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Abstract—Decision makers tend to define their optimization
problems as multi-objective optimization problems. Generating
the whole nondominated set is often unrealistic due to its size
but also because most of these points are irrelevant to the deci-
sion maker. Another approach consists in obtaining preference
information and integrating it a priori, in order to reduce the
size of the nondominated set and have a gain in computation
time. In this work we focus on a partial preference relation
based on requirement and tolerance thresholds that translate
the Pareto dominance cone. After introducing this preference
relation, we present adaptations to use it in existing discrete
multi-objective optimization algorithms. Numerical experiments
on multi-objective combinatorial optimization problems show the
applicabiliy of our approach.

I. INTRODUCTION

In many real-world optimization problems it is required to
take into account several conflicting criteria. In this context
the Decision Maker (DM) is interested in efficient solutions,
which cannot be improved simultaneously on all objectives.
The image of an efficient solution in the objective space
is called a nondominated point. Multi-objective optimization
(MOO), and especially multi-objective combinatorial opti-
mizaton (MOCO), problems are subject to several limits. The
main difficulty is related to the large size of the nondominated
set, which is in the worst case exponential in the size of
the instance. This often results in prohibitive computation
times. Moreover, most of the solutions presented to the DM
are actually irrelevant with respect to his/her preferences. To
overcome this issue, preference integration in multi-objective
optimization has been more and more investigated. Preference
information of the DM can be integrated before (a priori),
during (interactive) or after (a posteriori) the optimization.
Concerning MOCO problems, the a posteriori approach is
limited by the computation time. Interactive methods, which
favor an exploration of the solutions by iteratively optimizing
a scalarizing function with evolving parameters, require the
involvement of the DM during all iterations [4]. Therefore
these methods cannot be used in all situations.

The a priori approach is usually based on optimizing
a scalarizing function (weighted sum, achievement func-
tion [14], ordered weighted average [15], Choquet integral [5],
etc.), whose parameters are defined before the optimization.

These parameters reflect the preferences of the DM. Some
authors also focus on preference relations based on these
scalarizing functions with partial preference information on the
parameters (see, e.g., [1], [3]). Multi-objective optimization
with respect to a dominance cone representing the DM’s
preferences has also been studied (e.g. [6]). In many of these
approaches, the DM is asked to defined trade-offs between
units of criteria compared to units of other criteria. In this
paper, we study a partial preference relation that defines sev-
eral situations of trade-offs between criteria with an alternative
framework.

The preference relation extends Pareto dominance by defin-
ing additional cases of dominance with values representing
a requirement or a tolerance on the criterion vector. A point
dominates another one if, in spite of requirement thresholds on
some criteria and thanks to tolerance thresholds on others, it
is considered better. This is similar to the type of information
required by some interactive procedures, e.g. in [9], where
the DM is asked to indicate the objectives to be increased
and those to be decreased. This preference relation presents
numerous advantages. The trade-offs can easily take account of
the notion of non-compensation. Moreover the DM can define
several cases where he/she can set requirement and tolerance
values to establish dominance, and thus integrate different
points of view. The requirement and tolerance thresholds can
either be determined as constant or variable. Each threshold
being defined on the scale of its corresponding criterion, this
approach easily handles heterogeneous criterion scales. Fur-
thermore, the preference relation is not necessarily transitive.
Since it adds additional cases of dominance, the number of
nondominated points according to this preference relation is
lower than the Pareto nondominated set. We present how
to apply a priori this preference relation in discrete multi-
objective optimization.

Preliminaries are defined in Section II, followed by a
presentation of the preference relation in Section III. After
explaining the adaptation to a discrete multi-objective opti-
mization algorithm in Section IV, we show the performance of
our approach on MOCO problems in Section V. Conclusions
and perspectives are provided in a final section.



II. PRELIMINARIES

We recall basic concepts and notations related to multi-
objective optimization. Consider a multi-objective optimiza-
tion problem with p ≥ 2 criteria where X denotes the set
of feasible solutions. Each solution x in X is represented
in the criterion space by its corresponding criterion vector
f(x) = (f1(x), f2(x), ..., fp(x)). We assume in the following
that each criterion is to be minimized, and we formulate our
problem as follows.{

min f(x) = (f1(x), f2(x), ..., fp(x))
s.t. x ∈ X (1)

Let Y = f(X) denote the set of all feasible points in the
objective space. Considering two feasible solutions x and x′,
and their corresponding feasible points y = f(x) and y′ =
f(x′), the following dominance relation can be defined:

y 5 y′ (y weakly dominates y′)⇔ yi ≤ y′i for all i = 1, ..., p

y ≤ y′ (y dominates y′)⇔ y 5 y′ and y 6= y′

We refer to N(Y ) as the nondominated set of Y .

