RBF Neural Network combined with Self-Adaptive MODE and Genetic Algorithm to Identify Velocity Profile of Swimmers

Luciano F. da Cruz, Roberto Z. Freire and Gilberto Reynoso-Meza
Industrial and Systems Engineering Graduate Program
PUCPR
Curitiba, Brazil
luciano.cruz@consultant.volvo.com, roberto.freire@pucpr.br, g.reynosomeza@pucpr.br

Flavia B. Pinto and Leandro dos S. Coelho
Industrial and Systems Engineering Graduate Program
Department of Electrical Engineering
PUCPR, UFPR
Curitiba, Brazil
fla.bernardo@gmail.com, leandro.coelho@pucpr.br

Abstract—On the side of enhancing the execution of skills, specialists in sports are adopting analysis of kinematics to correct actions of an athlete. By means of technological resources used to measure physical variables and to supply relevant data to trainers, results related to improvements on athletes’ performance are being achieved. In this context, this work uses the Radial Basis Function Neural Networks (RBF-NNs) combined in cascade with a Genetic Algorithm (GA) as a cross-correlation method, likewise Multiobjective Differential Evolution (MODE) and self-adaptive MODE (using JADE - Adaptive Differential Evolution with Optional External Archive - self-adaptation method) for optimization. The RBF-NNs have been applied to predict the swimmers velocity profile being multiple correlation coefficient (R^2) adopted to evaluate the optimization techniques during both estimation and validation stages. A data acquisition system was used to capture the para-swimming athletes’ instantaneous velocity data, swimming 25 meters in crawl, breaststroke, backstroke, and butterfly strokes. Looking at the results achieved, self-adaptive MODE outperforms classical MODE in approach point of view considering all cases studied, finding the best RBF-NN framework to identify the profile of speed in swimming.

Keywords—Multiobjective optimization; RBF neural networks; self-adaptive; swim; time series forecasting.

I. INTRODUCTION

Biomechanics is a branch that aims to increase the achievement of athletes and parathletes, to prevent injuries and to raise results in rehabilitation. Researches in kinematic analysis dedicated to swimming have been concentrated in technological innovations through based on equipment development to measure swimmers velocity. Taken as an important advantage point in swimming, speed is constantly connected to impulsive and resisting forces [1-4], arrangement and harmony of the athletes’ movements [5]. Researchers have dedicated attention in velocity studies of swimming aiming a kind of system identification [6-7].

By using data sets acquired from a prototype presented in [7], a method to forecast the swimmers velocity was chosen through the identification of signal characteristics. In this particular case, an Artificial Neural Network (ANN) has been chosen, because it is capable to recognize nonlinear connections of input variables, by extracting intrinsic information through the learning process based in data for training [12].

A Radial Basis Function Neural Network (RBF-NN) is a particular case of ANNs, which is consisting of three layers. The definition of parameters vector (center, widths and out weights) is the main problem faced by RBF-NN, which will reach advantageous results for a cost function. One way to solve this problem is the association of RBF-NNs and optimization methods.

Evolutionary algorithms (EAs) were initially dedicated to fix optimization problems being it connected with identification methods in distinct areas [13-16]. Differential Evolution (DE) is a particular kind of EA method that has gained popularity [10,17]. Based on DE concepts, authors in [18] has extrapolated researches to multiobjective optimization concerns, achieving then, Multiobjective Differential Evolution (MODE) algorithm which uses Pareto-based rating as criteria to select best fitness in a community of individuals.

The achievement of a DE algorithm, however, is still quite dependent on the setting of control parameters being so the mutation factor and the crossover probability, for instance, according to both experimental studies and theoretical analysis [19]. Although, suggestions for parameter settings are cited on specialized literature [17,20,21]. However, the interaction between the parameter setting and the optimization performance is still complicated and not completely understood. This is mainly because there is no fixed parameter setting that is suitable for a wide range of problems or even at different evolution stages of a single problem.

