
Online Selection of Surrogate Models for Constrained Black-Box Optimization

Samineh Bagheri
Wolfgang Konen

Cologne University of Applied Sciences
(TH Köln) Compus Gummersbach

Email: {samineh.bagheri, wolfgang.konen}@th-koeln.de

Thomas Bäck
Department of Computer Science

Leiden University, LIACS,
2333 CA Leiden, The Netherlands

Email: T.H.W.Baeck@liacs.leidenuniv.nl

Abstract—Real-world optimization problems are often subject
to many constraints which are expensive to be evaluated
in terms of cost and time. Surrogate-assisted optimization
techniques aim to reduce evaluation costs by substituting the
objective and the constraint functions with cheap surrogate
models e. g. radial basis functions. Selecting the correct basis
function and its associated parameters is a challenging task
and depends on many factors like initial design, population
size and type of function to be modeled, which is usually
unknown in black-box problems. We propose an online model
selection strategy that sorts different models according to
their approximation error and selects in each iteration the
best model for each function. The model selection strategy
is embedded in the SACOBRA optimizer [1]. We show that
the proposed online model selection strategy boosts the overall
performance of the algorithm when applied to 24 well-known
constrained optimization problems.

1. Introduction

A constrained optimization problem (COP) can be de-
fined as the minimization of an objective function (fit-
ness function) f subject to inequality constraint function(s)
g1, . . . , gm and equality constraint function(s) h1, . . . , hr:

Minimize f(~x), ~x ∈ [~a,~b] ⊂ Rd (1)
subject to gi(~x) ≤ 0, i = 1, 2, . . . ,m

hj(~x) = 0, j = 1, 2, . . . , r

where ~a and ~b define the lower and upper bounds of the
search space (a hypercube). By negating the fitness function
f a minimization problem can be transformed into a max-
imization problem without loss of generality. Real-world
optimization problems are often multi-constrained and high-
dimensional.

Surrogate models are getting more and more attention
in recent years as a valuable tool for COPs where for
example the objective and constraint function values are
outputs of computationally expensive computer simulations.
The basic idea inherent in many approaches of surrogate-
assisted optimization [2], [3], [4], [5], [6] is to do most of
the optimization work on the surrogate models and to use
the true functions just for the selected infill points.

The question only briefly touched in most of the litera-
ture is: Which type of surrogate model should be chosen?
Even if we restrict ourselves to radial basis functions (RBF)
there is a wealth of possible RBF types: cubic, Gaussian
with different widths, multiquadric with different widths,
to name only a few. Rocha [7] has shown that different
types of RBF may exhibit oppositional performance on
modeling different classes of functions. However, most work
on surrogate-assisted optimization makes only one a-priori
choice of RBF type and fixes this type for all problems
investigated.

The problem is even amplified in the case of COP where
not only one objective function is to be modeled but a set
of functions (objective plus constraints). Having the work
of Rocha [7] in mind, it is highly probable that a good RBF
type for one of these functions might be suboptimal for
another function. Therefore, it would be desirable to allow
for different RBF types when modeling different functions.
No other surrogate-assisted optimization approach in the
literature we are aware of does allow different RBF types
for different COP functions.

In this work we try to answer the following research
questions:

(H1) Are there COPs which significantly benefit from
using different types of RBF functions for objective
and constraint functions?

(H2) Is it possible to advise an online algorithm which
automatically selects the right RBF type for each
function? That is, does such an algorithm boost up
the overall performance of a COP solver?

1.1. Related Work

Online model selection plays an important role for gen-
eral surrogate modeling, not only in optimization.

Gorissen et al. [8] developed the EMS framework (evolu-
tionary model type selection) for approximation tasks using
a genetic algorithm to optimize the hyperparameters of
each model and a ranking strategy for different classes of
surrogates. This algorithm tries to find the best model which
minimizes the cross validation error or Akaikes Informa-
tion Criterion (AIC). Later, Mehmani et al. [9] introduced

a new online model selection algorithm which utilizes a
multi-objective solver to select a surrogate by minimizing
two error measures. The authors claim that their algorithm
significantly outperforms other model selection algorithms
which try to minimize CV error. Field [10] criticizes the fact
that the so-far developed model selection algorithms do not
take any criteria into account regarding the purpose of the
surrogate use. He claims that the best model fit of a function
is not necessarily the best model for optimizing it.

Couckuyt et al. [11] apply the EMS framework to un-
constrained optimization processes. Their results indicate
that using the online model selection algorithm EMS is
better than using a fixed Kriging model for black-box op-
timization processes. Müller and Shoemaker [12] develop
a surrogate-assisted optimizer which combines different
classes of surrogates (Kriging, cubic RBF, polynomial re-
gression and MARS) with different weights. The weights
of each surrogate class are reassigned in each iteration
proportional to the calculated LOOCV error for each single
model. The algorithm has high computational costs and the
optimization results show no significant improvement to use
model ensembles. Friese et al. [13] apply different model
selection algorithms to optimization tasks as well, but do
not achieve significant improvements for model ensembles.

There is only very little work devoted to surrogate
model selection in the area of constrained optimization
problems (COPs). This is particularly astonishing since -
as stated in the introduction - especially for the different
COP functions one might expect great benefits from using
different surrogate types. Villanueva et al. [5] address low-
dimensional COPs with one constraint and perform online
model selection. The models are selected from a set of can-
didates including Kriging, response surfaces with different
kernels, and moving least squares. They use LOOCV error
to assess the surrogates’ performance. However, the main
focus of their paper is to compare (for each COP function)
the use of different surrogate models for different parts of the
search space with one surrogate model in the whole search
space. They do not compare with fixed model choices (one
surrogate type for all COP functions). Furthermore, Bhat-
tacharjee et al. [14] propose a surrogate-assisted optimizer
for multi-objective problems which selects different models
for objective and constraint functions but this study mainly
concerns about comparing the performance of global and
local modeling.

