
Improving Symbolic Regression through a
Semantics-driven Framework
Quang Nhat Huynh, Hemant Kumar Singh and Tapabrata Ray

School of Engineering and Information Technology, University of New South Wales, Australia.
Email: quang.huynh@student.adfa.edu.au, {h.singh, t.ray}@adfa.edu.au. Web: www.mdolab.net

Abstract—The process of identifying analytical relationships
among variables and responses in observed data is commonly
referred to as Symbolic Regression (SR). Genetic Programming
is one of the commonly used approaches for SR, which operates
by evolving expressions. Such relationships could be explicit or
implicit in nature, of which the former has been more extensively
studied in literature. Even though extensive studies have been
done in SR, the fundamental challenges such as bloat, loss of
diversity and accurate determination of coefficients still persist.
Recently, semantics and multi-objective formulation have been
suggested as potential tools to alleviate these issues by building
more intelligence in the search process. However, studies along
both these directions have been in isolation and applied only
to selected components of SR so far. In this paper, we intend
to build a framework that integrates semantics deeper into
more components of SR. The framework could be operated in
conventional single objective as well as multi-objective mode and
is capable of dealing with both explicit and implicit functions.
Semantics are used in the proposed framework for improving
compactness and diversity of expressions, crossover and local
exploitation. Numerical experiments are presented on a set
of benchmark problems to demonstrate the strengths of the
proposed approach.

I. INTRODUCTION

The problem of finding comprehensible relationships among
input variables and output responses is of significant interest
in data analytics. It is used by several industries including
science, engineering, business and management to understand
model behaviors, for validation of theories and better decision
making. Traditional approaches require “guessing” an equation
based on prior knowledge and applying the corresponding
regression methods such as linear, quadratic or exponential
regressions to determine the coefficients [1], [2]. However,
realistically this approach has limited application as it is often
not possible to predict the complexity and types of existing
relations within the data in advance. Symbolic regression (SR),
a branch of genetic programming (GP), comes in handy in
such situations, which evolves expressions to model the given
data.

In SR, an equation is usually represented as a binary tree,
which is constructed using different types of nodes [3], [4].
For real-valued SR, the intermediate nodes represent the math-
ematical operators (binary or unary), while the terminal leaf
nodes are either constants or variables. Due to the nature of
mathematical operators, certain additional rules may be needed
to handle singularities, e.g. division by zero or logarithm of
zero may be set to return a value of 1 [3]. Similarly, if an

operator returns a value too large in magnitude, it may be set
to a predefine cut-off value to avoid out-of-range errors.

The expressions that may define the relationships among
the input and output data can be broadly classified into two
categories: explicit and implicit. Most of the equations are
of the former type, where an observed output is an explicit
function of the input variables (y = f (x)). In the process
of identifying the explicit equations, SR usually suffers a
limitation called bloat, which implies that the tree sizes grow
too large relative to the expressions they represent. This has
an adverse effect on the time required for genetic evolution,
as well as on the diversity. These drawbacks are further aggra-
vated for the case of implicit equations, which are of the form
f (x,y) = 0. These expressions are commonly used to describe
physical laws/phenomena such as conservation of energy and
momentum [5]. In implicit equation mining, commonly used
L1 or L2 norm cannot be used as a measure of accuracy (unlike
explicit equations), as it would simply return a set of trivial
expressions [6], for example x−x = 0. To counter this, a mea-
sure based on derivatives of the functions was proposed in [6],
which was further integrated in a multi-objective formulation
in [5] to mine compact implicit equations. The determination
of correct coefficients for both types of equations is also
often challenging [5]. In literature, many methods have been
suggested to tackle these critical problems, such as ramped
half-and-half initialization [3] or fitness sharing using edit
distance metric [7] to produce more diverse individuals, rule-
based components for algebraic manipulation of expressions
[2] to reduce bloat, and trials of set of random scalars [5]
to rectify the coefficients. Incorporation of these methods
have demonstrated improvements in accuracy, compactness
and convergence rate of expressions evolved using SR.

One of the emerging approaches to improve GP/SR is
incorporation of semantics. The use of semantics makes the
GP somewhat intelligent by being more informed about the
expressions being evaluated [8] instead of blindly searching
based on syntax alone. Semantics is rather domain dependent
and no universal definition exists that can cover all types
of GPs. In [4], the approaches representing and extracting
semantics were categorized into three groups: grammar-based,
formal methods, and GP s-tree representation. Some of the
recent noteworthy works in the domain include geometric
semantics [9] and approximate semantics by surrogate [10],
among others. Semantics has been individually integrated
into different main components of GP such as initialization,

crossover and mutation [4], [9], [11] to show promising
improvements. The authors of the review paper [8] strongly
recommend applying semantics into more components to
enhance the strength of GP further.

Another prominent development recently has been use of
multi-objective GP formulations. In this context, a few differ-
ent types of objective functions have been investigated. Tree
size (or sum of tree sizes) was used as a second objective in
addition to accuracy in [12], [5], [1] to reduce bloat. Testing
error of a subset of fitness cases was used in [13] to improve
generality of equations. Application specific fitness objective
function pairs, such as sensitivity and specificity, false-positive
and false-positive rate, recall and precision, etc. were studied
in [14] to generate Pareto optimal decision trees.