Self-adaptive parameter control is a method used to conduct the self-adaptation, the parameters are directly associated with population at an individual or population level, where a natural selection occurs. Since better parameter values trend to generate individuals which have more probability to perpetuate the species, these values can be propagated to more offspring. One method used in the self-adaptation of DE and MODE methods is called Adaptive Differential Evolution with
Optional External Archive (JADE), which was firstly introduced by Zhang and Sanderson in [19].

Along these lines, this paper brings a swim speed study concentrated in the computational identification of elite para-swimming athletes through the usage of RBF-NN combined to GA, MODE and self-adaptive MODE algorithms aiming for enhance the RBF-NN achievement in a cascaded methodology. The purpose is to compare the performance of classical MODE and self-adaptive MODE combined with GA. Both the GA with MODE or the GA associated to the self-adaptive MODE have been applied looking for optimizing the adaptability of RBF-NN when seeking for the best solutions by increasing the reliability of variables built.

The paper is structured in the follow way: Section II presents a state of art over the optimization algorithms applied to this work, namely GA, MODE and self-adaptive MODE; Section III gives a contextualization on RBF-NN model as well as suggested learning process; Section IV explains the suggested procedures over optimization algorithms used to RBF-NN; Section V brings case studies in swimming looking at identification of the velocity outline; Section VI presents the achievements and considerations; and finally Section VII states the final comments and future works.

II. EVOLUTIONARY ALGORITHMS

By applying biologically inspired concepts of Darwian evolution, Evolutionary Algorithms (EAs) have been applied to solve computationally hard problems in the area of numerical optimization, combinatorial optimization, machine learning, neural networks, and many other engineering problems [22-25]. The following subsections present the EAs that were applied to this work.

A. Genetic Algorithm (GA)

Genetic Algorithms (GAs) are adaptive heuristic search algorithm revolving around evolutionary ideas of natural selection and genetics. As such they represent an intelligent exploitation of a random search applied to fix optimization issues. GAs exploit the capability of an individual to perpetuate certain genetic information to next generations. The basic techniques of the GAs are designed to simulate processes in natural systems necessary for evolution especially those follow the principles first laid down by Darwin [26]. The GA maps the problem inside a batch of seeds, each seed demonstrating a possible solution. It employs the best encouraging seeds in its seek for enhanced solutions and manipulates according to an elementary sequence, as found in [27].

B. Multiobjective Differential Evolution (MODE)

MODE is an inspired nondominated sorting genetic algorithm where the main target is to identify the Pareto optimal solution set. A Pareto-based approach selects the best individuals. Following a simple cycle, a population is generated randomly and the fitness functions are evaluated. At every generation of evolutionary search, the population is sorted into several ranks based on dominance concept. As general differential evolution algorithms operations are carried out over the individuals of the population. At the end functions of trial vectors, are evaluated. Then, the ranking of global population is carried out following crowding distance criteria [28]. To this paper MODE steps was applied as described in details in [11]. In case of population takes more individuals than population size, it must be manipulated to make algorithm capable to achieve next statement. The manipulation is based in an arranging of individuals in a sorting without dominance and later assessing the individuals from the equal front with the criteria of crowding distance metric.

C. Adaptive Differential Evolution with Optional External Archive (JADE)

The original population of MODE is randomly generated according to a uniform distribution between lower and upper limits defined for each component of and individual. After initialization, DE enters a loop of evolutionary operations: mutation, crossover and selection. DE/rand/1 is the first mutation strategy developed for DE and has been applied for general DE applications. There are several strategies found for DE, in review of the fast but less reliable convergence performance of greedy strategies, DE/current-to-p-best is adopted as the fundament of the self-adaptive DE algorithm, JADE [19]. The two involved control parameters, F (scaling factor) and CR (crossover ratio), are usually problem dependent and need to be tuned by trial and error. In JADE, F and CR are updated by a self-adaptation mechanism that is based on a simple principle: Better values of control parameters trend to generate individuals that are capable to perpetuate and thus these values should be propagated. According to [19], in DE/current-to-p-best, a mutation vector is generated in the following manner:

\[\mathbf{v}_{i,g} = \mathbf{x}_{i,g} + F_i (\mathbf{x}_{\text{best}_g}^{\mu} - \mathbf{x}_{i,g}) + F_i (\mathbf{x}_{r_1,g} - \mathbf{x}_{r_2,g}) \]

where \(x_{\text{best}_g}^{\mu} \) is uniformly chosen as one of the top 100p% individuals in the current population with \(p \in (0,1) \). At each generation \(g \), the crossover probability \(CR_i \) of each individual \(\mathbf{w}_i \) is independently generated according to a normal distribution of mean \(\mu_{CR} \) and standard deviation 0.1, an can be described as:

\[CR_i = \text{randn}(\mu_{CR}, 0.1) \]

and then truncated to \([0, 1]\). By considering \(S_{CR} \) the collection of all successful crossover probabilities \(CR_i \)'s at generation \(g \). The mean \(\mu_{CR} \) is initialized to 0.5 and then updated at the end of each generation as:

\[\mu_{CR} = (1 - c) \cdot \mu_{CR} + c \cdot \text{mean}(S_{CR}) \]

where \(c \) is a positive constant between 0 and 1 and \(\text{mean}(\cdot) \) is the arithmetic mean. Similarly, at each generation \(g \), the mutation factor \(F_i \) of each individual \(\mathbf{w}_i \) is independently generated according to a mixture of a uniform distribution \(\text{rand}(0, 1.2) \), and a normal distribution \(\text{randn}(\mu_F, 0.1) \) which is the mean \(\mu_F \), with standard deviation of 0.1, and truncated to \([0, 1.2]\). That is,
successful function is the Gaussian function \([29]\).

The widely applied activation layer bring the intrinsic information from input by performing are weighted forms of the input layer. The neurons in output hidden layer centers it is possible to establish the outputs which are composed by linear units. The RBF-NN is a special type of artificial neural network which uses a radial basis function as its activation function. It has three layers: input layer with \(N_P\) neurons or Radial Basis Functions (RBFs), and an output layer with \(N_O\) nodes, those composed by linear units (Figure 1).

![Figure 1. Representation of a RBF-NN structure [10].](image)

By calculating the distance between network inputs and hidden layer centers it is possible to establish the outputs which are weighted forms of the input layer. The neurons in output layer bring the intrinsic information from input by performing simple weighted summations. The widely applied activation function is the Gaussian function \([29]\).

Given an input vector \(r(t) \in \mathbb{R}^m\) at time \(t\), the output of the hidden layer when using Gaussian RBF is:

\[
\phi_i(r(t)) = \exp\left\{ -\frac{\|r(t) - \mu_i\|^2}{\sigma_i^2} \right\} \tag{7}
\]

where \(r(t)\) is the input vector, \(\mu_i\) is the center of \(i\)-th neuron, \(\sigma_i\) is the radii of the function of the \(i\)-th neuron, and finally \(\|a\|\) is the Euclidian norm of the vector \(a\). By considering that, the output layer can now be written as the following summation:

\[
\hat{y}(t) = \sum_{i=1}^{k} w_i \cdot \phi_i(x) \tag{8}
\]

where \(w_i\) is each of the synaptic weights which connects the hidden neurons \(i\) to the output neuron and \(k\) is the total number of neurons in the hidden layer. The performance of a RBF-NN model is connected to the model construction. Important issue, in this way, is to determine the RBF centers and the number of such centers based on the generalization capability \([30]\).

IV. EXPECTED METHODOLOGY

Since the centers, widths and output weights should be set in a RBF-NN, a training phase adjusts the Gaussian basis function centers by applying a normal distribution to generate the centers inside the range \([0, 1]\). The MODE and self-adaptive MODE optimization methods were adopted to improve seek of the widths and locally the centers of the Gaussian basis functions. The RBF-NN identification method splits the acquired data within training (75%) and validation (25%). The selection of the amount to be destined to each phase is made by the authors in line with the number data set available. Once the application of the RBF-NN in swimming velocity profile identification procedures is recent, there are no references about the effectiveness of data split. In this way, the multiple correlation coefficient was adopted, and it is stated as:

\[
R^2 = 1 - \frac{\sum_{t=1}^{N_s} [y(t) - \hat{y}(t)]^2}{\sum_{t=1}^{N_s} [y(t) - \bar{y}]^2} \tag{9}
\]

where \(N_s\) is the number of samples in a given set, \(y(t)\) is the output of the real system, \(\hat{y}(t)\) is the output estimated by RBF-NN, and \(\bar{y}\) is the mean value of the system’s output.