In this work we propose a novel online model selection
algorithm for COPs. This algorithm uses an evaluation
measure to assess the performance of surrogates which is
cheaper than the classical measures like CV or LOOCV. We
further claim that the use of LOOCV can be problematic in
the case of optimization, because points far from the current
optimum contribute to the selection decision. Instead we use
only the most recent points from the optimization process.
We investigate this approach on a large set of benchmark
functions.

TABLE 1. COMMONLY USED RADIAL BASIS FUNCTIONS

Type of basis function φ(r)
Parameter-free RBF
Cubic r3

Thin plate spline r2logr
RBF with width parameter
Gaussian e−(r

w
)2

Multiquadric (MQ)
√

1 + (r
w
)2

2. Methods

2.1. RBF Interpolation

The RBF approximation – originally developed by
Hardy [15] – is now one of the most important multidimen-
sional modeling algorithms. RBF interpolation approximates
a function with a linear combination of basis functions
φ(r) and a polynomial tail p(~x). Based on n design points
~xi, i = 1, . . . , n a surrogate model s(~x) is formed:

s(~x) =

n∑
i=1

λi · φ(ri) + p(~x), (2)

with p(~x) =

d∑
j=1

(ajx
2
j + bjxj + c)

where φ(ri) is a function of sample point’s distance ri =
||~x− ~xi|| to the ith design point.

The basis functions φ(r) can be categorized into piece-
wise smooth RBFs without any parameter and infinitely
smooth RBFs with a hyperparameter often called shape
parameter ε or width factor w = 1

ε [16]. Table 1 shows
a list of commonly used radial basis functions.

2.2. SACOBRA: Self-Adjusting Constrained Black-
Box Optimization with RBF

SACOBRA [1], [17], [18] is a surrogate-assisted opti-
mizer especially designed for high-dimensional constrained
black-box optimization problems. SACOBRA is an exten-
sion of the algorithm COBRA [19]. Both algorithms use
RBF interpolation to model objective and constraint func-
tions separately and then use a constrained optimizer to
solve the optimization problem on the surrogates. SACO-
BRA adds several extensions to COBRA which are de-
scribed in more detail in the cited literature and help to
increase the overall performance:

• Repair algorithm for infeasible solutions [18],
• Self-adjusting techniques to tune sensitive parame-

ters automatically [1],
• Equality handling techniques [17].

2.3. Proposed Online Model Selection

The SACOBRA optimizer [1] works in the follow-
ing way: Given a set of already visited points P =

{
x(1), · · ·x(n)

}
in the search space, it builds surrogate

models for each COP function F ∈ {f, gi, hj} (objective
function and constraint function(s) according to Eq. (1)). It
performs constrained optimization on these surrogate mod-
els to deliver the next infill point ~xnew.

In the original SACOBRA algorithm all surrogates were
constructed from the same RBF model class or RBF type
(e. g. all cubic or all Gaussian). It is the new element of this
paper that we allow each COP function to have a surrogate
model from a different model class in each iteration and
advise an online procedure to select this model class.

Algorithm 1 shows this procedure. The set M of model
classes or RBF types might include for example: {cubic,
MQ with width 0.1, MQ with width 0.2, ...}. Note that
Algorithm 1 is called independently for each COP function
F ∈ {f, gi, hj}. The criterion for selecting model mk∗ is the
minimization of the approximation error on the last L infill
points. The approximation error is the deviation between
surrogate model and function F at a point ~xnew (see Step 2
of Algorithm 1). ~xnew is a point not used during surrogate
model build. The underlying assumption for such a criterion
is that a model with a small approximation error on the last
infill points is also good for constrained optimization, i. e.
the search for the next infill point.

After Algorithm 1 has provided a surrogate model s(n)
for each COP function F , the next iteration of the SACO-
BRA algorithm is started until the total budget is exhausted.

Algorithm 1 Online Model Selection. Input: Infill point
~xnew, population P =

{
x(1), · · ·x(n)

}
excluding ~xnew, pool

of models: M = {m0,m1, · · ·mK}, true COP function F ,
length L of sliding window. Output: Surrogate model s(n)
built with selected model mk∗ .

1: Build surrogate models sk for F using all points in P
with all mk ∈M

2: Calculate approximation error
e
(n)
k = |s(n)k (~xnew)− F (~xnew)|

3: Calculate median error:
Ek = median(e

(n)
k , e

(n−1)
k , · · · , e(n−L+1)

k)
4: Select model mk∗ with k∗ = arg mink Ek
5: Build surrogate model s(n) for F based on the selected

model mk∗ using the union of points P ∪ ~xnew
6: Return s(n)

3. Experiments

The G-problem suite, described in [20], is a set of well-
known and challenging constrained optimization problems.
The fact that G-problems have very diverse characteristics
makes them a suitable testbed for evaluating COP solvers.
We apply the proposed algorithm on all 24 problems, among
them 11 problems with equality constraints. The character-
istics of the studied problems are listed in Table 2. The
quantities FR and GR were estimated for each problem by
Monte Carlo sampling with 106 random points in the search
space.

TABLE 2. CHARACTERISTICS OF THE G-FUNCTIONS: d: DIMENSION,
ρ∗ : FEASIBILITY RATE (%), FR: RANGE OF THE FITNESS VALUES, GR:

RATIO OF LARGEST TO SMALLEST CONSTRAINT RANGE, LI/NI:
NUMBER OF LINEAR/NONLINEAR INEQUALITIES, LE/NE: NUMBER OF

LINEAR/NONLINEAR EQUALITIES, a: NUMBER OF CONSTRAINTS
ACTIVE AT THE OPTIMUM.