Both semantics and multi-objective approaches may of-
ten increase the complexity of GP. Therefore, the trade-
off between their performance and complexity needs to be
carefully managed to achieve a good balance of accuracy,
compactness and generalization. In this paper, the critical
challenges facing SR mentioned above are intended to be
addressed by integrating semantics deeper in SR. Towards
this goal, a semantics based framework is developed, which
can be executed both in single objective or multi-objective
mode, and is capable of dealing with both explicit and implicit
problems. While the previously reported studies have only
used semantics typically for one component, in this study
we use it for a number of different components, such as
compaction , uniqueness, crossover, and local exploitation.
The phrase uniqueness mentioned in this refers to genotype.
Additionally, a local search has been introduced to determine
coefficients accurately. New mutation and local exploitation
methods are also suggested to enhance the global exploration
and local exploitation abilities. In order to objectively assess
the benefits of proposed approach, we compare the results to
those reported in the literature using an existing semantics
based algorithm [4] for explicit functions and a multi-objective
algorithm [5] for implicit functions.

The rest of this paper is structured as follows. Section II
briefly discusses relevant background of the semantics rele-
vant to this study. Thereafter, in Section III, the details of
the proposed algorithm are discussed. Numerical experiments
using the proposed approach are presented in Section IV, and
summary and future work are discussed in Section V.

II. SAMPLING SEMANTICS

As mentioned in the previous section, semantics provide GP
with a better interpretation of the expression being evaluated,
rather than blindly searching for expressions. In computational
sense, semantics could be defined/extracted in a number of
different ways, out of which we consider a particular one.
The authors of [4] defined semantics for real-value SR based
on a method called sampling semantics, where a number
of points in the problem domain are randomly sampled and
used to evaluate the equations represented by a tree. If the
difference between evaluated values of two expressions is

less than a given threshold, they are considered as semanti-
cally equivalent. Thereafter, two types of semantic crossover
methods were proposed based on this definition, named se-
mantics aware crossover (SAC) and semantic similarity-based
crossover (SSC). The former forces the sub-trees selected for
crossover/swapping to have a semantic difference higher than
a given threshold (t1). The latter adds one more condition,
where the difference in semantics of two sub-trees must also
less than another threshold (t2). The interpretation of these
two thresholds are relatively straightforward: the semantics of
two sub-trees must not be the same to prevent the redundant
swapping and must not be too different to avoid dramatic
changes in semantics of the offspring compared to their
parents. Along with all the advantages of SAC and SSC, there
is one major disadvantage: the values of the thresholds are
hard to predetermine for different problems.

The computational effort required for SR is measured by
counting number of node evaluations in [4], and an upper
limit on it used to terminate the algorithm. SAC and SSC
require the evaluations of sub-trees to determine the semantics
every time, thus using up a large proportion of the number
of node evaluations. This implementation may be an accurate
way to obtain the sampling semantics, but it is evidently
costly. In our implementation, we reduce this computational
effort significantly by calculating the semantics at the same
time as the fitness evaluation, only based on the given fitness
cases. As a result, a large proportion of allotted computational
resource is saved for other mechanisms. The implication of
this change may depend on the distribution of the fitness cases
in the sampled domain. While the original implementation is
intended to make the equations more generalized, the proposed
implementation proves to be as useful as the original one in
our experiments, for all problems studied in [4].

III. PROPOSED FRAMEWORK

To reduce the adverse effect of bloat, a multi-objective
genetic programming approach (MOGPA) was proposed in [5],
in which the error and the depth of the trees were minimized
concurrently. The accuracy was quantified using mean squared
error (MSE) for explicit problems and mean log of errors in
derivatives (MLED) for implicit equations. The resulting final
trees were more compact and easier to interpret. However, the
operators implemented in the framework were relatively basic,
leaving further scope of improvement.

In the multi-objective context, our work in this paper at-
tempts to improve upon the MOGPA using semantics and other
additional mechanisms as will be detailed in the next section.
The new mechanisms include compactness, uniqueness, mul-
tipoint mutation, constant optimization and local exploitation.
However, the benefits are not limited to multi-objective mode
only, and the framework could instead also be executed in
single-objective mode (minimization of error alone), in which
case the advantages over existing single-objective approaches
such as [4] could be demonstrated. The enhanced framework is
referred to here as semantics based symbolic regression (SSR)
and summarized in Algorithm 1. Subsequently, we describe

the enhanced mechanisms first (denoted with asterisk (∗) in
Algorithm 1), since they are integrated in various stages of
the algorithm. Finally, we discuss each of the main stages of
the overall algorithm.

