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Abstract—Ocean wave energy farms are composed of several
wave energy converter devices. The objective of each converter
is to capture the potential and kinetic energy in rolling ocean
waves and convert them into electricity. An important task in
optimizing power delivery from ocean wave energy farms is short
term prediction of incoming ocean waves. Accurate predictions
enable predictive wave energy converter control, energy storage
control, and condition monitoring. In a novel approach we
estimate the parameters of regular ocean waves by exploiting
the domain with particle swarm optimization. We estimate initial
parameters, and use those as guides in the swarm to estimate
better ones. Our approach yields highly accurate estimates of
ocean wave parameters that are very close to the Cramer-Rao
lower bound on estimating these parameters. Our approach of
domain exploitation with particle swarm optimization is also
superior to stand alone global optimization methods such as
simulated annealing and genetic algorithm.

I. INTRODUCTION

Although renewable energy sources, like wind, solar, and
ocean waves, are often thought of as providing “free energy,
the system benefits of integrating renewables may be lower
than expected because of the uncertainty they introduce into
the electricity grid, both in terms of dispatch and reliability.
One approach to counter the uncertainty of renewable gener-
ation is to employ prediction methods to forecast availability
renewable resources to optimize how the resources are con-
verted to electricity and dispatched to the grid [1], [2], [3]. In
this paper, we focus on delivering a highly accurate, short term
forecasting approach that estimates parameters of incoming
ocean waves using noisy sensor estimates in order to optimize
operations of ocean wave energy farms.

An ocean wave energy farm contains an array of wave
energy converters (WECs) that capture and convert the energy
in rolling ocean waves to electricity, which then be delivered
to a power system or the electricity grid. Predictive control
mechanisms [4] can be used within individual WECs and
across multiple WECs to optimize the output power of the
wave farm. For example, these schemes can adapt the feedback
force, relative motion, dampening, etc., within WECs based on
incoming wave conditions to improve WEC power production.
Additionally, WECs can have on-board energy storage and the
farm may have centralized energy storage to offset any volatil-
ity in current and future power production. Thus, decisions
regarding predictive control and energy storage rely heavily on
accurate predictions of incoming ocean wave characteristics.

For this reason, ocean wave farms will also require a network
of sensors deployed around wave farms to provide (noisy)
estimates of incoming ocean waves. These estimates must
then be combined and used to extrapolate reliable estimates
of incoming wave conditions at WEC sites. As noted above,
the predictions will allow novel predictive control methods and
storage decisions that increase the efficiency and consistency
of ocean wave power production.

In this paper, we develop in particular an adaptive particle
swarm optimization (PSO) approach to estimate parameters of
regular ocean wave realizations. The main contributions of this
paper are:

1) We design a strategy for PSO to exploit the model
structure of our problem.

2) We propose two methods for emphasizing exploration
with a new inertia weight and updating worst particles
through local evolution to enhance the performance
of PSO.

3) We design experiments to test if our method achieves
the best possible estimates.

4) We implement PSO and other evolutionary methods
without domain exploitation to compare their efficacy
for parameter estimation.

We demonstrate the accuracy of our proposed method using
simulated data for regular ocean waves, the model for simu-
lating regular waves is presented in section III. The extension
to irregular ocean waves is a direction for future research. In
particular, we compare our estimation error to the theoretical
lower bound offered by the Carmer-Rao Lower Bound (CRLB)
for these ocean environments. Results show tight convergence
between our results and the CRLB, indicating highly accurate
estimates are possible.

Finally, we note that our proposed PSO approach may have
wider applicability. For example, while we focus our attention
here on the application of ocean wave parameter estimation for
ocean wave energy farms, we note that our contributions can
extend to any ocean scenario in which short term prediction of
wave conditions are required using wave sensor data. In fact,
our scheme would work for estimating parameters of waves in
any regular wave field based on noisy measurements available
from only a subset of locations (i.e., sensor measurements).

We start our discussion in Section II by providing back-
ground on ocean wave prediction. For further background on



general ocean wave energy systems and the latest in this
emerging area, we refer the reader to [5]. In Section III
we present the ocean wave model and sensor measurement
models used in our estimation approach. Section IV provides
background on parameter estimation theory and outlines the
CRLB for the ocean wave estimation problem. We provide
background on PSO in Section V and our present our modified
PSO in Section VI. Results and our discussion of the simu-
lation results are presented in Section VII. We conclude the
paper and present future research directions in Section VIII.

