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Abstract—In recent years Unmanned Aerial Vehicles (UAVs)
have become a very popular topic in many different research
fields and industrial applications. These technologies, and the
related industries, are expected to grow dramatically by 2020.
Although the systems designed to control UAVs are increasingly
autonomous, the role of UAV operators is still a critical aspect that
guarantee the mission success, specially when one single operator
must supervise multiple UAVs. For this reason, much effort
from different areas has been put into the study and analysis
of the operator behavior. This work presents a new method to
find and model behavioral patterns among UAV operators in a
lightweight multi-UAV simulation environment. Our approach is
based on MultiChannel (or Multivariate) Hidden Markov Models
(MC-HMMs), which allow to gather in the same model parallel
data sequences, such as the combination of operator interactions
and mission events. The different steps for preprocessing data,
creating, selecting and analyzing the model are described, and
an experiment with inexperienced operators has been carried out
to show how a descriptive model of behaviour can be generated
using this modelling technique.

I. INTRODUCTION

In the last decade, the development of systems based on
Unmanned Aerial Vehicles (UAVs) has grown considerably,
and it is expected to grow even more by 2020 [1]. This
growth is produced due to the interest of both the industry
and the research community. On the one hand, the differ-
ent potential applications of this type of systems, such as
infrastructure inspection, monitoring coastal zones, traffic and
disaster management, agriculture or forestry have attracted the
interest of the industry [2]. On the other hand, the research
community is also interested in UAVs due to the challenging
problems that must be faced from different fields such as
Machine Learning, Automated Planning, Multiagent Systems,
Simulation, Computer Vision, Robotics, Aeronautics, etc.

The role of a UAV operator is a critical aspect in this
type of systems, due to the high costs involved in any real
mission. In this sense, UAV operators are commonly trained
using interactive environments, such as simulators, where they
are asked to face different situations and alerts to get used to
them, and thus, to be able to solve the situation successfully
in a real scenario.

Monitoring the training programs provide relevant infor-
mation regarding operators that can be used to understand
their underlying cognitive process. This information can be ex-

tracted from both the operator interactions and the simulation
events, and it allows to exploit the different behavioral patterns
among UAV operators in a specific type of mission. These
patterns can be later used in a wide range of applications,
such as building behavioral models for different type of
operators, for creating adaptive experiences in the learning
process according to the operator’s evolution, or for predicting
future interactions and detecting abnormal deviations from the
expected behavior.

The analysis of human behavioral patterns has been studied
in different research fields and applied in a wide variety
of applications. As an example, applied psychologists tradi-
tionally use behavioral models to understand the theoretical
aspects of human decision making [3]. Another application
of the computational models of human cognitive processes
is to predict the consequences of high workload an time
pressure [4]. Recent approaches for modeling user interactions
are exclusively data-driven, and rely on pattern recognition
techniques to predict future behaviors from user interface
events. Some of the most popular modeling techniques in
this field are Tree-based models [5], Bayesian Networks [6],
Clustering [7] and Markov-based models [8].

This paper analyzes the applicability of Hidden Markov
Models (HMMs) to identify the different cognitive states
defining the behavior of UAV operators. Unlike other previous
works in this field, in which these models were built based on
the operator interactions as the only input variable [9], [10],
[11], the contribution of this work is related to the usage of
parallel sources of information: the interactions performed by
the operators in the simulation environment, and the informa-
tion that describes the state of the simulation. Since a classical
HMM does not allow the modelling of parallel sequences of
data, we will study the applicability of Multichannel Hidden
Markov Models (MC-HMMs) (or Multivariate) to define the
cognitive states.

To test the proposed MC-HMM, we make use of a simple
multi-UAV simulation environment called Drone Watch And
Rescue (DWR) 1[1] that has been used in previous works to
build simple behavior models [9]. In this simulation environ-
ment the user must supervise the success of a surveillance

1Drone Watch And Rescue: http://savier.ii.uam.es:8888



mission performed by a group of UAVs, while avoiding the
possible incidents that may occur during the course of the
mission [12].