Algorithm 1 Semantics based Symbolic Regression (SSR)
1: Initialization: Generate initial population; Evaluate and sort the trees in the popu-

lation;
2: while termination condition not met do
3: Crossover: Perform semantic crossover of parents selected using binary tourna-

ment; Find the compact∗ form of the child population;
4: Mutation: Perform multi-point mutation on the child population; Find the

compact form of the child population again;
5: Evaluation: Evaluate the fitness on all objectives of the child population;
6: Remove duplicated trees through uniqueness∗ check;
7: Sorting: Sort the trees in child and parent population based on either single or

multi-objective criteria as applicable;
8: Select the best trees to carry to next generation;
9: Perform constant optimization∗ and local exploitation∗; Re-sort the population;

10: end while

A. Compactness

The mechanism to find the compact form of a tree can
be divided into two major steps. The first is to replace
the operator nodes which always return constant values by
terminal constant nodes. The second step is to identify the
sub-trees having the form of (0+ expression), (expression+
0), (expression− 0), (1× expression), (expression× 1) and
(expression÷1) and shorten them. For example, an equation
including a bloat such as ((((x1−1)+(x1/x1))−x1)+x2) will
first be transformed into (0+ x2) and then to simply x2.

In order to determine if an operator node always returns a
constant value, the semantics obtained in tree fitness evalua-
tions are used. For a particular node, if all the values corre-
sponding to all the fitness cases are within a preset threshold
with respect to the mean of these values, this operator node is
considered as always returning a constant. Without semantics,
it would be difficult to shorten (((x1− 1)+ (x1/x1))− x1) to
0. Note that the process of finding the compact form will not
incur any extra node evaluations, except in the initialization
phase where the fitness of the trees need to be evaluated
right after they are (randomly) constructed. In order to find
the compact form of this new tree, node evaluations need to
be carried out. Finding compactness based on semantics has
also been applied in [15], however, our proposed mechanism
returns a more compact form of the equation by dealing with
the constants 0 and 1 if necessary.

Both steps of the compactness mechanism are implemented
in recursive manner and stop only when all the nodes of the
tree have been visited. Algorithm 2 illustrates the first step of
this mechanism.

B. Uniqueness

To compare if two trees are identical, the trees are converted
to the equations in the form of strings and a simple string
comparison method is executed first. If the strings are different,
then the number of nodes, number of operator nodes, identities
of the operator nodes, number of variable nodes, identities of
the variable nodes are examined. If all the conditions above

Algorithm 2 Replace Operator By Constant
Require: Nid : root node of a tree/sub-tree;
Ensure: Nid−new: root node of a tree/sub-tree with operator nodes, which always return

constant values, are replaced by terminal constant nodes
1: if Nid is not an operator node then
2: return
3: end if
4: is const← true;
5: for i = 0 TO | f itness cases|−1 do
6: if f itness cases[i]−mean f itness case > ε then
7: is const← f alse;
8: break the loop;
9: end if

10: end for;
11: if is const == true then
12: Replace this node by a terminal constant node;
13: else
14: Replace Operator By Constant(child node of Nid);
15: end if

fail to differentiate the two trees, the semantics is made use of.
If the original semantics are different, all the constant nodes
of the two trees are reset to contain value of 1 first. Then, the
two trees are evaluated using new values of constant nodes
to obtain their semantics. If new semantics are identical for
both trees, it means that the structure of the trees are the same
and the only difference is the values of the constant nodes; in
which case the one with better fitness is kept.

The intent of employing this mechanism is to maintain the
diversity of the population by maintaining unique trees. In
[16], it was stated that “diversity does not necessary cause
better performance but better performance is seen with higher
diversity”. In the proposed SSR, the diversity is achieved by
ensuring the uniqueness of all the equations in the population
from the beginning till the end. In the initialization phase,
whenever a new tree is built, it is compared with the existing
trees in the population. If this new tree is not unique, it will be
deleted and rebuilt. The cycle will continue and only stop once
there the population is filled with unique trees. The process of
comparing the trees is outlined in Algorithm 3.

When the child population is created by crossover and
mutation, each child is compared with the rest of the child
population so that the duplications can be removed. Among a
group of duplicated children, only one with the best fitness is
saved. Thereafter the unique children are compared with the
parents to further remove the duplications between the two
populations. Once again, only the fittest equation among the
duplications is kept.

In addition, right after the constant optimization or local
exploiting is finished (discussed in next section), the new tree
is again examined for its uniqueness. If this tree is a duplicate,
it is discarded. The constants of this tree are then flagged not
to be optimized again subsequently.

C. Constant Optimization and Local Exploitation

Crossover and mutation are useful in finding the correct
structures of the equations but inadequate for identifying ac-
curate values of the constant coefficients. Thus, a new constant
optimization mechanism is proposed to address this drawback.
To perform this operation, the terminal variable nodes are
treated as constants and the terminal constant nodes are treated

Algorithm 3 Trees Comparison
Require:

T1: First tree for comparison;
T2: Second tree for comparison;

Ensure:
True: if two tree are identical;
False: if two tree are nonidentical;

1: Convert the trees into strings epr1, epr2;
2: if epr1 == epr2 then
3: return True;
4: end if
5: if num node tree 1 6= num node tree 2 then
6: return False;
7: end if
8: if num operator tree 1 6= num operator tree 2 then
9: return False;

10: end if
11: if list operator tree 1 6= list operator tree 2 then
12: return False;
13: end if
14: if num variable tree 1 6= num variable tree 2 then
15: return False;
16: end if
17: if list variable tree 1 6= list variable tree 2 then
18: return False;
19: end if
20: if value tree 1 == value tree 2 then
21: return True;
22: end if
23: Replace all the values of terminal constant nodes by 1;
24: Re-evaluate the semantics of two trees;
25: is semantics same← False;
26: if value tree 1 == value tree 2 then
27: is semantics same← True;
28: end if
29: Revert all the terminal constant nodes back to the original values;
30: Re-evaluate the semantics of two trees;
31: if is semantics same == True then
32: return True;
33: else
34: return False;
35: end if

as variables. The forms of the equations are known at this
stage and any reasonable local search method can be applied to
identify the most appropriate values for the terminal constant
nodes. The optimization process is guided by the fitness value
of the trees, which is either L1, L2 or MLED depending on the
formulation. In other words, the optimizer will try to adjust
the values of the constants in a particular equation, which are
treated as variables now, improve its fitness.

