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Abstract—Efficient Global Optimization (EGO) is a well
established iterative approach originally introduced to solve
computationally expensive unconstrained optimization problems.
EGO relies on an underlying Gaussian Process (GP) model
and identifies an infill location for sampling that maximizes
the expected improvement (EI) function. The infill point is
evaluated which in turn is used to update the GP model, and
this cycle continues until the termination condition is satisfied.
In order to deal with constrained optimization problems, several
modifications have been suggested in the literature over the
years. While the approaches are novel and often complex, the
performance is assessed using a small set of test cases (typically
two or three). It is thus difficult to judge if they indeed offer
significant benefits over simple constrained EGO formulations. In
this paper we introduce a simple constrained EGO formulation,
where the algorithm attempts to locate infill locations that
maximize the probability of feasibility (until a feasible solution
is identified) and then switches to maximize the penalized EI
function (EI is penalized using the probability of feasibility). The
performance of the proposed approach is compared with others
using a suite of 10 well studied problems. The results obtained
using the proposed approach are competitive and often better
than previously reported results for the problems. We hope this
study will prompt more interest in the development of efficient
constraint handling schemes that can be used within EGO.

Index Terms—Kriging, Efficient Global Optimization, Single
Infill Sampling Criterion

I. INTRODUCTION

Over the years, there has been a trend to use increas-
ingly accurate numerical simulations/analysis to design bet-
ter products and services. Computationally expensive black-
box simulations are typically used to compute the constraint
and objective functions of the optimization problem. While
population based stochastic optimization algorithms are a
preferred choice to deal with such non-linear optimization
problems, their direct use is impractical since they require
evaluation of numerous solutions (designs) prior to conver-
gence. Even with today’s computing power, an optimization
exercise involving such computationally expensive simulations
is a formidable task. A common practice is to employ com-
putationally cheap surrogate/approximate models instead of
the true simulations (which are costly) within an optimization
algorithm. This category of approaches is commonly referred
to as surrogate assisted optimization (SAO). Widely used
SAO approaches include Gaussian process (GP models) [1],
Multi Layer Perceptrons (MLP) [2], Response Surface Meth-

ods (RSM) [3], Radial Basis Functions (RBF) [4], Support
Vector Regression (SVR) [5] as the underlying approximation
models. Use of such approximation models within a population
based stochastic algorithm requires a number of additional
considerations which are studied under the broad framework
of model management [6].

Jones et. al. [7] proposed Efficient Global Optimiza-
tion (EGO) for unconstrained optimization which utilizes a
GP model and considers the predicted response along with its
uncertainty to identify a new infill location. For any potential
location, the expected improvement (EI) can be computed
based on the predicted response and its variance. This function
can then be maximized to obtain the best infill location. After
evaluating the solution at the new infill location, the underlying
GP model can be updated and the cycle continues until the
termination condition is satisfied. The EI value will be large
for points where the predicted value is likely to be lower than
the best function value and/or where there is high uncertainty
in the value of the prediction itself. This EGO approach resem-
bles a serial process. However, the approach can still be expe-
dited for computationally expensive optimization problems if
the underlying black-box analysis itself can be parallelized. To
achieve greater control on the search behavior, modifications
to the expected improvement function have been suggested.
Generalized expected improvement function (GEI) [8] is one
such modification, where an additional parameter g is used
to control the balance between the global and local search. A
larger value of g favors exploration, while a smaller value
leads to exploitation. Strategies to control the parameter g
appear in [9], where the value was progressively reduced over
iterations.

Since most real life optimization problems involve con-
straints, modifications to EGOs have been suggested in the
literature to deal with them. The first approach was proposed
in [8], where instead of maximizing the GEI function, the
product of GEI and the probability of feasibility (PF) was
maximized. The probability of feasibility was computed using
a GP model for each constraint and PF was calculated as
a product of these probabilities. A similar form was also
proposed in [10] and referred to as constrained expected
improvement. Use of product forms in the computation of PF
is known to suffer from single term dominance and is strictly
valid when all the constraints are independent [11]. Audet et.



al. [12] introduced the notion of Expected Violation (EV),
where a threshold on violation was used instead of the actual
violation, thereby allowing greater possibility of sampling
around constraint boundaries. The metric was used to assess
expected violations of potential sampled solutions using a
GP model. Solutions with EV less than a threshold would
be further assessed using unconstrained form of EI and a
few good solutions would undergo true evaluations. The first
screening based on EV attempts to select solutions that are
likely to be feasible. In order to allow sampling near constraint
boundaries, an user prescribed allowable violation glimit was
used instead of 0 in [13] which may not be practical.