II. BACKGROUND

Ocean waves have been modeled as plane waves consisting
of a sum of sinusoids with different frequencies, amplitudes,
wavelengths, directions, and phases [6]. Extensive ocean wave
data sets are available from buoys operated by the National
Oceanic and Atmospheric Administration, the Irish Marine
Institute, or a variety of other entities around the globe. The
buoys record the significant wave height h1/3 (mean wave
height of the highest third of the observed waves) and the wave
period Ts by sampling over given time intervals. Together,
(h1/3, Ts) can define the sea state and the parameters of
an assumed wave spectrum S(ω), which gives the energy
distribution of ocean waves among the different frequency
components, ω. Several power spectra are commonly used in
marine engineering, such as the Pierson-Moskowitz spectrum.
Over time, the sea state changes stochastically in a manner
that can be modeled and studied using historical data at any
given buoy location. There is an extensive literature on such
models of sea waves [7], [8]. These models however presume
the availability of sampled-average values of (h1/3, Ts) and
thus cannot be readily used for seconds ahead (short term)
wave prediction.

Prediction of ocean waves can be done using both time
series based methods and physics based models. Time series-
based prediction of ocean waves uses techniques such as
regression [9], neural networks [10], and genetic algorithms
[11] that employ statistics from existing buoy datasets to pre-
dict future wave conditions. For example, such methods have
been previously studied for ocean wave elevation forecasting
using non-linear autoregressive neural networks trained using
backpropagation to conduct multistep forecasts of wave power
directly from past observed wave heights [12]. Physics-based
wave prediction models have been around for a while and
have improved in their performance [13]. The state-of-the-art
physics-based forecasting tool is the WAVEWATCH III model
[14], which uses action balance equations in conjunction with
predicted wind speed and air-sea temperature differences to
generate wave predictions.

Comparisons of the two techniques [15], [16], [17] show
that statistical approaches provide higher accuracy for the short
term while physics-based models are more reliable for long-
term prediction. The definition of short and long term in
these cases depends on the time resolution of the datasets.
For example, [16] studies hourly data and finds that statistical
approaches are superior for predicting 1 to 10 hours out while
physics-based models are accurate up to 80 hours ahead.
However, as noted above, since existing times-series based
models build off estimates of (h1/3, Ts) and predict statistical
parameters of waves, they cannot be used for estimating wave

characteristics seconds ahead. Specifically they can not provide
exact wave realizations that will be seen seconds ahead at
a location in the ocean. In such cases, wave sensors are
needed that make real-time measurements of wave elevations,
velocities, accelerations, etc., within or near the location of
interest. As such both physical and time series models fall short
for our prediction task providing motivation for our proposed
method.

If we know the wave parameters (amplitude, phase, direc-
tion, and frequency) for all components of the ocean wave,
then we can write an equation that gives the exact waveform
H(x, y, t) that would be observed at a desired location (x, y)
on the ocean surface at time t. Of course, we do not know
these parameters explicitly, so they must be estimated from
noisy sensor data obtained from sensors deployed at locations
around (x, y) at some other time t′ < t. The focus of this paper
is to provide highly accurate estimates of amplitude, phase,
direction and frequency of incoming regular waves based on
noisy sensor data using our proposed PSO scheme.

III. OCEAN WAVE MODEL

Since there is a lack of data for different sampling frequen-
cies or sampling rates of ocean wave elevations we simulate
our own wave data with additive noise. We use the standard
wave equation model with several assumptions [18]. First we
assume the ocean is an ideal incompressible fluid with no
loss of mechanical energy. Second, we assume the monitoring
area in the ocean has sufficient depth such that finite depth
effects, other than dispersion, are small. Lastly we assume
waves are created by forcing functions that were applied at
adequate distances away, such as a distant storm, resulting in
the observation of fully developed ocean waves. Under the
given assumptions, the form of an ocean waves can be seen
as plane waves consisting of a sum of sinusoids with different
amplitudes, frequencies, directions, wavelengths and phases.