The rest of the paper is structured as follows: next section
introduces the theoretical backgrounds on HMMs, with an
emphasis on its extension to multichannel sequences. Then,
in Section III a brief overview of DWR, the simulation
environment used as a case study is given. Section IV describes
the whole process for building this type of models based on
data logs extracted from DWR, and in Section V an experiment
is carried out by applying that process with inexperienced
operators. Finally, Section VI summarizes the results obtained
and proposes some future research lines.

II. BACKGROUNDS ON HIDDEN MARKOV MODELS
(HMM)

HMMs are stochastic models mainly used for modeling and
predicting sequences of symbols, and time series in general.
They are characterized by a set of N discrete (hidden) states
S = {S1, . . . , SN}, which can be interpreted as phases
in a cognitive process that produce typical behaviors [13].
Although there are variants of these models in which time is
considered continuous (the so-called Continuous-Time HMMs
[14]), traditional HMMs are based on Discrete-Time Markov
Chains (DTMCs), where the input time series are divided into
equidistant time steps. The term Markov in a DTMC pertains to
the time-dependence between the consecutive states St, which
follows a Markov process. This means that the current state
St only depends on the previous state St−1 and not on earlier
states, i.e:

P (st+1 = Sj |st = Si, . . . , s1 = k) = P (st+1 = Sj |st = Si)

1 ≤ i, k ≤ N
The transition probabilities between the states of this chain

are denoted by a square matrix A (called transition matrix),
with entries:

aij(t) := P (st+1 = Sj |st = Si), 1 ≤ i, j ≤ N (1)

This is a stochastic process, so we have that
∑N
j=1 aij = 0

for all 1 ≤ i ≤ N . As in any Markov chain, we need to specify
the set of initial state probabilities, Π, defined as:

Πi := P (s1 = Si), 1 ≤ i ≤ N (2)

On the other hand, the term hidden in a HMM indicates that
the underlying states St cannot be observed directly during the
process, but what we see is the emission of that state. Although
the observations that a HMM emit can be both continuous and
discrete, this work has been focused on human interactions
and simulation states, thus only discrete observations will be
considered.

Let O = {O1, . . . , OV } be the set of all the V possible
observation symbols in our data domain (also called the model
dictionary), the emission function, b, of a given state Si is
defined as a probability density function along the set O, i.e:

bi(v) = P (ot = Ov | st = Si), 1 ≤ v ≤ V, 1 ≤ i ≤ N
(3)

In other words, bi(v) defines the probability of emitting
Ov at any time step t in which the process is located in
state Si. Since the system can emit only one of the possible
V observation symbols in each state at each time step, the
function bi(v) is constrained to

∑V
v=1 bi(v) = 0 for all

1 ≤ i ≤ N . Gathering together the emission probabilities
of each state into a N × V matrix we obtain the so-called
emission matrix B.

Summarizing, any HMM λ can be defined as the tuple:

λ := {S, V,A,B, π} (4)

Three main computational issues need to be addressed with
HMMs:

• Sequence Recognition: It is related to how to compute the
probability that a given T -length observation sequence
o = o1o2 . . . oT is produced by a model specified by
a set of parameters λ (See Eq. 4). This allows us to
decide whether some sequence belongs to some typical
pattern or not. This probability, written as P (o | λ) is
called sequence (log-)likelihood and can be computed
by the so-called forward-backward algorithm, which was
introduced by Rabiner in [15].

• Sequence Decoding: It consists in determining, given a
sequence of observation symbols o and a model λ, which
corresponding sequence of hidden states s = s1s2 . . . sL
is most likely to produce it. This problem is addressed
by the use of the popular Viterbi algorithm, also known
as decoding [16].

• Model Training: In the majority of applications, the set
of parameters λ of Eq. 4 cannot be inferred analytically
but need to be estimated from recorded sample data.
Although there are classical supervised learning tech-
niques for HMMs, in many applications the hidden data
is missing, so we no longer know which state to assign
for each observation. The solution is to use unsuper-
vised learning techniques, among which the Baum-Welch
algorithm stands out for being the first to address the
problem for classical HMMs [17]. In brief, it is a form of
Expectation-Maximization (EM) which tries to maximize
the likelihood of a set of observation sequences o1 . . . oK

to be produced by a model λ. Formally, this algorithm
computes the optimal model λ̂ as follows

λ̂ = argmaxλ

(∑
K

logP (oK | λ)

)
(5)

Convergence to a local optimum is proven in [15] with
complexity O(N2 · V ) for a N−state HMM with a
V−sized dictionary.