Fct. d ρ∗ FR GR LI / NI LE / NE a
G01 13 0.0003% 298.14 1.969 9 / 0 0 / 0 6
G02 20 99.997% 0.57 2.632 1 / 1 0 / 0 1
G03 20 0.0000% 9.27 · 1010 1.000 0 / 0 0 / 1 1
G04 5 26.9217% 9832.45 2.161 0 / 6 0 / 0 2
G05 4 0.0000% 8863.69 1788.74 2 / 0 0 / 3 3
G06 2 0.0072% 1246828.23 1.010 0 / 2 0 / 0 2
G07 10 0.0000% 5928.19 12.671 3 / 5 0 / 0 6
G08 2 0.8751% 1821.61 2.393 0 / 2 0 / 0 0
G09 7 0.5207% 10013016.18 25.05 0 / 4 0 / 0 2
G10 8 0.0008% 27610.89 3842702 3 / 3 0 / 0 6
G11 2 0.0000% 4.99 1.000 0 / 0 0 / 1 1
G12 3 0.04819% 0.72813 1 0 / 1 0 / 0 0
G13 5 0.0000% 1.91 · 1075 2.94 0 / 0 0 / 3 3
G14 10 0.0000% 1813.3 1.343 0 / 0 3 / 0 3
G15 3 0.0000% 586.0 1.034 0 / 0 1 / 1 2
G16 5 0.0000% 811263.1 75.73 4 / 34 0 / 0 4
G17 6 0.0000% 42278.85 4.09 0 / 0 0 / 4 4
G18 9 0.0000% 5584.5 4.9 0 / 13 0 / 0 6
G19 15 0.33592% 55659.1 1.95 9 / 5 0 / 0 0
G20 24 0.0000% 28.99 858.19 0 / 6 2 / 12 16
G21 7 0.0000% 1000 23516.64 0 / 1 0 / 5 6
G22 22 0.0000% 2000 3.1 · 109 0 / 1 8 / 11 19
G23 9 0.0000% 13044.3 82.56 0 / 2 3 / 1 6
G24 2 0.44250% 6.97 1.82 0 / 2 0 / 0 2

3.1. Experimental Setup

We apply the proposed algorithm to all 24 G-problems.
The initial population of size 3d is created by Latin hyper-
cube sampling (LHS). In order to have statistically sound
results, every single run is repeated with 50 different ran-
dom seeds (different initial populations, different starting
points). We define two different pools of models M de-
scribed in Sec. 2.3. The first pool of models M1 contains
multiquadric basis functions with different width factors
w abbreviated as MQw. The second model pool M2 has
all the elements of M1 plus cubic RBF. The algorithms
which use M1 = {MQ0.01,MQ0.2,MQ0.5,MQ1,MQ5}
are denoted as MQ ensemble and the algorithms using
M2 = M1 ∪ {cubic} are called MQ-Cubic ensemble. In the
early phases of this work we have included Gaussian basis
functions as well. In this paper we exclude them, mainly
because of the frequent crashes occurring with Gaussian
RBF in our case.

It is also interesting to investigate the impact of vary-
ing the sliding window length L described in Sec. 2.3.
Therefore, we present results for different values of L ∈
{1, 30, n}. When the sliding window has the minimum
possible length L = 1, the model selection is done based
on the most recent information and the past results do not
have any direct impact on the model selection process.
L = n means that in each iteration the length of the
sliding window is exactly equal to the number of evaluated

design points and the decision is made according to the
accumulated information from the beginning of the process.
In this article, the length of the sliding window is denoted in
square brackets behind the type of ensemble. For example
MQ-Cubic[1] represents MQ-Cubic ensemble with a sliding
window of length L = 1.

Furthermore, we conduct some tests with fixed mod-
els (cubic and MQ0.2) to compare the performance of
SACOBRA with and without model selection which is the
main purpose of this work. The cubic basis functions used
to be the main basis functions in SACOBRA framework
originally. Our initial experiments with fixed MQw basis
function have shown that it is difficult to achieve consistently
good optimization results when w is too large or too small.
The best results achieved with MQ fixed modeling – for
optimizing G10 – appeared to be with MQ0.2.

All algorithms reported here use the repair-
infeasible [18] and the equality handling [17] extensions to
SACOBRA. Other parameters are automatically adjusted to
the problem at hand by the self adjusting mechanism inside
SACOBRA [1]. We considered a limited budget of not
more than 500 true function evaluations for all G-problems.
Inside SACOBRA, we use Powell’s constrained optimizer
COBYLA [21] for optimization on the surrogate models.

3.2. Data profile

In order to compare the overall performance of different
optimization algorithms on a set of problems we use data
profiles [22]:

ds(α) =
1

|P|
|{p ∈ P :

tp,s
dp + 1

≤ α}|, (3)

where P is a set of problems, S is a set of solvers and tp,s
is the number of iterations that solver s ∈ S needs to solve
problem p ∈ P. dp is the dimension of problem p.

A COP problem is said to be solved if a feasible solution
~x is found whose objective value f(~x) deviates from the best
known objective value f(~x∗) less than a given tolerance,
|f(~x∗) − f(~x)| < τ . First we consider a fixed tolerance
τ = 0.01 for all problems (see the black dashed horizontal
lines in Figs. 1–4). But using the same tolerance for all
problems may not always lead to a fair judgment because
the G-problems have very diverse types and ranges for
their objective functions. So, τ = 0.01 might be a very
harsh tolerance for one problem and a very easy tolerance
for another. Therefore, we show as well the results when
considering a problem-specific tolerance determined as

τp = max(10−5, ē), (4)

where ē is the averaged optimization error achieved by all
solvers (τp is shown as dashed red horizontal line in Figs. 1–
4).

