . . ,xN},

penalty value, θ, selection neighborhood size, T ,
maximum generation index, maxGen

Output: S, archiveS

1 Generate N evenly distributed weight vectors,
w1,w2, . . . ,wN ;

2 Randomly paired up w with a candidate solution x;
3 Find T neighboring weight vectors B(w) of w in terms
of φ;

4 Identify the associated neighboring solutions B(x) of x;
5 Compute Φ of the hypercone for each weight by Eq. (5);
6 Set the archive archiveS = ∅, the mating pool Q = ∅
and the probability of mating restriction δ = 0.8;

7 for gen ≤ maxGen do
8 for i ← 1 to N do
9 Set a temporary solution set Sc = ∅;
10 if rand < δ then
11 Q ← B(xi);
12 else
13 Q ← S;
14 end
15 Generate a new solution x′ by applying SBX and

PM operators to solutions selected from Q;
16 Sc ← Sc 
 x′;
17 end
18 JointS ← S 
 Sc;
19 Compute the objective function values JointF of all

candidate solutions in JointS;
20 Update ideal and nadir vectors, and normalize

JointF into [0,1];
21 Calculate the angle φsw

ij between F(x)
i and wj ,

obtaining an angle matrix φsw;
22 For each solution, e.g., xi and its associated weight

vector, e.g., wj , if φsw
ij ≤ Φj compute gPBI(xi|wj),

denoted as Cij ;
23 Otherwise, set Cij ← ∞;
24 S ← ∅;
25 for i ← 1 to N do
26 xi ← arg min

x∈JointS
Cij ;

27 S ← S ∪ xi;
28 end
29 Update archiveS with S using Pareto-dominance

relation;
30 end

• Lines 8-17: offspring solutions are reproduced using
the SBX and PM operators. Parents are selected from
B(x) with a probability 0.8, otherwise from the whole

population S.
• Lines 18-20: parent solutions and the newly generated
offspring solutions are merged. The ideal and nadir points
are updated based on the joint population

• Line 21: calculate the angle φsw
ij between F(x)i and wj .

• Lines 22 and 23: calculate the PBI value gPBI(xi|wj , θ),
denoted as Cij . Set Cij as ∞ if φsw

ij > Φj

• Lines 24 to 28: for each weight, find the solution x whose
PBI value is the smallest amongst the joint solutions.

• Line 29: update the offline archive archiveS with newly
obtained solutions S based on Pareto-dominance.

Lastly, we would like to make the following remarks about
MOEA/D-LPBI:

• The algorithm is implemented within a (μ + μ) elitism
framework as NSGA-II does [2];

• The neighborhood structure B(•) is used only in the solu-
tion reproduction while in the solution update procedure
another neighborhood structure, i.e. hypercone is applied;

• Multiple replacements are allowed, i.e., the same solution
can be selected for different weights;

• One can obtain N solutions with a good distribution by
choosing the nearest solution (measured by angle) for
each weight from archiveS.

• Calculating PBI values for all solutions on all weight
vectors runs at O(N × N), obtaining the minimal PBI
value from 2N values runs at O(N). Thus, the overall
time complexity is O(N2).

V. EXPERIMENTS DESCRIPTION

A. Test problems
Test problems are generated using the WFG (Walking Fish

Group) test suite . Specifically, problem 2 to 9 are invoked in
two and four-objective instances 2. These problems cover most
of problem attributes such as separability/non-separability,
unimodality/multimodality, unbiased/biased. The number of
decision variables n for each problem is set to 24 amongst
which the position parameter k is 6 and the distance parameter
l is 18. Hereafter, we use WFGx-m refers to problem WFGx
with m objectives.

B. Parameter settings
Some general parameters such as population size, the ge-

netic operators, i.e., simulated binary crossover (SBX) and
polynomial mutation (PM) are set as follows:

• the number of generations is set to 250; the population
size is set to N = 100 and N = 200 for 2- and 4-
objective problems, respectively.