A. Model Selection

One important aspect to consider when fitting a HMM to a
given dataset is that the number of hidden states, N , must be
known in advanced, which is often unrealistic. To choose an
optimal number of states without prior knowledge about the
model topology, several statistic metrics are used to compare



Fig. 1: Screenshot of a simulation in Drone Watch & Rescue.

and select models, of which Bayesian Information Criterion
(BIC) is the best known [18]. This metric is defined as:

BIC(H) = −2(logLik(H)) + Plog(K),

where P is the number of parameters in the model, and K the
number of observations used to train the model. The less the
BIC scores, the better the model is considered. As it can be
seen, BIC penalizes the likelihood of a model by a complexity
factor proportional to number of parameters in the model and
the number of training observations, so it gives advantages to
simple and general models.

B. Multichannel Hidden Markov Models (MC-HMM)

A Multichannel Hidden Markov Model (MC-HMM), or
Multivariate HMM, is a simple extension of a classical HMM,
where the sequence data feeding the model is divided into C
parallel sequences. The term “Multichannel” is adopted from
the works of Helske et al. in [19], and makes reference to
groups of categorical data sequences, rather than numerical
or continuos time series, for which the term “Multivariate”
is the most common [20]. Observations are now of the form
otc, t = 1, . . . , T, c = 1, . . . , C, so that a complete observation
sequence is O =

{
O1, . . . , OC

}
. Unlike other complex HMM

extensions as Linked HMMs or Coupled HMMs [21], where the
observed states in different channels at a given time point t are
interlaced with a special transition probability matrix, in the
case of MC-HMMs the model has one transition matrix A, but
several emission matrices B1, . . . , BC , one for each channel.
Sequence likelihood, decoding and model training issues are
barely altered by this modification, as it can be read in [19].

III. DWR - A LIGHTWEIGHT MULTI-UAV SIMULATION
ENVIRONMENT

In this work we are interested in the utility of a simulator
for research purposes, and its potential for low cost training,
especially in terms of the data that can be retrieved during
the training operations. For this reason, the simulation envi-
ronment used as the basis for this work has been designed

following the criteria of accessibility and usability. It has been
named as Drone Watch And Rescue (DWR), and its complete
description can be found in [12]. A screenshot of a simulation
in DWR is shown in Figure 1.

DWR gamifies the concept of a multi-UAV mission, chal-
lenging the operator to capture all mission targets consuming
the minimum amount of resources, while avoiding at the same
time the possible incidents that may occur during a mission.
To avoid these incidents, an operator in DWR can perform
multiple interactions to alter both the UAVs in the mission
and the waypoints comprising their mission plan.

Regarding the incidents that may occur during the execution
of a simulation, three different types have been implemented
in DWR:

• Danger Area: Due to a heavy storm or any other weather
threat, a new danger area appears somewhere in the
map. When a UAV overflies it, it will be automatically
destroyed. To overcome this incident, the operator must
change the flying path of the UAVs at risk of flying over
these areas.

• Payload Breakdown: The sensors conforming the UAVs
payload stop working. From this moment, the UAV is not
able to detect any target. To overcome this incident, the
operator must command the affected UAV to return to an
airport, where it will be repaired.

• Low Fuel: When the fuel level of a UAV is lower
than a predefined threshold, an alert will be displayed
notifying about the incident. The operator must command
the affected UAV to fly to the closest refueling station in
the mission map.

Besides, it is remarkable how DWR saves data from a simu-
lation. Whenever an event occurs, DWR stores the simulation
status in that moment, as a Simulation Snapshot. This snapshot
contains information related to the current status of every
element taking part in the simulation. Storing the data in this
way allows to reproduce the entire simulation a posteriori,
which is helpful for the analysis process.