The multiple correlation coefficient was used for training \((R^2)\) and validation phases \((R^{2_v})\) as decision variables inside genetic algorithm. Therefore objective functions adopted by MODE and self-adaptive MODE are given by:

\[
f_1(x) = 1/(1 + R^2), \quad f_2(x) = 1/(1 + R^{2_v}) \tag{10}
\]

being so, the training procedure has the objective of enhance the accuracy of the model and its generalization. Values for \(R^2\) higher than 0.9 are enough to express a model in identification field according to authors in \([31]\). By employing a cascaded evolutionary algorithm composed by GA with MODE and self-adaptive MODE, the suggested methodology to improve simultaneously the lags in the time series used as inputs of the RBF-NN model and its parameters. In order to realize these modifications in the neural network, the suggested strategy uses, in the first layer, a simple GA, binary coded, which selects lags used in the series. Therefore, an individual of GA means the presence/absence of a lag in a particular model.

Similarly as in \([11]\), the following objective function (Fobj) has been adopted for the GA:

\[
\text{Fobj} = \frac{1}{N_s} \sum_{t=1}^{N_s} [y(t) - \hat{y}(t)]^2
\]

where \(y(t)\) is the output vector and \(\hat{y}(t)\) is the predicted output vector.

A modified genetic algorithm is used to take care of fitness function and selection function. The fitness function is defined as:

\[
f(x) = \frac{1}{1 + R^2}
\]

where \(R^2\) is the correlation coefficient between the actual output and the predicted output.

The selection function is defined as:

\[
sel(x) = \frac{x}{\sum_{i=1}^{N_x} x_i}
\]

where \(N_x\) is the number of individuals in the population.

The crossover function is defined as:

\[
corr(x, y) = x + \frac{1}{2} \cdot (y - x)
\]

where \(x\) and \(y\) are two individuals in the population.

The mutation function is defined as:

\[
mute(x) = x + \frac{1}{10} \cdot \text{rand}(0, 1)
\]

where \(\text{rand}(0, 1)\) is a random number between 0 and 1.

V. CONCLUSION

The RBF-NN model is a promising tool for identifying the swimming velocity profile in swimming fish. The MODE and self-adaptive MODE optimization methods were adopted to improve the performance of the RBF-NN model. The multiple correlation coefficient was used as a decision variable to evaluate the performance of the model. The suggested methodology was able to improve the accuracy of the model, and the results were validated using real data sets. Future work will focus on applying the RBF-NN model to other swimming species and comparing its performance with other identification methods.
where RMSE means the root mean squared error metric, $\Phi_{ab}(\tau)$ is the cross-correlation function between two sequences $\{a\}$ and $\{b\}$, and T_{max} is the maximum number of candidates to be tested. Authors in [32] have developed a group of statistical correlation tests concerned to nonlinear model testing and verification. Based in One Step Ahead (OSA) model prediction, authors use the model residual $\xi(\tau)$ to define whether the model will be unpredictable from all linear and nonlinear combinations of past inputs and outputs. In practice the 95% assurance bands, which are approximately $\pm 1.96/\sqrt{N}$ where N is data length, are employed to decide whether the tests are satisfied and the model is validated. The flowchart presented in Figure 2 illustrates the suggested methodology as an interactive way for further understanding. It may be noticed how GA, MODE and self-adaptive MODE (JADE as self-adaption method) act on the overall optimization process.

V. EXPERIMENTS AND IDENTIFICATION PROCEDURES

Through the usage of a prototype which uses an encoder data of instantaneous speed was acquired of elite para-swimming athletes in swimming pool of 25 meters long (Figure 3) with 50ms of settling time being so, 352 samples obtained in every test. Swimmers were directly linked to the acquisition system over a line.