For simulating of ocean waves we focus on vertical sensors
for predicting regular wave formations (due to their simplicity).
Under generally well accepted assumptions [6], and under
regular wave conditions, the wave elevation for all sensor
locations (x, y) on the ocean surface for all times t the exact
time waveform which would be observed at a particular point
in the ocean can be described by

H(x, y, t) = A cos

(
ω2

g

(
x cos(β)+y sin(β)

)
−ωt+φ

)
, (1)

which has the parameters A for the amplitude, ω for the
frequency measured in radians per second (rads/s), β for
the wave angular direction in radians measured relative to
the x-axis, and φ for the phase in radians. These parameters,
collected together in the parameter vector θ = (A,w, β, φ)>,
are assumed to be unknown and thus we must provide es-
timates for their values based on collected sensor measure-
ments. Specifically, we consider the case where we collect
a noisy measurement Hm from N sensors with given co-
ordinates {(x1, y1), (x2, y2), . . . , (xN , yN )} collected at times
t = 0, Ts, . . . , (K − 1)Ts where Ts is the sampling period
and where each sensor provides us with K observations. A
measurement made by a sensor located at (xn, yn), where n ∈
{1, . . . , N} at time t = kTs where k ∈ {0, 1, . . . , (K − 1)},



is assumed to be given by

H(xn, yn, t) = H ′(xn, yn, t) + Vn(t) (2)

where Vn(t) is Gaussian white noise for sensor n at time t and
H ′ is the true measurement. The observations from all sensors
and all times are collected into the vector

H = [H(x1, y1, 0), . . . ,H(x1, y1, (K − 1)Ts), . . .

H(x2, y2, 0), . . . ,H(xN , yN , (K − 1)Ts)]
T . (3)

Once we collected sensor data and estimated the parameters
accurately, they can replaced back into Eq. (1) to forecast the
wave realization at some short time ahead t+ j.

IV. PARAMETER ESTIMATION THEORY

In parameter estimation, we are given sample data to
estimate parameters of the selected distribution. Generally,
given sample sensor data H containing all the K measurements
from each of the N sensors, and t = kTs, we assume the noise
vector

[V1(t0), ...,VN (t0), ...,V1(tK), ...,VN (tK)]> (4)

is a jointly Gaussian with a zero mean vector and a covariance
matrix with (σ2

1 , ..., σ
2
NK) along the diagonal. For simplicity

we assume σ1 = ... = σNK = σ. Under this assumption
the joint probability density function of the observations con-
ditioned on θ, called the likelihood function, is fH(H|θ). A
possible estimate of the unknown θ could be computed by the
well-known Maximum Likelihood (ML) estimate θML which
is defined as

θML = arg max
θ

fH(H|θ). (5)

For simple convex problems, the ML estimate could be
found using derivatives of the objective function. Unfortu-
nately, the considered problem of wave estimation is non-linear
and has many local minima and maxima which makes using
such methods to successfully estimate θ a very hard task. As
such we provide a way to use particle swarm optimization, a
global optimization method that does not require the calcula-
tion of derivatives, to solve for θ by exploiting the domain
structure of regular waves in Eq. (1).

A. Cramer Rao Lower Bound

In the following section we briefly introduce the Cramer
Rao Lower Bound [19] and provide the general equations for
calculating the Fisher information matrix under Gaussian white
noise. It is important in deriving the CRLB as it provides us
with a theoretical lower bound on the estimation of a wave
parameter and thus acts as our main way to asses estimates.
To calculate the CRLB we assume a sensor measurement Hm

is collected in the vector H. We formulate the CRLB for the
form of a wave given in Eq. (1) by collecting the unknown
parameters in the θ vector. We let Ĥ(xp, yp, t) be an unbiased
estimator of the quantity we are trying to predict H(xp, yp, tp),
which comes from Eq. (1) at a particular location (xp, yp) and
time tp. Unbiased estimators are those satisfying the equation

Eθ

[
Ĥ(xp, yp, t)

]
= H(xp, yp, t). (6)

Then the mean-square error (MSE) of any unbiased estimate
must satisfy

MSEĤ(xp,yp,tp)
≥ qJ(θ)−1q> = CRLBĤ(xp,yp,tp)

(7)

where the quantity on the right hand side is called the CRLB
of the estimate Ĥ(xp, yp, tp). From (7), the CRLB is defined
in terms of the row vector

q =

[
∂H(xp, yp, tp)

∂θ1
, ...,

∂H(xp, yp, tp)

∂θn

]
(8)

which depends only on the wave characterization we wish
to estimate, and the Fisher information matrix J(θ), which
depends only on the sensors used to obtain the measurements.
We consider Gaussian noise, and the l−nth entry of the Fisher
information matrix has a general form given by

Jl,n(θ) =

N∑
n=1

K∑
k=1

1

σ2
n,k

...