The methodology to skip evaluation of solutions that are
infeasible inherently limits updates to the constraint approxi-
mators. In [14], a threshold violation value (feasibility crite-
rion) was used to allow updates to the constraint functions.
An augmented Lagrangian (AL) formulation with a penalty
parameter was used to transform the constrained optimization
problem to an unconstrained form in [14]. Such a formu-
lation is known to introduce discontinuities and the use of
DIRECT algorithm [15] to solve the AL formulation requires
the function to be continuous at least in the vicinity of the
optimum. Since a product form of PF requires an assumption
of constraint independence and also suffers from single term
dominance, there have been suggestions to treat EI and each
PF corresponding to each constraint as separate objectives
in [16]. For a problem with four of more constraints, such
a formulation would result in a many-objective optimization
problem. It has been well established in evolutionary multi-
objective optimization (EMO) domain that many-objective
problems are significantly harder to solve compared to two
or three objective optimization problems [17].

Several variants of sampling strategies have also been
proposed in the works of Watson and Barnes [18]. These
include means to locate threshold bounded extremal solution,
regional extremal solution and one that minimized surprises.
The performance of these sampling strategies was reported
in [19]. The study revealed that there is no single sampling
strategy that is the best for all classes of problems. To inherit
the benefits of various sampling strategies, an elaborate ap-
proach was introduced in [20], where different infill sampling
criterion was used in different stages of the search process.
The approach relied on maximizing PF only until a feasible
solution was detected. Once a feasible solution was detected,
the search attempted to locate other distant feasible points by
penalizing the PF with a distance measure (from the identified
feasible location). Once several feasible solutions have been
located using these strategies, the algorithm would switch to a
conventional SAO form attempting to locate solutions with the
best objective function value subject to constraints (modeled
using a GP model). The final phase would involve constrained
optimization attempting to locate distant feasible solutions
with performance better than the best feasible solution found
so far. The issue of sampling in different regions of the search
space in different stages of optimization has been an active
area of interest. Recently, a stochastic probability based sam-

pling scheme was introduced [21], where in early phases, infill
sampling is preferred, while in later stages boundary sampling
is preferred. While the switching is based on the quality of the
approximations based on mean squared error (MSE), it is often
difficult to provide such MSE thresholds a priori.

To address some of the above concerns, a novel approach
was introduced in [11]. A support vector machine classi-
fier (SVM) was used to pre-screen solutions that are likely
to be feasible. Among such solutions, one with the highest
expected improvement would undergo evaluation. The method
delivered promising results on problems with discontinuity and
binary constraints. However, the training of SVM classifiers
would need large number of training samples and the dataset
could soon become unbalanced, thereby requiring a single
class classifier as opposed to a two-class classifier used in the
study. The approach also had provisions to sample solutions
in less explored regions of the search space.

As indicated earlier, this work revisits constrained EGO
methods. While the enhancements proposed in the literature
are novel and address various drawbacks, this study objectively
compares their performance with a simple single objective
constrained EGO formulation. While most studies have fo-
cused predominantly on the limitations of the probability
of feasibility function, we highlight the effect of reference
objective function value on the EI function. In our proposed
approach, the algorithm attempts to locate infill locations that
maximize the probability of feasibility (until a feasible solution
is identified) and then switches to penalized EI function (EI is
penalized using the probability of feasibility) [10] in the next
stage. Since PF is used until a feasible solution is identified,
the best feasible objective function value is always used as a
reference objective function value in the computation of EI.

A brief overview of Gaussian Process (GP) models, ex-
pected improvement (EI) and probability of feasibility (PF)
is presented in Section II for completeness. The numerical
examples are detailed in Section III followed by the description
of the proposed algorithm in Section IV. The numerical
experiments and analysis are presented in Section V. The
conclusions and future research directions are summarized in
Section VI.