The data acquisition system has also a real time plot screen and data saving mode in a spreadsheet to make trainers able to evaluate and perform live improvements in swimmers’ behavior during training sessions (Figure 4). The swim cases acquired were: crawl stroke (male with legs’ paralysis), breaststroke and butterfly stroke (female with traumatic amputation of forearm), and backstroke (male with congenital malformation in the right leg). The data set was assessed using EAs for time series approach. The system identification context through RBF-NN applied to support kinematic analysis in swimming aims to correlate swimmers between them or the identification of self-features relevant to performance increase, such as: strokes, hand position, propulsive forces, body position, among others.

VI. SIMULATION RESULTS

Identification achievement for both training and validation procedures considering the presented methodology. Table I summarizes all case studies (different swimmers and strokes).
In general words GA is the main method run before any action from MODE or self-adaptive MODE. By applying a max number of 20 lag candidates the number of possible solutions can be limited. The main reason to apply GA algorithm working in cascade with MODE and self-adaptive MODE is computational cost saving. Setting GA parameters it was applied 50 individuals, 100 generations, 1/20 as mutation factor and 0.9 as crossover ratio. MODE algorithm received 100 individuals, 400 generations, 0.3 as crossover ratio and 0.5 as mutation factor. The self-adaptive MODE was stated with 100 individuals, 100 generations, 0.5 as crossover ratio and 0.5 as mutation factor. For JADE method it was adopted the rate of parameter adaptation \(c \) as 0.1 and greediness of mutation strategy \(p \) as 0.05. The RBF-NN was experienced from 9 to 13 neurons to every study case.

It can be noticed that, by using the same configuration for the number of neurons in the hidden layer likewise the same set up for the regressors from GA algorithm, self-adaptive MODE outperforms the results from classical MODE taking into account the R² values. It happens to all number of neurons and all swimming strokes experienced. The reason of assuming the same set up for the regressors from GA algorithm cause relationship to the particularity of this method, which is assuming just the real time series to choose the regressors and it does not relation to the prediction process. It means that once the same real time series is adopted, in both classical MODE and self-adaptive MODE cases, the GA algorithm should return the same regressors at each algorithm step.

Figures 5-8 show the estimated outlines from the best GA combined with self-adaptive MODE, and the error variation from each evaluated case (stroke).

As it can be seen, the RBF-NN was capable to forecast the time series. The efficiency of this method can still be confirmed again in Table 1, which brings the batch of lags selected R² values for training and validation phases. In all these cases, R² values greater than 0.9 were achieved.
VII. CONCLUSION

An application of RBF-NN associated with cascaded EAs placed on GA and self-adaptive MODE optimization methods could be verified in the current paper. Time series estimating procedures were applied to perform the velocity profile identification in four case studies (crawl, breaststroke, backstroke, and butterfly strokes) of para-swimming athletes. Once more the success of this method might be verified by R² values higher than 0.9. The gain by using GA algorithm in time series forecasting of swimming profile is given by computational effort decrement put to run this forecasting. Based on experience and results reach by authors in this research field numerically values of R² have been presented small gains through the usage of optimization techniques, in the other hand it is possible to claim that small gains have significant importance to decide training sessions to elite para-swimming athletes where milliseconds can be the difference between first and second place in a competition environment.

The main objective of applying GA algorithm is to allow the designer from selecting the collection of lags in order to avoid empirical parameters and consequently improve the convergence of the method. By improving the models offline, the purpose is to afford a more accurate way to compare athletes from the same team and improve the achievement of the para-swimming athletes. In this way, comparisons among athletes from the same class of competition can be made in terms of velocity, where the correlation with a better athlete may be applied as a standard for the others. Future works are dedicated on the inclusion of inputs in this model. It means to use, for example, inputs signals to this system in a way to seek for a feed-forward system capable to give direct point to be corrected during a swimming behavior.

ACKNOWLEDGMENT

Kindly thanks to CAPES (Coordination of Improvement of Higher Education Personnel) for supporting this research.

REFERENCES