(
∂

∂θl
H(xn, yn, t)

)(
∂

∂θn
H(xn, yn, t)

)
(9)

where we see that calculating each entry will involve the
product of two derivatives taken with respect to θ. We have
obtained expressions for the derivatives relating to a regular
wave characterization described by Eq. (1) in a previous work
[20]. These expressions can now be used to find the CRLB for
any ocean wave environment described by Eq. (9).

V. PARTICLE SWARM OPTIMIZATION

Optimization methods can be categorized into two classes.
The first is composed of local optimization methods. This
class of methods, used in maximum likelihood estimation,
usually requires the evaluation of derivatives of the objective
function. The other class of optimization methods is called
global optimization. These methods can be roughly classified
as deterministic or stochastic. Stochastic global optimization
methods tend to converge well to the global optima although
there is a lack of strong theoretical guarantees of this. The
basic approach is that in each iteration a set of the trials that
are thought to be close to being optimal is taken to generate
new trials on the next iteration. For deterministic techniques,
they are also able to generally achieve a level of confidence that
the global optimum will be reached and include methods such
as branch and bound, and interval analysis. Overall, there is no
algorithm that can solve all global optimization problems with
certainty in finite time. The computational resources needed to
achieve convergence increases very quickly with the problem
size. In general, convergence is also hard to prove for global
optimization methods.

Particle swarm optimization is a swarm-based evolutionary
computation technique that was developed developed by Dr.
Eberhart and Dr. Kennedy in 1995, inspired by social behav-
ior of bird flocking [21]. PSO is a well known stochastic
global optimization method which can be used to find an
approximate solution to a problem and shares many similarities
with evolutionary computation techniques such as genetic algo-
rithms. The problem is initialized with a population of random
solutions and searches for optima by updating generations.



However, unlike genetic algorithms, PSO has no evolution
operators such as crossover and mutation. PSO iteratively tries
to search candidate solutions called particles in a search space
with regard to a given measure of quality around a global
optimum. We have a total of P number of particles in the
swarm which are initialized with a population of random
solutions that will move through a D-dimension space to find
new potentially better solutions. A fitness function F is then
calculated as a certain measure of quality in reaching a target
value, and is typically the mean squared error. Each particle
i, where i ∈ (1, .., P ), has a single solution set of parameters
we’re trying to estimate with each parameter d ∈ (1, ..., D).
Every particle is associated with two components, a velocity
vi,d and a position xi,d. These components are updated on each
iteration λ ∈ (1, ...,Λ) as follows

vi,d(λ+ 1) = vi,d(λ) + c1 · εU · (pb(i)− xi,d(λ))+
c2 · εU · (pg − xi,d(λ)),

(10)

xi,d(λ+ 1) = xi,d(λ) + vi,d(λ+ 1), (11)

where Λ is the maximum number of PSO iterations that acts
as stopping criteria. The new velocity vi,d(λ + 1) depends
on three terms. The first term is vi,d(λ) which is the current
velocity. The second part is c1 · εU · (pb(i) − xi,d(λ)). The
c1 term is a positive constant called the coefficient of the self-
recognition component. The term εU is a uniformly distributed
random number in [0,1]. The pb(i) vector value is the particle
i’s best position found so far. The xi,d(λ) value is the particle’s
current position. The third term in the velocity update equation
is c2 · εU · (pg − xi,d(λ)). The c2 factor is a constant called
the coefficient of the social component. The pg term is called
the global best position and is the best known position found
by any particle in the whole swarm so far. Once the new
velocity, vi,d(λ+ 1), has been determined, it’s used to update
the particles position xi,d(λ + 1). The personal best position
of a particle is calculated as such

pb(i)←
{
pb(i) if F (xi,D(λ+ 1)) ≥ F (pb(i)).
xi,D(λ+ 1) if F (xi,D(λ+ 1)) < F (pb(i)).