Each tree has a flag to mark if its constants have been
optimized before. In each generation, among all the trees
having the same depth and optimized flags set to false, the
fittest tree will qualify for constant optimization. As a result,
each depth will have exactly one tree to be optimized in
each generation. Note that irrespective of whether constant
optimization is able to improve a tree or not, the optimized
flag is switched to set to true so that further computation
is not wasted on this particular tree again. However, in the
case the tree is modified by compactness mechanism or local
exploitation later, the flag is reset to false and this tree can
undergo constant optimization again.

Local exploitation is simply a basic mutation operator
combined with fitness checking. Basic mutation means that
a binary node will be replaced by another binary node, an
unary node will be replaced by another unary node and a
terminal node will be replaced by another terminal node, either

Algorithm 4 Constant Optimization & Local Exploitation
Require: P: Current population;
Ensure: Pnew: Population with some trees have been optimized or locally exploited;
1: PCST ← /0;
2: At each depth, find the best tree whose terminal constant nodes have not been

optimized and assign it to PCST ;
3: for each tree T in PCST do
4: Treat terminal constant nodes as variables and use gradient descent method to

optimized there values;
5: is const optimized← True;
6: Local Exploit(T);
7: if is local exploit success f ul then
8: is const optimized← False;
9: end if

10: end for
11: PLE ← /0;
12: At each depth, find the best tree and assign it to PLE ;
13: for each tree T in PLE do
14: Local Exploit(T);
15: if is local exploit success f ul then
16: is const optimized← False;
17: end if
18: end for

a constant or variable. After the mutation, the fitness will be re-
evaluated. If the mutated is fitter and unique (doesn’t already
exist), it is kept; otherwise it is discarded. The number of trials
for local exploitation is set to 4 in our work. Besides, if the
local exploitation is successful, the flag for constant optimiza-
tion of this tree is reset to false. This operator is suggested to
enhance the exploitation in the search space surrounding the
equations in the current population. It increases the probability
of finding the accurate form for the equations with high fitness
and improves the structures of the equations with poor fitness.

With this scheme, all trees in the population eventually
undergo constant optimization and local exploitation, result-
ing in improved fitness. The constant optimization and local
exploitation mechanisms are summarized in Algorithm 4.

D. Overall algorithm

Having outlined the key mechanisms incorporated in the
framework, we now discuss the main steps of the overall
algorithm, as outlined earlier in Algorithm 1. The differences
from MOGPA [5] are also highlighted where applicable.

1) Initialization: Unlike a standard initialization process in
MOGPA [5], SSR not only seeks a diverse initial population
but also controls the depths of the trees in the population. In
order to achieve this, whenever a new tree is created, it under-
goes compactness and uniqueness operations. Subsequently, it
is tested for the maximum allowable depth (pre-defined). The
tree is deleted and rebuilt if any of the above conditions is/are
violated.

2) Crossover: The crossover operators used in SSR are
either SSC or SAC [4] depending on the test problems. In
our experiments, we use SSC for cases where upper bound is
available from previous studies (F1−F10), else we use SAC.
This is because results using SSC are sensitive to the upper
threshold used, and there is no definitive way of identifying its
value. The use of semantics based crossover can be considered
as an upgrade to MOGPA [5] in which only the standard sub-
tree swap crossover was used.

3) Mutation Operator: SSR contains two different mutation
mechanisms. First is a standard mutation, where a chosen node
is replaced with a node of the same class; i.e., a binary is mu-
tated to another binary node, a unary to another unary node and
a terminal to another terminal node. This mutation is used for
problems F1−F10 in the numerical experiments (Section IV)
for a fair comparison with [4]. Second is a new mutation
operator used for problems otherwise, in which multiple nodes
of a tree are mutated. A fixed percentage of nodes in a tree are
selected for mutation and half of the selected nodes are forced
to change to a new node in the same class. The other half of
selected nodes are forced to mutate to a new node belonging to
other classes, which are chosen randomly. This new operator
is referred to as multi-point mutation and it helps to enhance
the exploration ability of SSR, since the semantics of a tree
after mutation can be significantly changed. However, as is the
usual practice, the mutation rate is always kept low (0.05) to
prevent it from happening too often.

4) Depth Reserving: There is no depth control mechanism
in crossover and mutation operators, so the depths of the trees
in the child population may exceed the specified maximum
depth. The trees are pruned to a maximum prescribed depth if
necessary. In some specific cases, if a lower limit on tree depth
is known, this tree is expanded instead to satisfy the minimum
depth requirement if needed. After the depth of a tree is
altered, compactness mechanism will find the most compact
form of the tree again. The depth reserving is implemented
after the crossover and mutation operations.