N(Y ) = {y ∈ Y : there exists no y′ ∈ Y such that y′ ≤ y}

Solving problem (1) is understood here as computing N(Y )
and providing one efficient solution for each nondominated
point.

Typically partial information on the DM’s preferences can
be represented by a binary preference relation R, where y R-
dominates y′ is denoted by yRy′. We refer to N(Y,R) as
the nondominated set of Y with respect to relation R, simply
called R-nondominated set of Y .

N(Y,R) = {y ∈ Y : there exists no y′ ∈ Y such that y′Ry}

III. PRESENTATION OF THE PREFERENCE RELATION

The preference relation defines additional cases of domi-
nance by translating the Pareto dominance cone, using posi-
tive (requirement) or negative (tolerance) thresholds on each
criterion. After giving the definition of a threshold vector and
the general preference relation, we propose an interpretation
of this relation and give some particular cases.

A. Definition

The threshold vector can either be defined as constant or
variable.

Definition 1. Let y be a point in Rp, ∆(y) be a threshold
vector in Rp and g : Rp −→ Rp be a function in Rp. Then,
we have

∆i(y) = gi(y), i = 1, ..., p

For the sake of simplicity, we define ∆(y) as a linear
function of y. We propose a formulation with two parameters
a, b as follows.

Definition 2. Let y be a point in Rp, ∆(y) be a threshold
vector in Rp and a, b be two vectors in Rp. Then, we have

∆i(y) = aiyi + bi, i = 1, ..., p

If ai = 0, i = 1, ..., p, then the threshold vector ∆(y) is
constant.

Definition 2 includes thresholds being constant or calculated
as a percentage of a criterion value.

We give the definition of the preference relation hereafter.

Definition 3. Let y, y′ be two points of Y and ∆(y) be a
threshold vector in Rp.

yR∆y
′ if and only if y + ∆(y) 5 y′ and y 6= y′.

where y + ∆(y) is the vector of components yi + ∆i(y), i =
1, ..., p.

The threshold vector ∆(y) is always defined by the left
component of the pair (y, y′). Therefore, by a slight abuse of
notation, the threshold vector will be denoted by ∆ from this
point.

The following results exhibits an inclusion property between
two threshold vectors.

Proposition 4. Let ∆, ∆′ be two threshold vectors in Rp such
that ∆ 5 ∆′. Then, we have:

N(Y,R∆) ⊆ N(Y,R∆′)

Proof. Let y ∈ N(Y,R∆). Then, there exists no y′ ∈ Y such
that y′ + ∆ 5 y. Since ∆ 5 ∆′, there exists no y′ ∈ Y such
that y′ + ∆′ 5 y and y ∈ N(Y,R∆′).

From Definition 3, the preference relation R∆ can be
represented by a translated Pareto cone and is a generalization
of several known approaches:
• ∆ = (0, ..., 0). R∆ is equivalent to the Pareto dominance

and N(Y,R∆) = N(Y ).
• ∆ ≤ (0, ..., 0). R∆ is equivalent to an epsilon approxi-

mation [13].
• ∆ ≥ (0, ..., 0). R∆ is equivalent to an approach presented

in [2].
In these already known approaches, coordinates of ∆ are

either all positive, all negative or all zero. We present here-
after cases where ∆ may contain positive, zero and negative
components.

B. Interpretation

We illustrate a case where defining a constant threshold
vector with positive and negative values is relevant with
Example 1.

Example 1. Let Y = {y1, y2, y3} with y1 = (11, 9, 15), y2 =
(10, 10, 18) and y3 = (15, 13, 12). The DM establishes that if
a point y is significantly better than another point y′ on the
first two criteria and the difference on the third criterion is
not too important, then y is preferred to y′. To model this
situation, we set constant requirement values of 2 on criteria



f1 and f2 and a constant tolerance value of 5 on criterion f3,
resulting in a threshold vector ∆ = (2, 2,−5).
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Fig. 1: y1 R∆-dominates y3 (Example 1).

Using this threshold, we have y1R∆y
3 in accordance

with the preference information provided by the DM (see
Figure 1). As a consequence, y3 does not belong to the
R∆-nondominated set. Observe finally that we do not have
y2R∆y

3 because, in spite of better scores for y2 on criteria
f1 and f2, y2 is largely worse than y3 on criterion f3. There
are no other cases of R∆-dominance. Therefore, we have
N(Y,R∆) = {y1, y2} whereas N(Y ) = {y1, y2, y3}.