(12)

And the global best particle position is updated by

pg ←
{
pg if F (xi,D(λ+ 1)) ≥ F (pg).
xi,D(λ+ 1) if F (xi,D(λ+ 1)) < F (pg).

(13)

In Eqs. (12,13) the personal and global best particles are
updated by checking their fitness solution to the fitness of the
updated particle xi,D(λ+1). If the new particle yields a better
fitness than the global or best particle is updated.

PSO does not require a large number of parameters to be
initialized. But the choice of PSO parameters can have a large
impact on optimization performance. For most of the practical
applications an example good choice of the number of particles
P is typically in the range 20 to 40. In the case of very difficult
problems the choice can be increased to the range of 100 to
200 particles, however this can significantly decrease runtime.
Fine-tuning of the particle acceleration constants c1 and c2 can
also aid in faster convergence and alleviation of local minima.
Usually the choice for these parameters is, c1 = c2 = 2. We
propose an alternative is to choose a larger social component,
c2, and a smaller self-recognition component, c1, such that it
satisfies conditions such as c1 + c2 = 3. This we believe can

further aid in convergence as it emphasizes more on converging
on the global best position.

We provide two extensions to PSO to improve convergence.
The first is a modification of an inertia weight which we call
the stochastic inertia weight, and the second is a process we
call local evolution by which we update the worst particles in
the swarm to match closer to the best one.

A. Stochastic Inertia Weight

A factor w called the inertia weight [22] is sometimes
introduced to improve performance. This adaptive version of
PSO updates the velocity of a particle as follows

vi,d(λ+ 1) = w · vi,d(λ) + c1 · εU · (pb(i)− xi,d(λ))+
c2 · εU · (pg − xi,d(λ)),

(14)

The inertia weight can play an important role in convergence
behavior. It is employed to control the impact of the previous
history of velocities on the current one. Accordingly, the
parameter w regulates the trade-off between the global (wide-
ranging) and local (nearby) exploration abilities of the swarm.
A large inertia weight aids in global exploration (searching
wide ranging areas), while a small inertia weight aids in local
exploration by searching within the nearby areas. To obtain a
balance between global and local exploration the number of
iterations required to locate the optimum solution is reduced.
The inertia weight is usually set as a constant or can be set
to decrease over time. There are also several variants of using
a dynamic inertia weight [23]. We propose our own version
which we call the stochastic inertia weight update as follows

w = wmin − εN (wmax − wmin)
λ

Λ
(15)

where λ is the current iteration index, Λ is the predefined
maximum number of iterations, and wmax and wmin are the
maximal and minimal weights, and εN is a normally distributed
random number at each iteration. This causes the weight to
fluctuate randomly from small to large values over iterations
depending on εN . This is contradictory to the idea of having
the inertia weight decrease over time. We believe this way we
get increased exploration that allows the swarm to search more
broadly over time for new solutions in order to minimize the
fitness function.

B. Local Evolution

We also present a method to potentially speed up con-
vergence called local evolution. The core idea behind our
heuristic is to evolve “bad” particles closer to the good ones. In
every iteration, we record the best-so-far particle in the swarm
denoted xbest. This is done by finding the global best particle
with the highest fitness xbest = pg . For any “bad” particle
xbad, which has the lowest personal best score, we shift it
toward xbest using the following update

xbad ← γ × xbad + (1− γ)× xbest (16)

where we choose γ as a constant between 0 and 1. We apply
the process of local evolution to the worst particle but it can
also be applied to update a subset of the bottom worst particles.



Fig. 1: Twelve example elevation sensors surrounding a WEC at a
radius of 30 meters. The WEC is labeled as (0,0) has its own on-
board elevation sensor.

VI. SWARM BASED PARAMETER ESTIMATION

In tackling the wave parameter estimation problem we
choose PSO due to its simplicity and success in solving similar
parameter estimation [24], [25] and signal estimation problems
[26], [27]. For testing we first simulate wave elevation with
additive white noise. Simulations were done by choosing fixed
values for amplitude A, phase φ, frequency ω, and direction
β. We choose N number of sensors which are positioned on
a circle topology with one of the sensors located at (0,0) as
shown in Fig. 1. In applying PSO each particle has a dimension
of 4 representing the four parameters of a regular wave.