5) Evaluation: The fitness of each tree is calculated based
on the type of problem. For explicit problems, the error could
be quantified using a number of quantities, such as the sum
of absolute error on all data points (L1 norm), sum of squared
errors (L2 norm) or the mean squared error (MSE). In this
study, L1 norm is used to quantify the error, which is set as
the objective to be minimized. For implicit problems, none of
these measures could be used, and the mean logarithmic error
in derivatives (MLED) as suggested in [6], [5] is used as the
objective instead, which is calculated shown in Equation 1.

MLED =
1
N

N

∑
i=1

log(1+ |
∆x1,i

∆x2,i
−

δx1,i

δx2,i
|), (1)

where N is the number of fitness cases, ∆x1,i/∆x2,i is an
implicit derivative estimated from the data, and δx1,i/δx2,i
is the implicit derivative derived from the candidate implicit
equation

When the SSR is run in multi-objective mode, depth of the
tree is assigned as the additional objective to be minimized.
Consequently, a range of trees with best possible trade-off
between accuracy and complexity of expressions are returned
in the output.

6) Sorting: Quick sort is used to rank the population based
on fitness (e.g. L1 norm) in the case of single-objective mode,
while non-dominated sorting is used in the case of multi-
objective mode. The sorting is applied on the set of (par-
ent+child) population in order to select the best trees to carry

to next generation. Additionally, after constant optimization
and local exploitation, the population is sorted again since the
fitness of the trees may have been altered in the process.

IV. NUMERICAL EXPERIMENTS

In this section, the proposed SSR algorithm is tested with
two sets of problems. The first includes ten explicit problems
from [4] and the second contains three implicit problems from
[6], [5]. Considering the nature of previously reported results
available for comparison and the space limitations, we present
the results using single objective mode for explicit problems
only, and the results using multi-objective mode for implicit
problems only.

A. Single-objective Mode

Ten explicit problems, listed in Table I, are studied in [4]
to illustrate the superiority of SSC against other crossover
operators. Here, these problems are used to mainly demon-
strate that the use of compactness and uniqueness can enhance
the results further. As mentioned previously, the semantics
at each node of a tree is not calculated based on random
points in the problem’s domain as in [4] but the points in
the given data. When a tree is evaluated for its fitness, the
semantics of the nodes are stored in the memory. Therefore,
the crossover operator can compare the semantics of the nodes
without any additional calculations. As a result, more number
of node evaluations can be reserved for finding compactness
and uniqueness.

For a fair comparison in single objective mode with
SSC12 [4], the proposed framework is executed using SSC
crossover and simple mutation (where a node can only be
changed to another in the same class). All the parameters are
set to be as close as those of SSC12 [4], shown in Table II.
The thresholds {10−4, 0.4} and number of trials (12) of SSC12
are kept the same in our implementation. Binary tournament
is used for selecting parents for crossover, and L1 is used as
the objective function. In addition, problems F1 to F8 in [4]
only allow terminal constant nodes to take single value of 1,
so constant optimization and local exploitation are excluded in
these problems. For the other two problems, terminal constant
nodes are not allowed at all so the compactness scheme also
becomes irrelevant.

Thirty independent runs are performed for each problem
using SSR. A run is considered as successful if there is at
least one tree in the population hitting all the fitness cases.
As in [4], a fitness case is regarded as hit if the difference
between predict output and observed output is less than 0.01.

As can be seen in Table III, the proportion of successful
runs is significantly improved using SSR. Compactness and
uniqueness manage to boost the successful rate to more than
90% for 6 out of 8 first problems, the exceptions being F4
and F8. Problem F4 is relatively hard to solve since it is a
polynomial equation with a high degree of 6. The problem F8
has a simple square root form, but the square root operator
is not included in the unary operator set, and thus only an
approximate form could be found.

TABLE I: 10 explicit equations

Equations Fitcases
F1 = x3

1 + x2
1 + x1 20 random points ⊆ [-1,1]

F2 = x4
1 + x3

1 + x2
1 + x1 20 random points ⊆ [-1,1]

F3 = x5
1 + x4

1 + x3
1 + x2

1 + x1 20 random points ⊆ [-1,1]
F4 = x6

1 + x5
1 + x4

1 + x3
1 + x2

1 + x1 20 random points ⊆ [-1,1]
F5 = sin(x2

1)cos(x1)−1 20 random points ⊆ [-1,1]
F6 = sin(x1)+ sin(x1 + x2

1) 20 random points ⊆ [-1,1]
F7 = log(x1 +1)+ log(x2

1 +1) 20 random points ⊆ [0,2]
F8 =

√
x1 20 random points ⊆ [0,4]

F9 = sin(x1)+ sin(x2
2) 100 random points ⊆ [-1,1]

F10 = 2sin(x1)cos(x2) 100 random points ⊆ [-1,1]

TABLE II: Runs and evolutionary parameter values of single-
objective SSR

Parameter Value
Population size 500
Tournament size 2
Crossover probability 1
Mutation probability 0.05
Max. depth 15
Operators +, -, *, /, sin, cos, exp, log
Terminals nodes X1, 1 for single variable problems and X1,

X2 for bi-variable problems
No. of node evaluations 15×106

For problems F9 and F10, uniqueness alone is observed to
raise the success rate up to 90% and 96% respectively, thus
justifying the advantage of high diversity. Tables IV indicates
the number of runs over 30 runs that single-objective SSR
returns the exact equations. Table V lists out samples of
the expressions obtained for the exact equations and their
corresponding depths returned by the algorithm. Figure 1
reports the median convergence rates for all explicit problems.
It can be seen that SSR exhibits a remarkable convergence rate,
reaching the hit threshold within 2.5×106 node evaluations.