3.3. Results

Figs. 1–4 show our detailed results in the
form of parallel box plots. The y-axes are always

●●● ●●● ●●●MQ MQ−Cubic fixed

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●●

●

● ●

●

●

●

●

●
●
●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●●● ●●●●●●●●●

●
●

●

●●●
●●

●

●●

●

●
●●●●●

●

●

●
●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●
●●●●

●

●●●●

●

●
●
●
●●●

●

●

●

●●
●

●

●

●

●

●●

●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●
●

●

●●●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●
●

●
●
●
●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●● ●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●
●

−8
−7
−6
−5
−4
−3
−2

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G01 problem

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●
●
●

●●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

● ● ●

●
● ●

●

●

−9
−8
−7
−6
−5
−4
−3

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G03 problem

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

●

−9
−8
−7
−6
−5
−4
−3

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G04 problem

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●
●

−4

−3

−2

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G05 problem

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●●●

●

●●●●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

● ●

● ● ●

●

●

● ● ●

●
● ●

●

●

−7
−6
−5
−4
−3
−2

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G06 problem
●

● ●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●●●
●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●
●

●

●

●

●●

●

●

●●
●●
●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●
●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●
●●●●

●

●

●

●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

● ● ● ● ● ●

●

●

−8
−7
−6
−5
−4
−3
−2
−1

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G07 problem

Figure 1. Comparison of final optimization results for G01,G03-G7 prob-
lems for 50 independent runs, achieved with and without ensemble and
different sliding window sizes.

log10(final optimization error). The blue boxes show results
for fixed models (cubic or MQ0.2, no model selection), the
red / green boxes show different model ensembles M1 /M2

with model selection according to Algorithm 1. The red
and green boxes are further differentiated by their sliding
window sizes: L = 1, L = 30, and Acc (accumulating, i. e.
L = n). The last choice Acc is quite similar to LOOCV,
since the approximation error from all n design points is
averaged.

In many cases, L = 1 is better than Acc (e. g. G08, G09,
G13, G21). In most cases the ensemble MQ-Cubic is equal
or better than the ensemble MQ alone. For the fixed cases
(blue boxes) sometimes cubic is better (G08), sometimes
MQ0.2 (G09). The ensemble MQ-Cubic, SW[1] is in most
cases close to or better than the better choice.

This is further supported when we summarize our results
from all 24 G-problems in the data profiles of Figs. 5 and 6:
The best COP solvers are the ensembles with online model
selection and sliding window length L = 1. The worst COP
solvers are the ones with fixed models (MQ fixed or cubic
fixed). Fig. 6 shows a substantial gap of nearly 15% between

●●● ●●● ●●●MQ MQ−Cubic fixed

●

●● ●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

−1
4−1
2−1
0

−8
−6
−4
−2

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G08 problem

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

−6
−5
−4
−3
−2
−1
0
1
2

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G09 problem

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●

●

●

●
●●

●

●

●
●●●
●
●

●●

●●●

●
●

●

●

●
●

●

●
●

●●
●
●●
●

●
●

●

●

●
●

●

●●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●
●
●

●●●

●

●●●●

●
●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●
●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●
●

●

●

●●●
●●●

●

●

●

●●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●
●
●

●
●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●●

●●

●

●

●
●●● ●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●
●
●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

● ● ●

●

●
●

●

●

●

●
●

●

●

● ●

●

−7
−5
−3
−1

1

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G10 problem

●

●

●

●

●

●

●●●

●

●

●●

●●●●

●
●
●

●

●
●

●●●●●

●
●

●

●●
●

●●●●●●

●

●●●

●

●
●
●

●

● ●

●

●
●

●

●

●●●

●

●

●●

●●●●

●
●
●

●

●●

●●●●●

●
●

●

●●●

●●●●●●

●

●●●

●

●●●

●

● ●

●

●
●

●

●

●●●

●

●

●●

●●●●

●
●
●

●

●
●

●●●●●

●
●

●

●●●

●●●●●●

●

●●●

●

●●●

●

● ●

●

●
●

●

●

●●●

●

●

●●

●●●●

●
●

●

●

●●

●●●●●

●●

●

●
●●

●●●●●●

●

●●●

●

●
●
●

●

● ●

●

●

●

●

●

●●●

●

●

●●

●●●●

●●
●

●

●●

●●●●●

●
●

●

●●
●

●●●●●●

●

●●●

●

●●
●

●

● ●

●

●●

●

●

●●●

●

●

●●

●●●●

●●
●

●

●
●

●●●●●

●
●

●

●●●

●●●●●●

●

●●●

●

●
●
●

●

● ●

●

●

●

●

●

●●●

●

●

●●

●●●●

●

●
●

●

●
●

●●●●●

●
●

●

●●●

●●●●●●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●●●

●

●
●

●

●

●

●●●●●

●

●

●

●
●
●

●●●●●●

●

●●●

●

●●●

●

●● ● ● ● ● ● ● ●

● ● ● ●

●

● ● ●

−7
−6
−5
−4
−3

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G11 problem

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●●●●
●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●●
●
●●
●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●
●
●