II. OVERVIEW OF GAUSSIAN PROCESS, EXPECTED
IMPROVEMENT AND PROBABILITY OF FEASIBILITY

This section provides a brief theoretical overview of Gaus-
sian Process (GP), expected improvement (EI) and probability
of feasibility (PF). For the sake of brevity, the key equations
are provided without derivation. For detailed explanation and
derivation of the equations, readers are recommended to read
[22], [23], [24] for Gaussian Process and [10] for EI and
constrained EI.

A. Gaussian Process (GP)
In Gaussian Process, the function of interest y(x) is ex-

pressed as a combination of a global model and localized
deviations:

y(x) = f(x) + Z(x), (1)



where f(x) is a polynomial function and Z(x) is a Gaussian
model with mean 0 and variance σ2. The co-variance matrix
of Z(x) is given by:

Cov[Z(xi), Z(xj)] = σ2R, (2)

where R is a correlation matrix. The correlation between
sample i and sample j is denoted by R(xi,xj). We assume
a Gaussian correlation function with pk set to 2, as shown in
the equation below.

R(xi,xj) = exp[−
∑D
k=1 θk|xik − xjk|pk ], (3)

where D is the dimensionality of x, θk and pk are the hyper-
parameters and xik and xjk are the kth components of the
corresponding x.

For a new point xns+1, the approximated value ŷ(x) is:

ŷ(x) = µ̂+ rTR−1(y − 1µ̂) (4)

The variance σ̂(x)2 in prediction at x is given by

σ̂(x)2 = σ2
[
1− rTR−1r +

(1−1TR−1r)2

1TR−11

]
, (5)

where y is the column vector of size ns and 1 is a column
vector of 1’s.
µ̂ is estimated using the following equation:

µ̂ = (1TR−11)−11TR−1y, (6)

where the variance σ2 is given by the expression

σ2 = 1
ns

[(y − 1µ̂)TR−1(y − 1µ̂)], (7)

and rT is a correlation vector of length ns between the new
point xns+1 and the ns sampled data points:

rT = [R(xns+1,x1), R(xns+1,x2), .., R(xns+1,xns)]T (8)

Finally, the correlation parameters, θk can be estimated by
maximizing the following likelihood function–

Maximize:− 1
2
(nsln(σ2) + ln|R|) (9)

The above optimization problem can be solved using a
suitable global optimizer.

B. Expected Improvement (EI)

Expected improvement at any location x is the expected
value by which the predicted objective function value ŷ is
better than ymin. In an unconstrained problem, ymin is the
best objective function value among all the sampled locations.
Thus, EI(x)=E[I (x)], where

I (x) = max{ymin − ŷ(x), 0}, (10)

where ymin is the current minimum and ŷ(x) is the predicted
value at location x. The expected improvement EI(x) can be
expressed as

EI(x) =


(ymin − ŷ(x)) Φ× . . .
. . .
(

(ymin−ŷ(x))
σ̂(x)

)
+ σ̂(x) φ

(
(ymin−ŷ(x))

σ̂(x)

)
if σ̂(x) > 0

0 if σ̂(x) = 0
(11)

here, Φ and φ are the cumulative density function and the
standard normal probability density functions.

C. Probability of Feasibility (PF)

While the EI formulation presented above is for uncon-
strained optimization problems, it is common to use a pe-
nalized form of EI to deal with constrained optimization
problems. The above EI is multiplied by the probability of fea-
sibility (PF) for constrained optimization problems. Assuming
there are q constraints of the form gi(x) ≤ 0 and they are
independent, the PF is computed as follows:

PF =
q∏
i=1

P (gi(x) ≤ 0) (12)

where P (gi(x) ≤ 0) is evaluated for each constraint as
follows

P (gi(x) ≤ 0) = Φ
(

0−ĝi(x)
σ̂gi (x)

)
(13)

Here, for ith constraint, ĝi(x) and σ̂gi(x) are computed
using a Gaussian process model.

III. ILLUSTRATIVE EXAMPLE

In this section, we first illustrate the effect of reference
objective function value on the EI function. We consider the
unconstrained Gomez#3 [20] function with two variables.