We initially attempted to solve for θ using PSO presented
in section V, but results proved to be poor as their estimates
were not near their corresponding CRLB values (results shown
as a comparative method in section VII). To improve estimates
we set out to exploit the problem domain. We first notice that
solving for parameters of a wave form at the sensor located at
(0,0), we can ignore estimates for β. This reduces the search
space for solving the other parameters. Using measurements
from the single elevation sensor at the WEC we can solve
for initial estimates of A,ω, φ. Then using those estimates we
solve for β using all sensor measurements while keeping initial
estimates of A,ω, φ in Eq. (1) constant. Finally with a good
estimate of β we solve again for the other parameters over all
measurements. So in estimating parameters of H we call our
modified version of PSO, using the stochastic inertia weight
and local evolution, three times summarized below:

1) We call Algorithm 1 to get an initial estimate of
A,ω, φ using measurements from the sensor at (0, 0).

2) We call Algorithm 2 to get an estimate of β over all
sensor measurements.

3) We call Algorithm 3 to solve again for A,ω, φ over
all sensor measurements.

In the next four subsections and corresponding algorithms,
we show how to estimate θ in more detail. Overtime wave

realizations can change thus their model parameters will
change too. However in the very short term on the scale of
seconds these parameters will not change providing the ability
to forecast seconds ahead. Once parameters are estimated they
can plugged back into Eq. (1) to predict the wave elevation at
some short time ahead t+ j.

A. Particle Initialization

For each particle, there may be a certain range within which
value of the parameter should lie for better search results. At
the very beginning of a PSO run at λ = 1, the D number of
parameters of a particle are initialized randomly somewhere in
their feasible numerical range. Therefore, if the dth parameter
of the given particle has its lower and upper bound as Ld and
Ud, respectively, then we may initialize the dth component of
the ith particle as

xi,d = Ld + εU · (Ud − Ld) (17)

Additionally, during the PSO algorithm, if particles are also
reinitialized if they outside the bounds of their constraints
during an iteration.

B. Step 1: Solving For Initial Estimates At (0,0)

The whole procedure is shown in Algorithm 1. In our first
step we only take into consideration measurements from a
single sensor which we arbitrarily choose to be the origin.
By using only measurements from the origin we can ignore
estimating β since (x, y) = (0, 0) which would reduce Eq. (1)
to the following realization:

Ĥ(0, 0, t) = Â cos(−ω̂t+ φ̂) (18)

By ignoring the direction β we are able to get initial estimates
for Â, ω̂, and φ̂. These initial estimates should be close to the
true values and thus provide us with a good starting point for
future PSO iterations to solve for β and eventually resolve the
parameters in step 3.

The algorithm begins by first randomly initializing parti-
cles, corresponding velocities and setting the fitness to some
large number initially. The first for-loop goes through each
PSO iteration. In line 4 the fitness is checked iteratively to
see if it’s below a threshold (chosen close to 0), if not a
second for-loop is executed which first checks if one of the
four parameters of a particle do not exceed its threshold which
is stored in δj . If one of them does then we repeatedly re-
initialize that parameter until a new value is given satisfying
the constraint. Next estimates for Â, ω̂, and φ̂ are updated with
a candidate solution provided by a given particle. An estimate
of wave elevation Ĥe is then made which is used to calculate
the fitness for each time step t ∈ T . The goal of PSO is
to minimize the fitness function by taking the mean squared
error of the estimate Ĥe with the measured value He(0, 0, t)
as follows

F (xi) =

K∑
k=1

(H(0, 0, t)− Â cos(−ω̂t+ φ̂))2. (19)

With the fitness we then update the personal and global best
scores pb(i) and pg . The stochastic inertia weight is next



Algorithm 1 Solve for initial A,ω, φ estimates.