TABLE III: Percentage of successful runs of SSC12 and
single-objective SSR for 10 explicit problems

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
SSC12 67 33 14 12 47 47 66 38 37 51
SSR 100 93 96 73 100 100 80 73 90 96

TABLE IV: Number of runs out of 30 that single-objective
SSR returns the exact equations for 10 explicit problems

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
Number
of runs

30 2 20 8 2 21 0 0 16 27

The mean depths of median runs of problem F3 and F9
are shown in Figure 2. Due to the compactness operation, the
mean depth of F3 starts low at the beginning of the run and
increases to approximately 12 at generation 40. In contrast,
the mean depth of problem F9, which is run without the
compactness, starts with a bigger value and reaches the value
of 12 at generation 20.

Despite the improvement in the results, there are still a rea-
sonable scope for further enhancement in the algorithm. Even
though the correct and most compact equations were found,
the single-objective mode of SSR usually returns the equations
with maximum depth in the final population. Observing the

TABLE V: Examples of accurate equations returned by single-
objective SSR for 10 explicit problems

Equations Depth
F1 (((x1 +(x1 ∗ x1))+1.0)∗ x1) 5
F2 (((x1 +(x1 ∗ (x1 +(x1 ∗ x1))))∗ x1)+ x1) 7
F3 ((x1 ∗ ((1.0+(((x1 ∗ ((x1 ∗x1)+x1))+x1)∗x1))+x1))∗1.0) 10
F4 ((x1 ∗(((((x1 +(((x1 ∗x1)+x1)∗x1))∗x1)+x1)∗x1)+x1))+

x1)
11

F5 ((cos(x1)∗ sin(exp(log((x1 ∗ x1)))))−1.0) 7
F6 (sin(x1)+ sin((x1 ∗ (x1 +1.0)))) 5
F7 no exact equation found -
F8 no exact equation available -
F9 (sin(x1)+ sin((x2 ∗ (x2− (x1− x1))))) 6
F10 ((cos(x2)∗ sin(x1))+(sin(x1)∗ cos(x2))) 4

Number of Node Evaluations ×10
6

0 5 10 15
S

u
m

 o
f
A

b
s
o
lu

te
 E

rr
o
rs

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

Hit Threshold

Fig. 1: Convergence rate for 10 explicit problems

Generation

0 20 40 60 80 100 120 140 160

M
e
a
n
 D

e
p
th

 o
f
P

o
p
u
la

ti
o
n

0

2

4

6

8

10

12

14

Problem F
3

Problem F
9

Fig. 2: Mean tree depths for median runs of F3 and F9

trees over generations indicates that the depths of the trees in
general gradually increase. Hence if the search process is led
at certain point to expressions with high accuracy and high
tree sizes, it may not be possible to revert back to find the
accurate forms of the equations any more. In that case, most
of the final equations would be long and hard to interpret
despite their good fitness.

The increase in depth also affects the efficiency of crossover
and mutation operators. A node which is closer to the root
usually has more influence on the fitness of the tree [17]. In a
tree with high depth, the nodes close to the leaf nodes have a

higher chance to be picked up for crossover and mutation, so
these operators may only change the fitness of the tree slightly.
Consequently, the fitness of the trees in the final population has
very small standard deviation. In other words, even though the
genotype of the population is diverse, the phenotype/semantics
is relatively similar. Running the SSR framework in multi-
objective mode could provide improved results in both of the
above cases, where the pressure towards producing smaller
size trees prevents accurate compact equations from getting
eliminated [5]. In next subsection, we present the results using
SSR in multi-objective mode for implicit problems.

B. Multi-objective Mode

MOGPA in [5] uses rudimentary checks to remove bloat
and able to deal with relatively straightforward cases such as
(x2−x2) or (2−2) which are equivalent to 0. In contrast, SSR
makes use of semantics hence it can detect the bloat in much
more complex forms, such as (((x2−x1)+x1)×(1/x2)) which
is equivalent to 1. SSR is further supported by better diversity
owing to the uniqueness operator.

Realizing the difficulty in identifying the coefficients of the
equations, MOGPA samples 100 values randomly in a given
range and substitutes those values into the terminal constant
nodes of a tree. Then, the fitness of the tree is reevaluated
to determine which sampling values are most appropriate for
this tree. However, in this scheme each sampling only returns
a given number of discrete values, which may not capture the
exact coefficients. In addition, if a tree has more than one
constant node, more values need to be sampled for all the
nodes, otherwise only 100 values may be too small to cover
all the nodes. Our propose constant optimization scheme can
overcome these drawbacks. The search process is performed
on a continuous range and does not suffer if the number of
terminal constant nodes increases.