• as suggested in [3], [26] the SBX probability pc and
distribution index ηc are set to 1 and 30, respectively;

2The WFG1 benchmark is not employed since our preliminary results
show that even for 1e+8 function evaluations our algorithm still cannot
approximate its PF. The reason might be that WFG1 is highly biased. In
order to approximate the PF, the employed search operators must have the
ability for exploiting solutions with high precision. However, search operators
used in this study lacks such ability.
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Fig. 4. PFs obtained by MOEA/D-PBI (◦) and MOEA/D-LPBI (•) under different penalty values for WFG3-2.

and the PM probability pm and distribution index ηm are
set to 1/n and 20, respectively;

In addition, the considered PBI penalty values are θ =
{0.01, 0.05, 0.1, 0.5, 1, 5, 20, 100}. Moreover, in order to
demonstrate the efficiency of LPBI method, MOEA/D with
the standard PBI is employed as a reference algorithm. In
MOEA/D-PBI, the selection neighborhood size T is set to 10,
and the replacement neighborhood size nr is set to 2.

C. Performance assessment

For each test problem, 31 runs of each algorithm test are
performed to facilitate a robust statistical analysis. The hyper-
volume (HV) indicator is selected as the performance metric.
Prior to calculating the HV metric, solutions are normalized
by the nadir and ideal points which are (2, 4, ..., 2m) and
(0, 0, ..., 0), respectively. The reference point for computing
HV is set to (1.2, 1.2, ..., 1.2). Lastly, for each run the HV is
computed using the offline archive solution set, however, the
set is pruned to the maximum size N (i.e., population size)
using the SPEA2 truncation procedure [27].

VI. RESULTS AND DISCUSSIONS

A. Visual results

This section visually examines the PF obtained by
MOEA/D-LPBI and MOEA/D-PBI with different penalty val-
ues for 2-objective WFG problems. For instance, results for
WFG3-2 (whose PF is non-convex, i.e., a straight line) are
shown in Fig. 4. The presented PF corresponds to the median
HV value across 31 algorithm runs. From the results we can
observe that:

• When penalty values are small, MOEA/D-PBI exhibits
poor performance, that is, solutions on some PF regions
are not obtained. However, MOEA/D-LPBI exhibits good
performance.

• As the penalty value increases (from 0.01 to 100), the
performance of MOEA/D-PBI varies significantly, i.e.,
first improves then degrades. θ = 5 offers the best
performance.

• MOEA/D-LPBI tends to be robust when θ is small,
i.e., θ = (0.01, 0.05, 0.1, 0.5). Moreover, MOEA/D-LPBI
with small penalty values performs better than MOEA/D-
LPBI with large penalty values.

• When penalty values are large, MOEA/D-LPBI shows
a better convergence than MOEA/D-PBI. One possible
reason is that PBI with a large penalty value is not
Pareto dominance compatible while the LPBI reduces
the probability of Pareto dominance incompatible move
because of the use of hypercone.

Due to the space limitation, we have only showed results for
WFG3-2. However, similar results are observed for the other
2-objective test problems.

B. Statistical results
MOEA/D-LPBI is quantitatively compared with MOEA/D-

PBI in terms of the HV metric. Due to the page limitation,
TABLE I only presents the mean HV values for WFG8-2,
WFG9-2, WFG8-4 and WFG9-4. In addition, plots of the
mean HV values obtained by MOEA/D-PBI and MOEA/D-
LPBI under different penalty values for all test problems are
shown in Fig. 5 and Fig. 6, which offer a more straightforward
comparison.



TABLE I
COMPARISON RESULTS IN TERMS OF THE MEAN HV VALUES. THE BEST HV VALUE FOR EACH PROBLEM IS MARKED AS BOLD. THE SYMBOL ‘−’,

‘=’ OR ‘+’ MEANS MOEA/D-LPBI IS STATISTICALLY WORSE THAN, COMPARABLE TO OR BETTER THAN MOEA/D-PBI UNDER THE SAME θ SETTING.