IV. BUILDING AND ANALYZING MULTICHANNEL HIDDEN
MARKOV MODELS IN DWR

In this section, we will detail the process carried out in
this work to build and analyze a MC-HMM exploiting the
patterns found among UAV operators during a training session
in the simulator DWR. A graphical overview of the whole
process is shown in Figure 2. As it can be seen, not all
the steps are automated, but there are some which require
the human intervention of an expert in the domain, probably
an instructor specialized in operations with UAVs. This is
because here we are not interested in the predictive aspects
of the HMM. Instead, we want to find a descriptive and
interpretable model so that the training instructor can analyze
it and extract conclusions, even if he/she knows nothing about
the underlying modelling process.

After getting started in the DWR environment, a set of
training operators (or trainees) is told to complete a specific
training operation, designed by the instructor in the system. It
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Fig. 2: General scheme of the analysis process developed in this work.

is important that all operators perform in the same operation
environment, so that the instructor can better analyze the
results. All the interactions and events happened during a
simulation in DWR are stored into a database.

The first step (See Figure 2, step 1) consists in filtering
the stored data, removing those simulations considered as
“useless” for modelling. Several filters are applied to select
only the most relevant simulations, including a duration filter,
which removes the shortest simulations, an interaction filter,
which takes only those simulations where the user has been
active, and an incident filter, which considers only simulations
in which the operator was threatened with several mission
incidents. After this step, only a number of K simulation logs
are taken as input for the rest of the process.

The next step (See Figure 2, step 2) is to process the filtered
simulation logs, transforming them into multi-channel se-
quences of categorical data, suitable for MC-HMM modelling.
A graphical overview of the process is detailed in Figure 3.
As it was mentioned in Section III, DWR stores a simulation
as a list of asynchronous and timestamped snapshots. Despite
HMMs model time information, they do not consider time as a
continuous variable, but a discrete one. For that reason, every
log must be discretized into equidistant time steps, where each
one contains, at the most, one log entry. Then, the discretized
log is divided into two aligned categorical data sequences:

• Last Interaction: It contains, for every time step, a symbol
identifying the last command performed by the operator.

• Last Mission Event: It contains, for every time step, the

last event happened in the mission course.

By having this multi-channel sequence representation, not
only we are able to analyze the operator response, but also
we can relate the concepts of “What happened” to “What was
done”. The different interactions and events taking part of each

- SD SD SD SD SD CP CP

Last Interaction

Last Mission Event

- - - IS IS IS IS IS

Original Log

Discretized Log

Multichannel Sequence

SD IS CP

SD IS CP

Fig. 3: Details of the sequence processing step shown in Figure
2. The original log extracted from DWR is discretized and
divided into two aligned sequences, one containing the last
operator interaction (circles) and the other indicating the last
mission event occured (diamonds).



Symbol Name Description

Interactions

SD Select Drone
Allows the operator to focus, monitor
and send commands to a specific UAV

ST Set Simulation Speed
Increase or decrease the simulation speed. Usually, UAV

missions last many hours, thus sometimes it is desirable to accelerate
the process to allow a fast simulation-based training

CP Change UAV Path Add/edit/remove waypoints of any UAV.

CM Change Control Mode
Control modes in DWR manage how a user can change a UAV path

(Monitor mode, Add waypoints, Manual mode).
IS Incident Started A new incident starts

Mission Events

IE Incident Ended
An incident ends (either because the operator opposed it

or because it had an scheduled end time).
TD Target Detected A UAV detects a target.
DD Drone Destroyed A UAV is destroyed

AS Action Started
A UAV starts an action (Refueling, Landing...)

or a mission task (Surveillance)

TABLE I: Summary of the interactions and events from the simulator DWR, used for the analysis carried out in this work.

channel are detailed in Table I. It is remarkable that, although
the simulator DWR extracts more events and interactions ,
we have selected those considered as most “relevant” for the
course of a mission.