●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●●●●
●

●

●●
●

●

●

●
●

●

●

●

●●
●
●

●

●
●●

●

●

●
●●
●
●
●●

●

●●

●

●●●
●●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●

●
● ●

● ●

●
●

−1
5−1
3−1
1

−9
−7
−5
−3
−1

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G12 problem
●

●●

●

●●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●●

●

●●

●

●
●●

●

●●
●
●●
●●●●●●

●●

●●●

●

●●

●

●●

●

●
●

●

●●●

●

●●

●●●●

●●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●●●●●

●

●●●●●●●●●

●

●●●●●

●

●
●

●

●●
●

●

●

●

●●●

●

●

●

●

●●●
●

●

●●
●●●

●

●

●

●

●●●●●●

●

●

●●●●●●

●

●

●

●●

●

●
●●●●●

●

●
●●●

●

●●●

●

●
●●●

●

●●
●
●

●

●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●●
●

●

●
●●

●

●●●
●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●●●●● ●

●

●

●●●
●
●

●

●●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●●

●

●

●

●

●●●●

●

●●

●●●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●●

●

● ● ● ● ● ●

● ●

●

●

●

●

●
●

●

●

−8
−7
−6
−5
−4
−3
−2
−1
0

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G13 problem

Figure 2. Same as Fig. 1 for problems G08-G13.

the worst and the best solver (the best solver can solve 15%
more problems than the worst one).

The main driving force for this improvement is that in
the best solver each COP function gets the best-suited sur-
rogate model. Fig. 7 shows exemplarily the approximation
errors for problem G13: While the constraint functions g2
and g3 are better approximated by MQ, g1 is better modeled
by a cubic surrogate model, especially between iteration
100 and 250. This demonstrates that different surrogates for
different COP functions have a clear beneficial effect.

Fig. 8 depicts the frequency of model selection with Al-
gorithm 1 for the same problem G13. It shows nicely that the
cubic RBF type is dominantly selected for g1, while MQ5

is dominantly selected for g2 and g3 in the early iterations.
The objective function has a similar approximation error for
each surrogate model in Fig. 7. Consequently, there is no
clear winner here. Nevertheless, the ability of the surrogate
ensemble to switch between different RBF types might lead
to better exploration of the search space (see Sec. 4).

Table 3 shows the results for all 24 G-problems as found
by our algorithm and by several other authors who cover

●●● ●●● ●●●MQ MQ−Cubic fixed

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●●
●●●●●

●

●

●●●●
●●

●●
●

●●●

●●●
●

●●

●

●

●

●

●
●
●●
●●●●
●

●

●

●
●●

●

●
●

●

●

●

●●●

●

●●●●●●
●●●
●

●●
●●

●

●
●●
●
●
●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●
●
●●●
●

●

●

●

●●●
●●●●

●

●●

●

●●
●●

●
●●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●
●

●

●
●
●●●
●
●

●

●
●

●

●

●

●

●●●●

●

●
●●●
●
●

●

●

●

●

●

●

●
●
●

●

●●●

●

●●
●
●●
●

●

●●
●
●

●

●
●

●

●
●
●

●

●
●●●
●●●

●

●●●●
●

●

●●

●

●

●●

●

●

●●

●

●

●●●

●

●●

●●

●

●

●

●

●●
●
●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●●●●
●
●●
●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●
●
●

●

●

●

●●●

●●

●
●

●

●

●●●

●●

●●●
●

●

●

●
●●
●●●
●●

●

●

●

●
●

●●●●

●

●

●
●
●

●

●●●

●

●●●

●●

●
●

●●●

●●●

●●●

●●

●

●

●●●

●
●●

●●

●
●
●●
●
●

●●

●●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

● ●
●

●
● ●

●

●

−2
.4

−1
.9

−1
.4

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G14 problem

●

●●

●

●●

●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●●
●●●
●
●
●●●●

●

●

●●●

●

●●

●

●

●
●

●
●●●
●
●●●
●
●
●●●●
●

●

●
●
●●●
●

●

●
●

●

●●
●

●
●●
●●●
●●
●
●

●
●
●
●

●
●●

●

●

●
●

●

●●●●●●●●●
●●●
●

●●
●●●●●
●
●

●
●

●

●●

●

●
●●
●●
●

●

●

●

●
●
●●●

●
●

●●

●

●
●

●

●
●●
●
●
●
●

●
●
●
●

●●
●
●

●

●
●
●

●

●
●

●●
●
●●
●

●●●
●●●●
●●

●

●

●
●
●

●●
●
●

●

●
●

●

●●
●

●
●●
●●
●
●
●●●
●

●
●●●
●●

●
●

●

●

●
●●●
●
●●●
●●●
●
●

●

●
●●●

●
●●

●

●

●

●

●

●●●
●
●●
●

●
●

●●
●●

●

●●
●
●●
●●

●

●

●

●
●●●

●
●
●●●
●
●
●

●

●

●●●●

●

●●●

●

●
●
●
●●●●

●

●
●
●●
●●

●●

●

●
●●●
●●

●

●

●
●

●

●●●
●
●●
●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●
●

●●
●
●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●●
●
●●●
●●

●

●
●●
●

●
●
●●

●

●●

●
●
●
●

●
●
●
●●
●●●
●●
●●
●●

●

●

●●●●
●
●
●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ●

−4

−3

−2

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G15 problem

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●●●

●

●

●●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●
●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

−8
−7
−6
−5
−4
−3
−2
−1

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G16 problem

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ● ●

●
●

●

●

●

●

●

●

−2

−1

0

1

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G17 problem

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

● ●

●

●

●

−6
−5
−4
−3
−2

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G18 problem

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●
●

●

●●●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
● ● ●

●
●

●
●

●
●

●

●

●

●

●

●

−5
−4
−3
−2
−1
0
1
2

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G19 problem

Figure 3. Same as Fig. 1 for problems G14-G19.

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●−1

0

1

2

3

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G21 problem

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●
●

−5
−4
−3
−2
−1

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G23 problem

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●−9
−8
−7
−6
−5
−4
−3
−2

L=
1

L=
30

L=
Acc

L=
1

L=
30

L=
Acc

M
Q 0.