Problem Alg. θ = 0.01 θ = 0.05 θ = 0.1 θ = 0.5 θ = 1 θ = 5 θ = 20 θ = 100

WFG8-2 PBI 0.1742 0.1744 0.1938 0.2749 0.2996 0.3031 0.2732 0.2327
LPBI 0.3237+ 0.3202+ 0.3230+ 0.3270+ 0.3254+ 0.3160+ 0.3127+ 0.3111+

WFG9-2 PBI 0.2179 0.2076 0.2287 0.3412 0.3866 0.3517 0.3222 0.3113
LPBI 0.3364+ 0.3906+ 0.3700+ 0.3707+ 0.3703− 0.3714+ 0.3445+ 0.3509+

WFG8-4 PBI 0.5992 0.5902 0.5797 0.5154 0.4545 0.7573 0.7289 0.7027
LPBI 0.8848+ 0.8834+ 0.8843+ 0.8902+ 0.8953+ 0.8308+ 0.6871− 0.6654−

WFG9-4 PBI 0.6862 0.6708 0.6746 0.7091 0.5493 0.7499 0.7038 0.7117
LPBI 0.8575+ 0.8703+ 0.8573+ 0.9412+ 0.9445+ 0.9341+ 0.8614+ 0.8358+
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Fig. 5. Plots of mean HV values obtained by MOEA/D-PBI (-◦-) and MOEA/D-LPBI (− � −) under different penalty values for all the 2-objective problems.
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Fig. 6. Plots of mean HV values obtained by MOEA/D-PBI (-◦-) and MOEA/D-LPBI (-�-) under different penalty values for all the 4-objective problems.



From TABLE I, first we observe that for all the four
problems the best results are obtained by MOEA/D-LPBI.
Second, under the same θ setting, we observe that i) for
WFG8-2 and WFG9-4, MOEA/D-LPBI is always better than
MOEA/D-PBI; ii) for WFG9-2, MOEA/D-LPBI is better than
MOEA/D-PBI for all cases except for θ = 1; and iii) for
WFG8-4, MOEA/D-LPBI is better than MOEA/D-PBI for six
out of the eight cases. MOEA/D-LPBI is inferior when θ = 20
and θ = 100;
More generally, from Fig. 5 it is observed that
• MOEA/D-LPBI offers better performance than
MOEA/D-PBI for most of the test problems under
a wide range of θ settings;

• LPBI with a small penalty value is much more effective
than PBI with a small penalty value;

• The performance of MOEA/D-PBI varies significantly as
θ changes while the performance of MOEA/D-LPBI does
not vary as much as MOEA/D-PBI does.

• A clear performance deterioration is observed for
MOEA/D-PBI with θ = 1 for WFG2-2 and WFG3-2.

From Fig. 6 it is observed that
• The best results are obtained by MOEA/D-LPBI for all
problems;

• MOEA/D-LPBI tends to be robust on the choice of small
penalty values for some problems, i.e., from WFG4-2 to
WFG8-2.

• MOEA/D-LPBI with small penalty values is clearly su-
perior to MOEA/D-LPBI with large penalty values and
MOEA/D-PBI;

• For some large penalty values, e.g., θ = 100, MOEA/D-
LPBI is inferior to MOEA/D-PBI;

• Again, a clear performance deterioration is observed for
MOEA/D-PBI with θ = 1 for all problems.

Overall from the above comparison we can tentatively draw
the following conclusions:

• The effect of PBI and LPBI methods are both dependent
on the choice of a penalty value. However, the influence
induced by different penalty values (especially when
penalty values are small) on LPBI is smaller than that
on PBI, that is, MOEA/D-PBI much less sensitive to the
specification of small penalty values.

• PBI with a small penalty value performs poorly on non-
convex PFs. However, LPBI does not suffer from the
issue of small penalty values. For the PBI method, good
performance is usually achieved when a moderate penalty
value, e.g, 5 is selected. For the LPBI method, good
performance is achieved when a small penalty value is
selected.

• The localization of PBI improves the performance of
MOEA/D-PBI for a wide range of penalty parameter
values except for very large values. For all the examined
test problems, better results are obtained by LPBI with
a small penalty value than PBI with any settings of
the penalty parameter values. Thus, the LPBI with a
small parameter value (instead of PBI) is advisable.

The superior performance of MOEA/D-LPBI with small
penalty values is mainly because that the LPBI retains the
high search efficiency of PBI with small penalty values,
and also mitigates the limitation of PBI on non-convex
PFs (i.e., improving the uniformity of obtained solutions).