The next and most important step is the model creation (See
Figure 2, step 3). In some applications, the number of states of
the model and other type of initial parameters, neccesary for
executing the model training algorithm, are known in advanced
[22]. However, in this work we do not rely on any prior-
knowledge to build the MC-HMMs, thus we must train models
along the entire search space of the unknown parameters and
select which of them fits best to the data.

In order to perform the model selection, a pool of MC-
HMM candidates, with different number of states are trained
using the popular Baum-Welch algorithm. To avoid falling into
a local optimum, we execute the algorithm multiple times
with different initialization parameters (randomly chosen), and
select the result with the highest likelihood to the data. Then,
those candidates are scored on two different measures:

1) Bayesian Information Criterion (BIC): It tries to give
a balance between the likelihood of a model and its
complexity. Generally, the less the BIC scores, the better
the model performs (See section II).

2) Number of Rare States (NRS): In addition to BIC, we
add a second rating that counts the number of “rare”
hidden states in a HMM, to ensure the simplicity and
interpretability of the model. Given an input T -length
data sequence o and a N -state HMM (or MC-HMM)
λ, we can compute, via the Viterbi algorithm, the most
probable hidden state path so = s1s2 . . . sT for that
sequence, where st ∈ {S1, S2, . . . SN} is the value of
the state at time t. Then, we compute the State Visit
Frequency (SVF) for every state in sequence o as follows:

SVF(Sj , o) =
| {t ∈ T | sot = Sj} |

T
, j ∈ 1 . . . N

By averaging the values of SVF(Sj , o) for every sequence

in the whole dataset oK , we obtain a measure, namely
SVF(Sj , o

K), that indicates the prevalence or rareness of
a hidden state in the overall dataset. Finally, given a State
Visit Frequency Threshold (SVFT), the Number of Rare
States for a N -state HMM λ is computed as a simple
filter for low-visited states:

NRS(λ) = |
{
j ∈ 1 . . . N | SVF(Sj , o

K) < SVFT
}
|

The candidate model which minimizes both selection mea-
sures (BIC and NRS) will be selected as the best model
to fit the dataset. Finally, the selected MC-HMM will be
presented to the training instructor (See Figure 2, step 4), who
is responsible for analyzing it, giving sense to each of the
hidden states and interpreting the most representative patterns
found in the underlying Markov chain.

V. EXPERIMENTATION

In this section, the modelling process detailed above is ap-
plied to the data obtained after training a set of inexperienced
operators in a simple mission in DWR. Below is a description
of the retrieved dataset and the proper experimental setup,
along with the results for both the selection and analysis of
the resulting MC-HMM.

A. Dataset

In this experiment, the simulation environment (DWR) was
tested by Computer Engineering students of the Autonomous
University of Madrid (AUM), all of them inexperienced in this
type of systems. Every user completed a brief tutorial before
using the simulator, explaining the mission objectives and the
basic controls. Recall that the main goal of a surveillance
mission in DWR is to detect all the mission targets and
make the available UAVs return to the base airports safely,
while avoiding the possible incidents that may arise during
the mission course.

The mission prepared for this experiment featured a total of
3 UAVs performing 4 Surveillance tasks in 2 different areas, in



order to detect 4 mobile targets. The map also presented 4 No-
Flight-Zones and 4 Refueling Stations. During the simulation,
4 scheduled incidents were triggered, affecting both the UAVs
and the environment. Every UAV started the mission with a
pre-loaded mission plan (route), so, a priori, the operator is
only expected to supervise that route and possibly perform
minor changes in it. For more information about the mission
elements involved in the simulation see [12].

The dataset resulted from this experiment comprises 108
distinct simulations, executed by a total of 38 users.

B. Experimental Setup

The choice of the parameters involved in the process de-
scribed in the previous section is very important for the success
of the analysis. Table II gathers the chosen values for all the
necessary parameters for the whole experiment. Below are
some remarks about this parameter tuning:

• The Time Step Resolution (TSR) is set to a 1000 ms, in
a way that none of the events/interactions in a simulation
log overlap with each other.

• Since we want the MC-HMM to be interpretable, the
maximum number of possible states is set to 10.