2

Cub
ic

G24 problem

●●● ●●● ●●●MQ MQ−Cubic fixed

Figure 4. Same as Fig. 1 for problems G21, G23, G24.

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.55

0.60

0.65

0.70

0.75

0.80

10 20 30 40 50
 performance factor α

da
ta

 p
ro

fil
e

● MQ−Cubic[1]
MQ[1]
MQ[Acc]
MQ−Cubic[Acc]
MQ fixed
Cubic fixed

G−problems, τ = 0.01

Figure 5. Data profile for problems G01-G24 with a constant tolerance
value of 0.01 for all problems. Ensemble MQ-Cubic[1] with L = 1 is
outperforming the former algorithm which used cubic as the fixed basis
function.

●

●

●

●

●

●

●
●

●

●
● ● ● ● ● ● ● ● ●

0.55

0.60

0.65

0.70

0.75

0.80

10 20 30 40 50
 performance factor α

da
ta

 p
ro

fil
e

● MQ−Cubic[1]
MQ[1]
MQ−Cubic[Acc]
MQ[Acc]
Cubic fixed
MQ fixed

G−problems, τ = τp

Figure 6. Data profile for problems G01-G24. This data profile uses the
stricter problem-specific tolerance τp according to Eq. (4). Ensemble MQ-
Cubic[1] with L = 1 is outperforming all other approaches.

the whole G-benchmark suite [23], [24], [25].1 SACOBRA
finds good solutions (small error in relation to the objective
function range FR, see Table 2) for all G-problems except
G02, G20 and G22. Problem G02 has a highly multimodal
fitness function in 20-dimensional space, which is very
likely not accessible for any surrogate-based optimization.
The remaining problems G20 and G22 are known as very
challenging COPs in the literature [23], [24], [25]. G20 and
G22 are both high-dimensional problems (d > 20) with
many equality constraints (r > 10). No feasible solution is
known so-far for problem G20. Although the feasible opti-
mum of G22 is known, most solvers – including SACOBRA
– have difficulties to approach this optimum.

1. Some numbers in red in Table 3 are reportedly better than the true
optimum. The reason for this is that some algorithms transform equality
constraints into a small feasible tube with fixed margin ε = 0.0001 around
the true equality surface. Then a selected solution will usually deviate by a
small amount from this equality surface in the direction of better objective
values. If this happens at or near the true solution, the selected solution
will have a better objective value than the optimum.

objective g1

g2 g3
−6

−4

−2

0

−1
3

−1
2

−1
1

−1
0

−9

−8

−6

−4

−2

0

−6

−4

−2

0

10
0

20
0

30
0

40
0

10
0

20
0

30
0

40
0

Iteration

lo
g 1

0(
ap

pr
ox

 e
rr

or
)

Cubic MQ0.2

Figure 7. Approximation error as a function of iterations for problem G13.
Each point is the median approximation error of 50 independent runs and
each curve is a smoother fitted through these points.

4. Discussion

The results show that online model selection performs
significantly better on the G-problem suite than any fixed
choice of RBF type. We believe that the improvements
are due to the ability of (a) having different RBF types
for different COP functions, and (b) switching between
different RBF types while iterating. The latter may facilitate
exploration.

Sliding window: It is at first surprising, that a sliding
window of size L = 1 turns out to be the best choice among
all sliding windows. (We note in passing, that we tested
several other values between L = 1 and L = 30 as well.
We found steady improvement towards smaller L.) Why is
this the case? We argue that two factors play a role:
(a) If the solver approaches the optimum, it is of utmost
importance that the surrogate model is good in the vicinity
of the last point(s) visited. The vicinity is emphasized by
the (L=1)-approximation error, while a LOOCV procedure
would measure the overall approximation accuracy. This
may be the reason why earlier work on model selection
for optimization with LOOCV [12] did not find significant
improvement.
(b) Based on the frequency of model selection in Fig. 8, we
made a deeper analysis of individual runs: In cases where
several RBF types have roughly the same frequency, we
found that the solver with L=1 switches in nearly every
iteration between these several RBF types. The fact that
such a switching behavior leads to better optimization re-
sults indicates that rapid switching probably leads to better
exploration of the search space.

Computational costs: The extra computational costs
for online model selection are quite low. The algorithm
is embedded in the SACOBRA algorithm in such a way
that no extra true function evaluations as compared to the

fixed model variants are necessary. (We assume that the true
function evaluations are the really expensive part, e. g. as
results of long-running computer simulations.) Secondly, the
number of extra surrogate model builds is relatively modest:
We have to build K models instead of 1 model, where K is
the size of the model pool M in Algorithm 1. If we had to
perform LOOCV, this number would be considerably larger,
namely K ·n, where n is the number of design points which
becomes as large as 500 in our experiments.

Large benchmark: Compared to our previous work [1]
with results for G01–G11, we have now tested SACOBRA
on all 24 problems G01–G24 of the G-function benchmark
suite. This does now include both inequality and equality
COPs. SACOBRA has proven to be successful on most of
the problems, with the exception of G02, G20 and G22. A
close look to Table 3 reveals that the results for G19 are
somewhat mediocre as well, showing a median error of 28.
But this error has to be set in context to the range FR of
the objective function, which is above 50000 in the case of
G19 (see Table 2).2 All other problems are solved with good
accuracy in only a small fraction of function evaluations as
compared to other work [23], [24], [25].

5. Conclusion

We have proposed a new online model selection al-
gorithm for surrogate models used in COP solving. The
algorithm allows different COP functions to be modeled
by different types of RBF surrogate models, including the
possibility of online switching. We found clear evidence that
online model selection is very beneficial on some problems
(G12, G13). In these cases, different COP functions took
advantage from selecting among different RBF types, which
answers positively our research question (H1).