Interestingly, MOEA/D-LPBI is found to be inferior to
MOEA/D-PBI when the penalty value is very large, e.g.,
θ = 100, for 4-objective problems. The reason might be
that the diversity improvement (mainly uniformity) made by
LPBI with large penalty values is not as significant as that
for LPBI with small penalty values. Effectively, PBI with a
large penalty value is already good to maintain good unifor-
mity performance. However, it should be mentioned that the
localized PBI is originally proposed for PBI with small penalty
values, aiming to utilize the high search efficiency of PBI with
small penalty values. Besides, it has been demonstrated that
PBI with a large penalty value is less efficient than PBI with
a small penalty value in pushing solutions towards the PF.
Moreover, our experimental results have shown that in most
cases neither PBI nor LPBI with a very large penalty value
offers the best performance. Thus, the use of large penalty
values is not advisable.
Additionally, in MOEA/D-PBI a clear performance deteri-

oration is observed when θ = 1, especially for 4-objective
problems. As explained in [28], this is mainly due to the loss
of diversity. Most of solutions obtained by PBI with θ = 1
are clustered around the center of the PF. This can also be
observed from Fig. 4. Besides, it is not precise to say that
PBI with θ = 1 is similar to the Chebyshev method whereas
their contour lines are the same for the weight vector (0.5,
0.5), see Fig. 2.

C. A further study
Previous experiments have demonstrated the efficiency of

MOEA/D-LPBI on problems having non-convex PFs. Next
we examine the algorithm’s performance on problems having
convex PF shape. The modified WFG4 test problem denoted
as WFG42 [8] is employed. The WFG42 is built on WFG4
where the concave shape function in WFG4 is replaced with
the convex shape provided in the WFG test suite. All settings
are the same as that adopted in Section VI. TABLE II presents
the comparison results.

TABLE II
THE HV COMPARISON RESULTS OF MOEA/D-LPBI AND MOEA/D-PBI.

THE BEST RESULTS FOR EACH PROBLEMS IS MARKED AS BOLD

Problem Alg. θ = 0.01 θ = 100

WFG42-2 PBI 0.9889 0.9165
LPBI 0.9831 0.9743

WFG42-4 PBI 1.4554 1.4212
LPBI 1.4557 1.4177

It is again observed that better results are obtained by
using small penalty values. More specifically, MOEA/D-
LPBI is inferior to MOEA/D-PBI for WFG42-2. This is
because in 2-objective case the localized technique degrades
the convergence of the PBI method. About 25% solutions



obtained by MOEA/D-LPBI are dominated by those obtained
by MOEA/D-PBI for WFG42-2. Effectively, according to the
contour lines of PBI with θ = 0.01 we find that the region
for obtaining better solutions is greatly reduced because of the
restriction of hypercone. When m = 4 the side effect induced
by the hypercone becomes very small, and thus, MOEA/D-
LPBI and MOEA/D-PBI performs comparably.

VII. CONCLUSION

The effect of the PBI method varies as the penalty value
changes. This study proposes a localized PBI method. It is
found that the localized PBI improves the performance of
MOEA/D-PBI for a wide range of penalty parameter values
except for very large values. This improvement is mainly
achieved by significantly improving the uniformity of obtained
solutions at the cost of very small deterioration of the con-
vergence ability (when the penalty parameter value is not
large). This improvement makes the performance of MOEA/D-
PBI much less sensitive to the specification of the penalty
parameter value.
As for future studies, first it is observed that when a

large penalty value is chosen, MOEA/D-LPBI is inferior to
MOEA/D-PBI. Unlocking this issue may further understand
the search behaviour of PBI method, and thus is worth study-
ing. Second, we would like to extend the localized technique to
other scalarizing methods. Third, the localized idea may retain
some isolated (and inferior) solutions especially when the PF
is disconnected or has a large hole. Also, some weight vectors
may have to keep waiting for solutions generated inside their
cones. How to effectively handle these issues, i.e., matching
mechanisms between solutions and weight vectors, deserves
further studies. Lastly, it is worth studying how an appropriate
penalty value can be selected for different problems.
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