Minimize f(x) = (4− 2.1x21 +
x41
3
)x21 + x1x2 + (−4 + 4x22)x

2
2

where xi ∈ [−1, 1], i = 1, 2

(14)

The unconstrained function has two global optima at
[0.0898,−0.7127] and [−0.0898, 0.7127] with an objective
function value of −1.0316. A GP model was constructed using
9 initial samples. The best objective function value among
these 9 solutions is ymin = 0. Maximization of EI using
the above ymin value would result in an infill location of
[0.0010, 0.5553]. For the sake of discussion, if two different
ymin values of 1.5 and −1.5 would have been used, the infill
locations would turn out to be [0,−0.6850] and [0.2101, 1], as
shown in Fig. 1. It is clear that the infill locations can be in
completely different regions of the search space depending on
the value of reference ymin used in EI computation. The EI
contours for the three cases are shown in Fig. 2.

While in the above unconstrained example, we have hypo-
thetically assumed different values of ymin, the next example
is presented to highlight the differences between two con-
strained EGO formulations, developed by Forrester et. al. [10]
and Schonlau et. al.’s [8]. Consider the following 2 variable
constrained optimization problem presented in [9]). There are
3 constraints and two disconnected feasible regions with the
global optimum value of −0.7483 at [0.2017, 0.8332].
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Fig. 1: Location of infill sample points for different values of ymin.
(a) Infill samples on the contour of f true, (b) Infill samples on the
contour of fpredicted. Infill samples 1, 2, 3 correspond to fmin =
0, 1.5 and − 1.5 respectively.

Minimize f(x) = −(x1 − 1)2 − (x2 − 0.5)2

g1(x) ≡ ((x1 − 3)2 + (x2 + 2)2)exp(−x72)− 12 ≤ 0

g2(x) ≡ 10x1 + x2 − 7 ≤ 0

g3(x) ≡ (x1 − 0.5)2 + (x2 − 0.5)2 − 0.2 ≤ 0

where xi ∈ [0, 1], i = 1, 2

(15)

For this problem, 25 initial samples were used to construct
the GP model. The initial samples, contour plot and feasible
regions are illustrated in Fig. 3.

From Fig. 3, it can be observed that there is only one initial
sample in the feasible region at the location [0.5,0.25]. It has
an objective function value −0.3125 and among all the initial
samples, the minimum is at [0,0] with an objective value of
−1.25, which is an infeasible solution. Thus, ymin(all) =
−1.25 and ymin(feas) = −0.3125 are two possibilities which
can be used in the computation of penalized EI. The effect of
employing ymin(all) and ymin(feas) on the next infill sample
is depicted in Fig. 4.

From the figure, the benefit of utilizing the ymin(feas) to
calculate EI and employing it to find the next infill sample
can be observed. Fig. 4(a) depicts the use of ymin(all) where,
the obtained infill sample is located at [0.0969, 0.9172]. The
Euclidean distance from this point to the true optimum is
0.1343, which is 9.5% of the solid diagonal based on the
variable domain. On the other hand, Fig. 4(b) represents
the effect of utilizing ymin(feas), where, the next sample
point was obtained as [0.2592, 0.8383]. It had an Euclidean
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Fig. 2: Contour of the EI function for different values of fmin for
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Fig. 4: Location of infill sample points for- (a) Unconstrained
formulation of EI penalized with PF, (b) Constrained formulation
of EI penalized with PF.

distance of 0.0478 from the true optimum, which corresponds
to 4.09% of the solid diagonal distance, which is around 5.5%
improvement over the method where calculation of EI was
with ymin(all).

The above example highlights the fact that the choice of
reference objective function values plays an important role in
the choice of the next infill location.

IV. PROPOSED APPROACH

The motivation of this work stems from the review of
constrained EGO literature. The improvements in the lit-
erature were targeted towards better control of global and
local exploration, infill and boundary sampling strategies and
modifications to the probability of feasibility functions. Such
modifications come with additional parameters. Besides, some
multi-sampling criteria are also studied in the literature em-
ploying the conflicting nature of EI and PF [13] or both parts in
the EI equation [25]. Although these approaches offer better
convergence, they require solving a multiobjective problem
in order to obtain the set of infill samples. Other multi-
sampling strategies like [26] use expensive multi-dimensional
integration methods which can also be deemed as complex
and computationally expensive.