Thirty independent runs are performed on each of the
implicit equations in Table VI, taken from [5]. The parameters
and settings for multi-objective SSR are listed in Table VII.
The crossover and mutation methods used here are SAC and
multi-point mutation respectively. To examine our proposed
algorithm in much stricter conditions, a run is only considered
successful if it can find the exact equation from the input data.
Correct equations are the ones with the forms of x2

1 + x2
2 for

F11 and x3
1−x1−x2

2 for F12 and F13. The last constants in F11,
F12 and F13 can be easily determined by substituting the found
equations into one given fitness case as in [5]. In addition, the
number of runs in which at least one tree has MLED less
than 10−3 is also observed and compared with the result of
MOGPA.

As can be seen in Table VIII, the result of SSR is com-
petitive with that of MOGPA because 100% of runs can
find equations with MLED less than 10−3. The number of
function evaluations used by SSR are only half of those used
for MOGPA, which demonstrates its relative efficiency. More
importantly, the numbers of successful runs, where the exact
equation is found in the final population is also 100% for
each problem. The exact equations are found in very early

generations for the problem F11. The maximum number of
generations (among all runs) used by SSR for finding the exact
equation for F12 and F13 are 70 and 75 respectively. Some of
the accurate equations found with different depths are reported
in Table IX.

TABLE VI: 3 implicit equations

Problems Equations
F11 x2

1 + x2
2−4 = 0

F12 x3
1− x1− x2

2 +0.15 = 0
F13 x3

1− x1− x2
2 +1.8750 = 0

TABLE VII: Runs and evolutionary parameter values of multi-
objective SSR

Parameter Value
Population size 500
Number of generations 100
Crossover probability 1
Mutation probability 0.05
Max depth 15
Operators +, -, *, square
Terminals X1, X2 and constant nodes with values in

[0,10]

TABLE VIII: Results of multi-objective SSR for 3 implicit
problems

F11 F12 F13
Total number of runs 30 30 30

Number of successful runs 30 30 30
Number of runs having MLED < 10−3 30 30 30

TABLE IX: Examples of accuracy equations returned by
multi-objective SSR for 3 implicit problems

Equations Depth
F11 (squ(x1)+(x2 ∗ x2)) 3

(((x1 ∗ x1)+ x2)− ((4.422535+ x2)− squ(x2))) 4
((((x1 ∗ x1)+6.681197)+ x2)− (x2− squ(x2))) 5

F12 ((x1 ∗ (x1 ∗ x1))− (x1 + squ(x2))) 4
(((x1 ∗ squ(x1))− squ(x2))− x1) 5
((((x1 ∗ squ(x1))− squ(x2))+4.661589)− x1) 6

F13 ((squ(x1)∗ x1)− (squ(x2)+ x1)) 4
((squ(x1)∗ x1)− (squ(x2)+((x1−6.164129)−9.235206))) 5
((x1 +(squ(x2)− (squ(x1)∗ x1)))+9.975000) 6

One point needs to be taken note when implementing the
MLED as in Equation 1. If a tree has only x1 as variable,
the MLED is undefined because δx2,i is always equal to 0.
Because the roles of the two variables are the same, we set
the MLED of a tree to be Inf in the cases either x1 or x2 is
missing. As a result, among the trees with the same depths,
those with both variables always dominate those with only one
variable. This could potentially make the algorithm unable to
identify redundant variables in the input data, which is one of
the drawbacks of using MLED.

While observing the equations in the final population, it is
noted that there are many groups of trees having same MLED
and depths. These sets of trees may occupy several places
in the population occasionally, thus reducing the diversity of
the population. In order to maximize the chance to find out

the accurate implicit equations, we may consider to increase
the minimum depth of the trees in the population. With some
simple checks, it can be concluded that trees with depth of 2
do not form the correct equation– for example by constructing
all trees of depth 2 (this number is relatively low). In such a
case, these trees can be removed to make places for trees with
bigger depths. Another approach that probably makes positive
impact is incorporating L1 value in the sorting process. When
a set of trees have same MLED and depths, they can be ranked
using their L1 values. The L1 values of the trees can be directly
obtained from the summing the values in the semantics vector
in the case of implicit equations, since the observed output is
always 0.

C. Further Discussion

As mentioned in previous sections, the semantics is calcu-
lated only based on the given fitness cases so that it won’t
take excessive time compared to the conventional GP. In our
framework, the uniqueness operator takes up the most of the
allowed time in each generation because it compares each
child to the other in the children population and to all the
parents. Evidently, as the population size increases, the run
time will also increase with the maximum complexity of
O(2∗n2), where n is the population size.

The main focus of this work was to demonstrate that se-
mantics can be used in various operators to improve the search
results. In single objective case, the experiment results showed
that applying semantics to more operators was beneficial in
improving success rate compared to existing study which
used crossover alone [4]. For bi-objective optimization, it was
observed that semantics helped SSR to find exact equations
more consistently compared to MOGPA [5].