1: Initialize x and v, position and velocity vectors.
2: for λ = 1 to Λ do
3: for i = 1 to P do
4: if F (xi) > τ then
5: for d = 1 to 3 do
6: Check δd constraint of xi,d(λ).
7: end for
8: Â = xi,1(λ), ω̂ = xi,2(λ), φ̂ = xi,3(λ)
9: for k = 1 to K do

10: Ĥ(k) = Â cos(−ω̂k + φ̂)
11: end for
12: F (xi) = 1

K

∑K
k=0(H(k)− Ĥ(k))2

13: Update pb(i) and pg .
14: Update stochastic inertia weight w.
15: Update particle i’s velocity and position.
16: Update the worst particle with local evolution.
17: end if
18: end for
19: end for

Algorithm 2 Solve for β estimate.

1: Initialize x and v, position and velocity vectors.
2: for λ = 1 to Λ do
3: for i = 1 to P do
4: if F (xi) > τ then
5: Check δ constraint of xi(λ).
6: β̂ = xi(λ)
7: for k = 1 to K do
8: Ĥ(k) = . . .

A cos((ω2

g )(x cos(β̂) + y sin(β̂))−ωk+φ)
9: end for

10: F (xi) = 1
K

∑K
k=0(H(k)− Ĥ(k))2

11: Update scores, pb(i), and pg .
12: Update stochastic inertia weight w .
13: Update particle i velocity and position.
14: Update worst particle with local evolution.
15: end if
16: end for
17: end for

calculated which is used to update the velocity and position of
each particle. Last we use the principal of local evolution to
update the worst particle. The whole process repeats until the
fitness falls below the threshold τ .

Fig. 2: Legend for Figs. 3 and 4.

Algorithm 3 Resolve for A,ω, φ estimates.

1: Initialize x and v, position and velocity vectors.
2: for λ = 1 to Λ do
3: for i = 1 to P do
4: if F (xi) > τ then
5: for d = 1 to 3 do
6: Check δd constraint of xi,d(λ).
7: end for
8: Â = xi,1(λ), ω̂ = xi,2(λ), φ̂ = xi,3(λ)
9: for k = 1 to K do

10: Ĥ(k) = . . .

Â cos(( ω̂2

g )(x cos(β) + y sin(β))− ω̂t+ φ̂)
11: end for
12: F (xi) = 1

K

∑K
k=0(H(k)− Ĥ(k))2

13: Update scores, pb(i), and pg .
14: Update stochastic inertia weight w .
15: Update particle i velocity and position.
16: Update worst particle with local evolution.
17: end if
18: end for
19: end for

C. Step 2: Solving For β

In the second step we calculate the estimate for direction
β while keeping A,ω and φ fixed to their estimates from
step one. The whole procedure is shown in Algorithm 2. We
again initialize PSO particles randomly but here they only
have a dimension equal to 1 since they only estimate β.
Unlike step one we utilize the full function form of H(x, y, t)
given in Eq. (1) in the fitness when calculating the MSE.
During this run, we use more data from all N sensors in their
different locations. Then we proceed to run PSO as in step one
by checking constraints, updating pb(i) and pg , updating the
position and velocity vectors, followed by local evolution on
the worst particle.

D. Step 3: Solving For A,ω, φ

In step 3, shown in algorithm 3, our estimate for β will be
fairly robust from step 2 so we input it as a constant in the
function form of H(x, y, t) when calculating the fitness. Since
β is constant we then re-estimate Â, ω̂, and φ̂. We do note
that the estimates from step 1 are used as candidate solutions
in one of the particles in the swarm. The original estimates
are assumed to be good but they were calculated from using a
single sensor. We assert that using more data to estimate Â, ω̂,
and φ̂ will increase their accuracy to their true values. The
algorithm carries similarly to step 1 and 2 where we initialize
particles, calculate the fitness and update velocity and position
vectors.

VII. RESULTS AND DISCUSSION

Experiments were carried out to estimate the parameters of
a regular wave. Keeping everything constant three experiments
were carried out by varying the variance of the additive noise
to the sensor data, varying the number of sensors surrounding
a WEC, and by varying the sensor sampling frequencies.
We believe that these three types of experiments are able to
properly showcase that our estimation method will be well



(a) (b) (c)

Fig. 3: (a) Testing different noise variances of sensor measurements; (b) testing different number of sensors; (c) testing different values of
sensor sampling frequencies.