In this study, our aim is to develop a single infill sampling
criterion based approach which addresses the main shortcom-
ing of the conventional EGO based approaches for constrained
optimization problems. In our proposed approach, the algo-

rithm attempts to locate infill locations that maximize the
probability of feasibility (until a feasible solution is identified)
and then switches to penalized EI function (EI penalized
using the probability of feasibility) [10] in the next stage.The
pseudo-code of the proposed approach (EGOcons) is presented
in Algorithm 1 , while different steps of it are discussed in
the following subsections.

Algorithm 1 EGOcons
Input: N = Number of initial samples, q = Number of constraints, Archive
= repository of all fully evaluated solutions, Termination Condition (see detail
in Subsection V-B for this study).
1: FE = 0
2: popinit ← initialize()
3: evaluate(popinit)
4: Archive← archive update(popinit)
5: (xbest, fbest)← update best solution(Archive)
6: Models = construct GP models(Archive)
7: while Termination Condition not met do
8: xinfill ← identify infill sample()
9: evaluate(xinfill)

10: Archive← archive update(Archive,xinfill)
11: Models ← update GP models(Archive)
12: (xbest, fbest)← update best solution(Archive)
13: FE = FE + 1
14: end while
15: Return: xbest and fbest.

A. Initialization
Initially, a predefined number of solutions is generated using

the variable bounds. Any design of experiment (DOE) method
such as, random, full-factorial or Latin hypercube design can
be used to generate the set of initial solutions. In this study
we adopted Latin Hypercube Sampling (LHS) to observe the
performance of the algorithm.

B. Archive update
After generating the initial population, their actual objective

and constraint responses are evaluated and stored in Archive.
The Archive is periodically updated whenever a new infill
sample is evaluated.

C. Constructing/updating GP models
All unique solutions from the Archive are used to build the

GP models. Such models are built for each objective and each
constraint function.

D. Identifying infill sample
Such an identification is dependent on the history of solu-

tions evaluated so far as listed below.
• If there is no feasible solution in the Archive, only PF is

maximized till a feasible solution is obtained. In this pro-
cess, initially the algorithm attempts to identify a feasible
solution and in the process updates the approximation of
the constraint functions.

• Whenever a feasible solution is obtained, it’s objective
response value is used to calculate the EI (for multiple
feasible solutions, the best feasible response is used
instead). Later, the EI function is penalized by the PF
and the penalized EI function is maximized to identify
the infill sample.



E. Updating best solution

The best solution is updated whenever the new infill solution
is better than the best in the Archive.

V. NUMERICAL EXPERIMENTS

In this section, we study the performance of the proposed
approach and compare it with the approach suggested in [10]
and [27], [20] for a range of constrained optimization problems
collected from literature. The details of the problems are
provided below for completeness.

A. Test problems

In Table I, the properties of the test problems are listed i.e.
number of constraints, the optimum location, x∗, optimum
objective function value, f ∗ and the percentage of the feasible
space, ρ. The computation of ρ is based on 1e6 randomly
generated solutions.

B. Experimental Settings

It is important to take note that the studies reported in
the literature use different termination conditions. To make
a fair comparison, we have also used the same termination
conditions as used in the corresponding reports. In all our
cases, a real coded elitist evolutionary algorithm with sim-
ulated binary crossover and polynomial mutation [29] was
used as the underlying optimizer for the maximization of
the PF and the EI functions since they are known to be
highly multimodal functions. For the evolution process, the
probability of crossover and mutation were set to 0.9 and 0.1
respectively, whereas the distribution index of crossover and
mutation were set to 20 and 30 respectively. A population of
100 individuals was evolved over 100 generations in each of
the above listed maximization exercises.

1) Settings for comparison with [10]:
• Initial sample size was set to 11D−1, where D represents

the number of variables of the problem.
• The process was terminated if either ‖x − x∗‖ ≤

1e−2, (x∗ is the true optimum solution) or the maximum
number of function evaluations exceeded D × 100.