Overall, online model selection proved to be more robust
than fixed surrogate model choices, as our data profiles for
the 24 G-problems show. Our positive answer to (H2) is:
The best online model selection has a 13% higher perfor-
mance than the best fixed-model variant (cubic). We can
solve all but three (G02, G20, G22) of the 24 G-problems
in less than 500 true function evaluations.

Possible future work could be (a) in the direction of
extending the set of possible RBF model candidates and (b)
a deeper investigation of the problems which are challenging
for our algorithm so far (G02, G19, G20, G22).

Acknowledgments

This work has been supported by the Bun-
desministerium für Wirtschaft (BMWi)
under the ZIM grant MONREP (AiF
FKZ KF3145102, Zentrales Innovations-
programm Mittelstand).

2. We note in passing that COBYLA alone – without surrogate models
– can solve G19 quite rapidly up to an accuracy of 10−4 in less than 9000
iterations.

TABLE 3. DIFFERENT OPTIMIZERS: MEDIAN (M) OF BEST FEASIBLE
RESULTS AND (FE) AVERAGE NUMBER OF FUNCTION EVALUATIONS.
RESULTS FROM 50 INDEPENDENT RUNS WITH DIFFERENT RANDOM

NUMBER SEEDS. NUMBERS IN BOLDFACE: DISTANCE TO THE OPTIMUM
≤ 0.001. NUMBERS IN italic (red): REPORTEDLY BETTER THAN THE

TRUE OPTIMUM. NUMBERS IN (BRACKETS): SOLUTION VIOLATES SOME
CONSTRAINTS.

Fct Optimum
SACOBRA Takahama Jiao Wei
MQ-Cubic [24] [25] [23]

L = 1

G01 -15.0 m -15.0 -15.0 -15.0 -15.0
fe 100 59308 31710 34812

G02 -0.8036 m -0.3466 -0.8036 -0.8036 -0.8036
fe 500 149825 79278 500000

G03 -1.0 m -1.0 -1.0 -1.0005 -1.0005
fe 100 89407 19534 72377

G04 -30665.539
m -30665.539 -30665.539 -30665.539 -30665.539
fe 200 26216 5357 19390

G05 5126.497 m 5126.497 5126.497 5126.497 5126.497
fe 200 97431 1558 1817

G06 -6961.814 m -6961.814 -6961.814 -6961.814 -6961.814
fe 100 7381 732 8798

G07 24.306 m 24.306 24.306 24.306 24.306
fe 200 74303 137592 44859

G08 -0.0958 m -0.0958 -0.0958 -0.0958 -0.0958
fe 500 1139 541 1616

G09 680.630 m 680.630 680.630 680.630 680.630
fe 500 23121 9357 19852

G10 7046.248 m 7046.248 7046.248 7046.248 7046.248
fe 500 105234 85623 196974

G11 0.750 m 0.750 0.750 0.7499 0.7499
fe 100 16420 135 280

G12 -1.0 m -1.0 -1.0 -1.0 -1.0
fe 400 4124 212 2934

G13 0.0539 m 0.0539 0.0539 0.0539 0.0539
fe 400 34738 3103 734

G14 -47.765 m -47.759 -47.765 -47.765 -47.765
fe 400 113439 6093 893

G15 961.715 m 961.715 961.715 961.715 961.715
fe 400 84216 757 641

G16 -1.905 m -1.905 -1.905 -1.905 -1.905
fe 500 12986 8982 11780

G17 8853.534 m 8854.230 8853.534 8853.534 8853.534
fe 500 98861 3203 1448

G18 -0.8666 m -0.8658 -0.8666 -0.8666 -0.8660
fe 300 59153 3353 55715

G19 32.655 m 60.985 32.655 32.655 32.655
fe 500 356350 56681 84624

G20 (0.0721) m (0.2794) (0.0721) – (0.2050)
fe 500 500000 – 500000

G21 193.724 m 193.950 193.724 193.724 193.724
fe 500 135143 46722 2690

G22 236.431 m (544.843) 248.763 – (9819.251)
fe 500 500000 – 500000

G23 -400.002 m -400.002 -400.002 -400.055 -400.055
fe 500 200765 9757 784

G24 -5.5080 m -5.5080 -5.5080 -5.5080 -5.5080
fe 500 2952 161 3850

average fe 370 111529.5 23201.8 86119.6

objective g1

g2 g3
0

10

20

30

40

50

0

10

20

30

40

50

0 10
0

20
0 0 10

0
20

0

iterations

C
ou

nt
s

MQ0.01

MQ0.2

MQ0.5

MQ1

MQ5

cubic

selected model by MQ−Cubic[1]
 for G13 problem

Figure 8. Frequency of model selection (out of 50 runs) in each iteration.
It is clearly seen that objective function and three constraint functions call
for different model selection patterns.

References

[1] S. Bagheri, W. Konen, M. Emmerich, and T. Bäck, “Solving the G-
problems in less than 500 iterations: Improved efficient constrained
optimization by surrogate modeling and adaptive parameter control,”
arXiv preprint arXiv:1512.09251, 2015.

[2] R. G. Regis and C. A. Shoemaker, “A quasi-multistart framework
for global optimization of expensive functions using response surface
models.” J. Global Optimization, vol. 56, no. 4, pp. 1719–1753, 2013.

[3] P. Koch, S. Bagheri, C. Foussette, P. Krause, T. Bäck, and W. Ko-
nen, “Constrained optimization with a limited number of function
evaluations,” in Proc. of the 24th Workshop on CI, F. Hoffmann and
E. Hüllermeier, Eds. Universitätsverlag Karlsruhe, 2014, pp. 119–
134.