• A hidden state is considered “rare” when it is visited less
than 5% in average, i.e, we set the State Visit Frequency
Threshold to 0.05.

The whole experimentation has been implemented in the R
Statistical Environment 2, making use of the package seqHMM
[19], designed to fit HMMs to sequences of categorical data.

C. Experimental Results

After applying the simulation filters to clean the useless
simulations (See Section II), only 55 of them were considered
as useful for this experiment, hence K = 55. All those
simulations are introduced into the sequence processing step,
as detailed in the previous section, resulting in 55 multichannel
sequences describing the simulation interactions and events.
The duration of these sequences goes from 57 time steps (min-
imum) to 1000 (maximum), achieving the average in 261.8
time steps. Note that in this experiment, 1 time step is equal

Context Parameter Value
General Time Step Resolution 1000 ms

Simulation
Filters

Min. number of
mission incidents

2

Min. number of interactions 10
Min. mission duration 20 s

HMM
Possible number of states 2..10
Number of restarts of the
Baum-Welch algorithm

50

Baum-Welch
algorithm

Max. iterations 1000
Relative tolerance
for convergence

1e−10

Model Selection State Visit Frequency Threshold 0.05

TABLE II: Parameter tuning for all the variables involved in
the experimentation carried out in this work.

Nstates LogLik BIC
Number of

Rare States (NRS)

2 -26326.87 52814.3 0
3 -23063.94 46401.76 1
4 -19846.67 40099.45 1
5 -17545.55 35648.31 2
6 -15621.96 31971.14 0
7 -15207.23 31330.55 4
8 -13679.73 28483.32 6
9 -13235.95 27822.44 6
10 -12160.1 25916.29 7

TABLE III: Results for the model selection. The bolded row
indicates that the 6-state model is chosen, since it obtains great
values for both the BIC and NRS measures.

to 1 second, so it is clear that the duration of the test mission is
short in comparison to a real mission involving UAVs. This is
something characteristic from gamified environments as DWR.

1) Model Selection: The results for the model selection
process are shown in Table III. It is important to keep in
mind that for every possible value of N (the number of hidden
states), multiple models are trained, and from them, we choose
as candidate the one maximizing the (log)-likelihood to the
training data. It can be seen that, from state 2 to state 10,
the BIC measure is always decreasing. However, the rate of
decline is lower from models with 6 states, which can be
seen as an “elbow” in the BIC decreasing. Furthermore, the
model with 6 states also minimizes the Number of Rare States
(NRS), which is a sign that, by having 6 states, we achieve a
simple and fair description of the patterns hidden throughout
the sequences. For these reasons, the 6-state MC-HMM is the
one selected and it will be analyzed below.

2) Model Analysis: The last step of the experiment consists
in analyzing the resulting model and describing the hidden pat-
terns it contains, in the context of the simulation environment
DWR. As it was shown in Figure 2, the main responsibility of
this step lies in the instructor of the experiment, which must be
an expert in the system in question. Since the development of
DWR is part of our previous work [12] and the training session
carried out for this experimentation was also our responsibility,
here we are in the position to perform the model analysis.

A graphical presentation of the 6-state MC-HMM selected
as the best one for this experiment is shown in Figure 4. To
allow a better model analysis, the state emission probabilities
are combined across channels, and drawn as a pie chart within
each of the states (nodes). The first part of the analysis consists
in examining those emissions, using them to describe and label
the behavior (or latent class) hidden in each state:

• State 1: Monitoring. In this state, the prevalent interaction
is “Select Drone” (SD), performed during the events
“Action Started” (AS) and “Incident Ended” (IE). This
behavior is characteristic of those parts of the mission
course where the operator does not need to alter the UAV

2The R project for Statistical Computing: https://www.r-project.org/



Fig. 4: The 6-state MC-HMM has been selected as the best one for the experiment carried out in this work. Low-probability
transitions and self-transitions are omitted for legibility purposes. Slices in the pie charts represent the emission probabilities
for a combination of the data channels (Interaction/Event). The edge width is proportional to the transition probability. State
labels comprise the state name (assigned after the model analysis) along with the initial state probability (in brackets). Legend
symbols make reference to the interactions and actions described in Table I.

path and simply selects and monitors the status and the
trajectory of the different UAVs.