V. SUMMARY AND FUTURE WORK

In this paper, we present a semantics based symbolic
regression (SSR) framework to mine explicit and implicit
expressions from given data. SSR utilizes benefits of semantics
for various components, such as compactness, uniqueness,
crossover and local exploitation. In addition, a new constant
optimization technique and multi-point mutation are used to
strengthen the approach further. These enhancements help
to deal with the persistent obstacles in SR, such as bloat,
diversity and coefficient identification as well as enhance
the exploration and exploitation abilities of the algorithm.
Numerical experiments are conduced using both single and
multi-objective forms of SSR. The results obtained are com-
pared with existing techniques for both implicit and explicit
functions to demonstrate the ability of SSR to find accurate,
compact expressions in low computational budget.

For the future work, we would like to investigate an adaptive
way to determine the values for SSC thresholds. SAC is used
for the multi-objective experiments in previous section, since
it is not clear how to determine an appropriate value of for the
upper threshold if SSC is used. In addition, MLED is useful
in solving the implicit equations but its detection ability for
redundant variables is limited in some cases. Thus, looking for

a better fitness function seems to be an interesting topic. One
consideration may be the sum of weighted MLED and either
L1 or L2. Besides, limiting the range of tree depth usually
helps to find the more accurate forms of the tested equations.
Thus, how to adaptively limit the tree depth is also worth
investigating.

ACKNOWLEDGMENT

The second author would like to acknowledge the support
from the Ian Potter Foundation Travel Grant 2016.

REFERENCES

[1] G. Smits and M. Kotanchek, “Pareto-front exploitation in symbolic
regression,” in Genetic Programming Theory and Practice II, ser.
Genetic Programming, 2005, vol. 8, pp. 283–299.

[2] J. W. Davidson, D. A. Savic, and G. A. Walters, “Method for the
identification of explicit polynomial formulae for the friction in turbulent
pipe flow,” Journal of Hydroinformatics, vol. 1, no. 2, pp. 115–126,
1999.

[3] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. The MIT Press, Cambridge, 1992.

[4] N. Uy, N. Hoai, M. ONeill, R. McKay, and E. Galvan-Lopez,
“Semantically-based crossover in genetic programming: application to
real-valued symbolic regression,” Genetic Programming and Evolvable
Machines, vol. 12, no. 2, pp. 91–119, June 2011.

[5] B. Wang, H. Singh, and T. Ray, “A multi-objective genetic programming
approach to uncover explicit and implicit equations from data,” in IEEE
Congress on Evolutionary Computation (CEC) 2015, May 2015, pp.
1129–1136.

[6] M. Schmidt and H. Lipson, “Symbolic regression of implicit equations,”
in Genetic Programming Theory and Practice VII, ser. Genetic and
Evolutionary Computation, October 2010, pp. 73–85.

[7] A. Ekart and S. Nemeth, “A metric for genetic programs and fitness
sharing,” in Genetic Programming, ser. Lecture Notes in Computer
Science, 2000, vol. 1802, pp. 259–270.

[8] L. Vanneschi, M. Castelli, and S. Silva, “A survey of semantic methods
in genetic programming,” Genetic Programming and Evolvable Ma-
chines, vol. 15, no. 2, pp. 195–214, January 2014.

[9] A. Moraglio, K. Krawiec, and C. Johnson, “Geometric semantic genetic
programming,” in Parallel Problem Solving from Nature - PPSN XII,
ser. Lecture Notes in Computer Science, 2012, vol. 7491, pp. 21–31.

[10] A. Kattan and Y.-S. Ong, “Surrogate genetic programming: A semantic
aware evolutionary search,” Information Sciences, vol. 296, pp. 345 –
359, 2015.

[11] N. Uy, N. Hoai, and M. ONeill, “Semantics based mutation in genetic
programming: The case for real-valued symbolic regression,” in 15th
International Conference on Soft Computing, Mendel’09, 2009.

[12] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, “Multiobjective genetic
programming: reducing bloat using SPEA2,” in Proceedings of the 2001
Congress on Evolutionary Computation, vol. 1, 2001, pp. 536–543.

[13] G. Dick, “Bloat and generalisation in symbolic regression,” in Simulated
Evolution and Learning, ser. Lecture Notes in Computer Science, 2014,
vol. 8886, pp. 491–502.

[14] H. Zhao, “A multi-objective genetic programming approach to develop-
ing pareto optimal decision trees,” Decision Support Systems, vol. 43,
no. 3, pp. 809 – 826, 2007.

[15] M. Amir Haeri, M. Ebadzadeh, and G. Folino, “Statistical genetic
programming: The role of diversity,” in Soft Computing in Industrial
Applications, ser. Advances in Intelligent Systems and Computing, 2014,
vol. 223, pp. 37–48.

[16] E. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic program-
ming: an analysis of measures and correlation with fitness,” Evolutionary
Computation, IEEE Transactions on, vol. 8, no. 1, pp. 47–62, 2004.

[17] M. Affenzeller, S. Winkler, G. Kronberger, M. Kommenda, B. Burlacu,
and S. Wagner, “Gaining deeper insights in symbolic regression,”
in Genetic Programming Theory and Practice XI, ser. Genetic and
Evolutionary Computation, 2014, pp. 175–190.