• Number of independent runs was set to 20.
2) Settings for comparison with [20]:
• Initial sample size was set to 10.
• The process was terminated when either the best obtained

feasible solution was within a box with a size ±1% of SD
centered around the true optimum location. This condi-
tion was named as x1% metric or maximum number of
function calls exceeded D × 50.

• Number of independent runs was set to 100.
3) Settings for comparison with [27]:
• Initial sample size was set to 11D − 1.
• The process terminated had either of the following con-

ditions met– a) x1% metric, b) f1% metric (f1% = 1%
of the optimum objective value) or c) maximum number
of function calls surpassed D × 50.

• Number of independent runs was set to 100.

C. Experimental Results

1) Comparison with [10]: Table II presents a comparison
of results obtained using the proposed algorithm and [10]
based on 20 independent runs. The performance is judged
based on distance of the solution from the true optimum (Eu-
clidean distance in the variable space), difference between the
obtained and the true optimum (in objective space) and the
number of function evaluations. Out of 10 problems studied,
based on the mean values, the proposed algorithm delivers
better results in 5 problems across all metrics, better in 7
problems based on the x error metric, better in 8 problems
based on the f error metric and better in 6 problems based on
the number of function evaluations.

2) Comparison with [20]: Table III presents a compar-
ison of results obtained using the proposed algorithm and
superEGO 1 and 2 from [20], Simulated Annealing (SA), Se-
quential Quadratic Programming (SQP) and DIRECT methods
from [30]. In both the problems, the results obtained by our
proposed algorithm is better than the reported results.

3) Comparison with [27]: Table IV presents a comparison
of results obtained using the proposed algorithm and variants
of algorithms reported in [27]. There were two termination
criteria used in the study. For the first study, our proposed
algorithm offered better results than all reported algorithm
variants in [27] for both the problems. For the next termination
criterion, our proposed algorithm was better than 4 variants
and marginally worse than 3 variants for the first problems,
and better than 2 variants and competitive with other 5 variants
of the algorithm for the second problem.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we have critically evaluated various con-
strained EGO formulations. While a number of approaches
have been proposed to deal with constrained optimization
problems, it is difficult to objectively assess the performance,
since each study compared performance on a small set of
selected problems. The approaches incorporated better control
of global and local exploration strategies, infill and boundary
sampling strategies and enhancements to the probability of
feasibility functions. Such modifications come with additional
parameters and the fundamental question remains are such
algorithms significantly better than a simple constrained single
objective EGO for a range of optimization problems?. To an-
swer this question, a simple single objective constrained EGO
was designed which attempts to locate infill locations that
maximize the probability of feasibility (until a feasible solution
is identified) and then switches to penalized EI function (EI
penalized using the probability of feasibility) [10] in the next
stage. The effect of using different reference objective function
values in the EI function is also highlighted in the study.

The results in the paper clearly support the view that a
simple constrained single objective EGO offers competitive
and often better results than several existing constrained EGO
algorithms. We have used the same set of test functions that
have been regularly used by other constrained EGO studies.



TABLE I: Number of constraints, optimum location, optimum objective function value and feasibility ratio (ρ) for the test problems.

Problem Name Num. of
constraints x∗ f ∗ ρ

SHCBc [21] 1 [1.8150,-0.8750] -2.9501 20.03%
Newbranin (g≤5) [20] 1 [3.2730,0.0489] -268.7879 8.47%
Newbranin (g≤2) [20] 1 [3.2143,0.9633] -243.0747 3.09%
G-Pc [9] 2 [0.5955,-0.4045] 5.6692 42.82%
Gomez#3 [20] 1 [0.1093,-0.6234] -0.9711 18.49%
Sasena [9] 3 [0.2017,0.8332] -0.7483 17.71%
Mystry [9] 1 [2.7450,2.3523] -1.1743 48.30%
Reverse Mystry [9] 1 [3.0716,2.0961] -0.5504 4.25%

Haupt-Schewefel [21] 1
[6.0860,6.0860;
-6.0860,6.0860;
6.0860,-6.0860]

-13.6478 50.05%

HS100 [28] 1 [2.3305, 1.9514, -0.4775, . . .
4.3657, -0.6245, 1.0381, 1.5942] 680.6283 74.65%

QCP4 [21] 3 [0.5,0,3] -4 7.97%

TABLE II: Comparative performance analysis table of algorithms with constraint handling mechanism of Forrester et. al. [10] and EGOcons.