• State 2: Changing Simulation Speed. In this state, the
common factor in all the probability slices is the preva-
lence of the interaction “Set Simulation Speed” (ST),
regardless of the mission event. Operator is changing the
simulation speed, whether to make it faster or slower.

• State 3: Advancing in Mission Progress. In this state,
the main mission events are: “Target Detected” (DD) and
“Drone Destroyed” (DD), both concerning to key points
in the mission progress and the likelihood of missions
success. The combination of “Select Drone” and “Change
UAV Path” regarding to the operator interactions indicate
that, after these events, operators usually adjust the plan
of the UAVs to adapt to the new mission status.

• State 4: Solving Incidents: This state clearly represents
the operator responses in the moments when an incident
arises (prevalence of the event “Incident Started” (IS)).
As it can be seen, the response consists, again, in a com-
bination of selecting UAVs and changing paths, which is
a typical pattern of path adjustment with multiple UAVs.

• State 5: Post-action Replanning: This state indicates
that operators usually redefine the plan of a specific
UAV (Interactions “Change Control Mode” (CM) and
“Change UAV Path” (CP)) when it starts a new action
(Event “Action Started” (AS)), probably a surveillance

task throughout some area. This is logical, considering
that in DWR the detailed path that a UAV follows during
a surveillance task is not computed until the UAV starts
the task, so that may lead operators to change it just after
the task beginning.

• State 6: Post-incident Replanning: This state is likely to
be visited during the latter parts of the mission. When
the mission is coming to an end, and the last remaining
incidents begin to disappear (Event “Incident Ended”
(IE)), operators tend to hasten the pre-scheduled mission
course and redefine the plans of the remaining UAVs
(Prevalence of interaction “Change UAV Path (CP)”),
making the return to the base airports.

Apart from the hidden states, the MC-HMM holds interest-
ing patterns and issues within the underlying Markov chain:

• The initial probabilities are approximately equal to zero
in all states except Monitoring, which indicates that, as
it can be expected, operators always start the mission by
exploring the status of every UAV in the mission, and
checking their initial plans.

• The probability of going to the state Advancing in Mission
Progress is very low (even not drawn in the plot), due to
the number of times that the events of that state, TD and
DD, happen, is low with respect to the rest of event that
can happen throughout the mission.



• It is remarkable that the probability of going from state
Changing Simulation Speed to state Solving Incidents is
high, which indicates that these operators tend to increase
the simulation speed until an incident appears, which is
a clear sign of a restlessness behavior, characteristic of
novice operators.

VI. CONCLUSIONS AND FUTURE WORK

This work has presented a new way to find and model
behavioral patterns among UAV operators in a simple multi-
UAV simulation environment. It is based on Multichannel
(or Multivariate) Hidden Markov Models, which allow to
gather in the same model multiple data sequences, such as the
combination of operator interactions and mission events. The
different steps for preprocessing data, creating, selecting and
analyzing the model have been detailed, and an experiment
has been carried out using data from a set of inexperienced
operators.

The resulting model for this experiment turns out to be
fairly descriptive, and reveals several behavioral patterns, some
of them representative of the inexperience of the operators
tested, such as the way they control the simulation speed,
or the general tendency they have to hasten and change the
prescheduled mission plan, specially at the latter parts of a
mission. In sum, by adding extra information in the model
apart from the operator interactions, we achieve more robust
and informative models than those from previous works in the
field.

As future work, several issues will be extended and im-
proved, including: 1) An extension of the alphabets feeding
the MC-HMMs in order to add more precise information about
interactions and events. 2) The use of covariates in the model
creation to compare behavioral patterns with respect to specific
operator features, such as the age or the previous experience
with UAVs. 3) A formal comparison among single channel
HMMs, multichannel HMMs, and other HMM extensions in
terms of the quality of the behavioral patterns found. 4) The
use of the resulting model as an online predictive tool to detect
abnormal behaviors during a mission.
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