[4] M. Schonlau, W. J. Welch, and D. R. Jones, “Global versus local
search in constrained optimization of computer models,” in New
developments and applications in experimental design, N. Flournoy,
W. F. Rosenberger, and W. K. Wong, Eds. Hayward, CA: Institute
of Mathematical Statistics, 1998, vol. 34, pp. 11–25.

[5] D. Villanueva, R. L. Riche, G. Picard, and R. T. Haftka, “Surrogate-
based agents for constrained optimization,” in In 14th AIAA Non-
Deterministic Approaches Conference, 2012.

[6] C. C. Tutum, K. Deb, and I. Baran, “Constrained efficient global
optimization for pultrusion process,” Materials and Manufacturing
Processes, vol. 30, no. 4, pp. 538–551, 2015. [Online]. Available:
http://dx.doi.org/10.1080/10426914.2014.994752

[7] H. Rocha, “On the selection of the most adequate radial basis func-
tion,” Applied Mathematical Modelling, vol. 33, no. 3, pp. 1573 –
1583, 2009.

[8] D. Gorissen, T. Dhaene, and F. D. Turck, “Evolutionary model
type selection for global surrogate modeling,” J. Mach. Learn. Res.,
vol. 10, pp. 2039–2078, Dec. 2009.

[9] A. Mehmani, S. Chowdhury, and A. Messac, “A novel approach
to simultaneous selection of surrogate models, constitutive kernels,
and hyper-parameter values,” 10th AIAA Multidisciplinary Design
Optimization Conference, 2014.

[10] R. V. Field, “A decision-theoretic method for surrogate model selec-
tion,” Journal of Sound and Vibration, vol. 311, no. 35, pp. 1371 –
1390, 2008.

[11] I. Couckuyt, F. D. Turck, T. Dhaene, and D. Gorissen, “Automatic
surrogate model type selection during the optimization of expensive
black-box problems,” in Proceedings of the 2011 Winter Simulation
Conference (WSC), Dec 2011, pp. 4269–4279.

[12] J. Müller and C. A. Shoemaker, “Influence of ensemble surrogate
models and sampling strategy on the solution quality of algorithms for
computationally expensive black-box global optimization problems,”
Journal of Global Optimization, vol. 60, no. 2, pp. 123–144, 2014.

[13] M. Friese, M. Zaefferer, T. Bartz-Beielstein, O. Flasch, P. Koch,
W. Konen, and B. Naujoks, “Ensemble based optimization and tuning
algorithms,” Schriftenreihe des Instituts für Angewandte Informatik,
Automatisierungstechnik am Karlsruher Institut für Technologie, p.
119, 2011.

[14] K. S. Bhattacharjee, H. K. Singh, and T. Ray, “Multi-objective
optimization with multiple spatially distributed surrogates,” Journal
of Mechanical Design, vol. 138, no. 9, p. 091401, 2016.

[15] R. L. Hardy, “Multiquadric equations of topography and other irreg-
ular surfaces,” Journal of Geophysical Research, vol. 76, no. 8, pp.
1905–1915, 1971.

[16] B. Fornberg and N. Flyer, “Accuracy of radial basis function interpo-
lation and derivative approximations on 1-d infinite grids,” Advances
in Computational Mathematics, vol. 23, no. 1, pp. 5–20, 2005.

[17] S. Bagheri, W. Konen, and T. Bäck, “Equality constraint handling
for surrogate-assisted constrained optimization,” in WCCI’2016,
Vancouver, K. C. Tan, Ed. IEEE, 2016, p. 1. [Online]. Available: http:
//www.gm.fh-koeln.de/∼konen/Publikationen/Bagh16-WCCI.pdf

[18] P. Koch, S. Bagheri, W. Konen, C. Foussette, P. Krause, and T. Bäck,
“A new repair method for constrained optimization,” in Proceed-
ings of the Genetic and Evolutionary Computation Conference 2015
(GECCO), J. L. Jiménez-Laredo, Ed. ACM, 2015, pp. 273–280.

[19] R. G. Regis, “Constrained optimization by radial basis function in-
terpolation for high-dimensional expensive black-box problems with
infeasible initial points,” Engineering Optimization, vol. 46, no. 2,
pp. 218–243, 2013.

[20] J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan,
C. C. Coello, and K. Deb, “Problem definitions and evaluation criteria
for the CEC 2006 special session on constrained real-parameter
optimization,” Journal of Applied Mechanics, vol. 41, p. 8, 2006.

[21] M. Powell, “A direct search optimization method that models the ob-
jective and constraint functions by linear interpolation,” in Advances
In Optimization And Numerical Analysis. Springer, 1994, pp. 51–67.

[22] J. J. Moré and S. M. Wild, “Benchmarking derivative-free optimiza-
tion algorithms,” SIAM J. Optimization, vol. 20, no. 1, pp. 172–191,
2009.

[23] W. Wei, J. Wang, and M. Tao, “Constrained differential evolution
with multiobjective sorting mutation operators for constrained opti-
mization,” Applied Soft Computing, vol. 33, pp. 207 – 222, 2015.

[24] T. Takahama and S. Sakai, “Constrained optimization by the ε con-
strained differential evolution with gradient-based mutation and fea-
sible elites,” in 2006 IEEE International Conference on Evolutionary
Computation, July 2006, pp. 1–8.

[25] L. Jiao, L. Li, R. Shang, F. Liu, and R. Stolkin, “A novel selection
evolutionary strategy for constrained optimization,” Information Sci-
ences, vol. 239, pp. 122 – 141, 2013.