Problem Algorithms
Error X

(‖x− x∗‖)
Error F

(|f − f∗|) Num. of FEs

Mean Max Mean Max Mean Max

SHCBc Forrester et. al. [10] 0.0716 0.1445 0.0489 0.0499 210.6 220
EGOcons 0.0055 0.0113 0.0005 0.0026 45.9 220

Newbranin Forrester et. al. [10] 4.7939 16.0690 178.0722 181.2121 220.0 220
EGOcons 0.0332 0.1023 0.1333 0.4082 192.45 220

G-Pc Forrester et. al. [10] 0.2133 0.5613 3.0597 4.4726 220.0 220
EGOcons 0.0036 0.0090 0.0124 0.0254 56 120

Gomez#3
Forrester et. al. [10] 0.3881 1.2873 0.0539 0.0600 210.3 220
EGOcons 0.0051 0.0098 0.0029 0.0126 34.3 46

Sasena Forrester et. al. [10] 0.3400 0.7150 0.5017 0.5017 220.0 220
EGOcons 0.0049 0.0092 0.0067 0.0122 29.8 41

Mystery Forrester et. al. [10] 0.0054 0.0155 0.0074 0.1020 78.6 220
EGOcons 0.0055 0.0155 0.0040 0.0162 63.4 220

Reverse Mystery Forrester et. al. [10] 0.5401 1.2289 0.4491 0.4496 220.0 220
EGOcons 0.2193 0.2228 0.2241 0.2252 220.0 220

Haupt-Schewefel (mod.) Forrester et. al. [10] 0.0067 0.0197 0.0000 0.0002 66.9 220
EGOcons 0.0078 0.0197 0.0000 0.0002 76.35 220

HS100 Forrester et. al. [10] 4.8732 7.7891 100.8683 267.4228 775.0 775
EGOcons 5.2258 7.7891 294.3924 504.8108 775.0 775

QCP4 Forrester et. al. [10] 1.8471 2.6208 2.0319 2.4964 331.0 331
EGOcons 1.8025 1.8030 1.9996 2.0000 331.0 331

TABLE III: Comparison of the number of function calls made to satisfy x1% termination condition using Simulated Annealing (SA) [30],
Sequential Quadratic Programming (SQP) [30], DIRECT [30], superEGO 1 and 2 [20] and our proposed approach EGOcons.

Problem SA SQP DIRECT sup.EGO 1 sup.EGO 2 EGOcons
Newbranin 5371 363 76 22.2 22 21.75
Gomez#3 7150 831 93 66.3 36.5 26.66

TABLE IV: Comparison of the mean number of function calls made to satisfy x1% termination condition among EI, GEI with g values
2, 5, 10, Proposed method of Sasena et. al. [27] with Watson and Barnes (WB) criterion 1, 2, 3 and our proposed method EGOcons. The
approaches which were unable to meet the termination condition within the maximum number of function evaluations were marked with
“− ”

Problem EI GEI (g=2) GEI (g=5) GEI (g=10) WB (1) WB (2) WB (3) EGOcons
Mystery - - - - 91 29 - 27.49

Gomez#3 62 71 93 - 78 60 - 29.87

TABLE V: Comparison of the mean number of function calls made to satisfy f1% termination condition among EI, GEI with g values 2,
5, 10, Proposed method of Sasena et. al. [27] with Watson and Barnes (WB) criterion 1, 2, 3 and our proposed method EGOcons.

Problem EI GEI (g=2) GEI (g=5) GEI (g=10) WB (1) WB (2) WB (3) EGOcons
Mystery 35 - - 36 88 28 - 42.97

Gomez#3 26 25 25 23 37 25 - 31.38



Since most of the studies deal with limited number of vari-
ables (upto 7), it is of interest to evaluate performance of EGOs
and GP models in general for problems with higher dimension.
Besides, better means to control boundary sampling at later
stages of the search, development of efficient schemes to
deal with correlated constraints and extensions to deal with
multi-point sampling (batch) are some of the other directions
currently being pursued by us.
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