(a) (b) (c)

Fig. 4: Testing different noise variances of sensor measurements where estimation was done by (a) genetic algorithm, (b) simulated annealing,
and (c) vanilla particle swarm optimization.

suited to estimate waves under different conditions. For all
estimation experiments we set the constraints of the parameters
to have a minimum of 0 and a maximum of 2 for A and ω
and 2π for φ and β. For simulating the elevations of a wave
we set the parameters to their mid constraint points: A = 1,
ω = 1, φ = π, and β = π, and then add Gaussian white noise.

We set the maximum number of iterations Λ = 100 for our
PSO based estimator. The total number of particles in a swarm
was set to P = 40. The self recognition and social components
were set to c1 = 1 and c2 = 2 were we gave more emphasis
on global exploration. We let PSO run for the full iterations
Λ by setting τ = 0 in order to study the results of a full run.
One could set τ to a minimum error to reduce runtime (but
this will come with potential expense of accuracy). For the
stochastic inertia weight we set the minimum and maximum
weights to wmin = 0 and wmax = 1 and we choose the local
evolution constant to be γ = 0.2 to evolve the worst particles
in the swarm closer to the solution of the global best particles.
We tested our estimator against genetic algorithm, simulated
annealing, and vanilla PSO without model exploitation. Results
are obtained by doing a Monte Carlo analysis of 1000 runs for
each method.

In Fig. 3 we present results from our estimator, Fig 2 shows
its legend. Keeping everything constant, in Fig. 3.a we varied

the variance of additive noise to simulated wave elevation
sensor measurements. The plot includes the theoretical CRLB
curves for the four parameters of a regular wave, and the MSE
curves of the four parameters our estimator found. As one
can see the MSE curves touch the CRLB curves which shows
we’ve achieved the best possible estimates. Similar in Figs. 3.b
we varied the number of sensors surrounding a WEC and in
3.c, we varied the sampling frequency (in Hz) of the sensors.
Again we see in both plots that the MSE curves touch the
CRLB which shows that for any experimental variation we
always achieve the best estimates.

In Fig. 4 we show results from three different comparative
methods which were obtained from the Matlab R2015b Global
Optimization Toolbox. We used these methods to solve the
wave parameter estimation problem which is a difficult prob-
lem due to the complexity of the objective function shown
in Eq. (1). Methods were chosen to solve the estimation
problem as-is, in other words these methods do not exploit
the wave model structure. The three main methods we choose
for comparison are adaptive PSO as described in section V,
genetic algorithm, and simulated annealing. Fig 4, shows these
methods applied when varying the variance of additive noise.
As seen in all three plots, none of these methods are able
to successfully estimate the parameters yielding MSE curves



significantly above the lower bound curves. Experiments were
also carried out with these three methods when varying the
number of sensors and the sampling frequencies. All of which
also had MSE curves significantly above the CRLB curves
and hence not shown here. Additionally, we did not carry
out experiments with simulated annealing or genetic algorithm
of exploiting the domain since they generally have a longer
runtime than PSO, and our estimator using PSO already
produces adequate results.

VIII. CONCLUSION

We present a modified version of particle swarm optimiza-
tion using local evolution and a stochastic inertia weight that
is applied to estimate parameters of simulated regular wave
realizations by strategically exploiting the sinusoidal model
behavior of ocean waves. Estimation of wave parameters
provides a way to do short term forecasting that can be used for
control operations of a wave farm. Our approach works very
well as estimates touch the Cramer-Rao lower bound giving the
best possible results. Our method of exploiting the application
domain for parameter estimation can be also be extended to
other areas such as signal parameter estimation.

We are looking at several extensions for future work. Firstly
we are interested to inspect the performance and runtime
of using other state-of-the-art PSO version in place of ours.
Secondly, we are planning to include in our optimization
formulation regularization terms to prevent over-fitting the
noise. And thirdly we will look into waves which may have
irregular forms where they can be seen as a sum of regular
waves, with each component having different parameter values.
For short term forecasting of wave characteristics to be applied
in wave energy farm control it may be necessary to then
estimate an unknown number of A,ω, φ and β values. This
problem is considered extremely hard and to tackle it we plan
to significantly extend our PSO estimator with methods from
estimation theory and machine learning.
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