The negative threshold implies that the relation R∆ is not
necessarily transitive. We illustrate such a case with Figure 2
in a biobjective space.
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Fig. 2: A case where y1R∆y2 and y2R∆y3 but not (y1R∆y3).

Non-transitive preferences can occur quite naturally in some
cases. For instance, in Figure 2, y1 is preferred to y2 since the
advantage of y2 on criterion f2 is judged negligible whereas
the advantage of y1 on criterion f1 is judged significant.
Similarly y2 is preferred to y3. It appears, however, that y1 is
not preferred to y3 since the advantage of y3 on criterion f2

is no longer negligible.
When comparing two points, a deterioration on some criteria

can be compensated by a relatively good improvement on other
criteria. In Example 1, this deterioration is limited by a finite
negative threshold. However it is possible not to constrain
this deterioration. Indeed, the DM could determine that large
improvements on a group of criteria are significant enough and
the remaining criteria do not take part in the comparison. With
Example 2, we illustrate that R∆ can be useful to represent
this notion of non-compensation.

Example 2. Let y1, y2, y3 be the points defined in Example 1
and y4 be a point of Y such that y4 = (20, 21, 6). The
DM declares that a large improvement on criteria f1 and f2

cannot be compensated by any performance on criterion f3.
The threshold for the first two criteria is then greater than
before and evaluated to 10. By defining ∆ = (10, 10,−∞),
we get the following results:

y2 + ∆ =

 20
20
−∞

 5

20
21
6


Therefore we can conclude that y2 R∆-dominates y4 even if
y4 has a much better performance on the last criterion.

The R∆-nondominated set of a MOO problem can contain
dominated points. We illustrate such a case in Example 3.

Example 3. Let y, y′ be two points of Y such that y =
(11, 11, 17) and y′ = (10, 11, 9), and ∆ be a constant
threshold vector such that ∆ = (2, 2,−6). We have y′ ≤ y
but not (y′R∆y) since

y′ + ∆ =

12
13
3

 65
11

11
17


Thus y and y′ belong to the R∆-nondominated set even if

y is a dominated point.

In order to exclude Pareto dominated points from our set
N(Y,R∆), we introduce another preference relation, which is
the union of Pareto dominance and R∆ .

C. Union of preference relations

We first introduce a result on the nondominated set of a
union of preference relations.

Proposition 5. Let R,Rj , j = 0, 1, ...,m, be binary relations,

such that R =
m⋃
j=0

Rj . Then, we have:

N(Y,R) =
m⋂
j=0

N(Y,Rj).

Proof. Let y be a point of N(Y,R). Then, there is no point
y′ in Y , such that y is Rj-dominated by y′, j = 0, 1, ...,m.
Therefore y is in N(Y,Rj), j = 0, 1, ...,m. The converse is
also true.

In addition to use the Pareto dominance, by setting R0 =
≤, the DM could also be able to define more than one
situation where he/she is able to establish a preference
between two points. In a context of group decision making,
several DMs are involved in the decision making process.
Each DM could be able to propose a threshold vector so that
all points of view are taken into account. Therefore we define
a preference relation RU as follows.



Definition 6. Let y, y′ be two points of Y and ∆i be threshold
vectors in Rp, i = 1, ...,m.

yRUy
′ if and only if y ≤ y′ or yR∆iy′ for some i = 1, ...,m.

We ensure with the following corollary of Proposition 5 that
the RU -nondominated set does not contain dominated points.

Corollary 7. Let Y be a set of points. Then, we have:

N(Y,RU ) ⊆ N(Y ).

Proof. The proof is straightforward from Proposition 5, where
R0 is the Pareto dominance.

With Corollary 7, we also show that the RU -nondominated
set contains fewer points that the nondominated set and
justifies the integration of preference information.

Corollary 8. Let Y be a set of points in Rp and RU be defined
with m thresholds ∆i, i = 1, ...m, and ∆m+1 be a threshold
vector in Rp. Then, we have:

N(Y,RU ∪R∆m+1) ⊆ N(Y,RU ).

Proof. From Proposition 5.

With Corollary 8, we show that the more you use prefer-
ence information the less you have RU -nondominated points.
However there could be cases where the RU -nondominated set
is empty. We illustrate such a case in the following example.

Example 4. Let Y be a set of points in Rp containing two
nondominated points y1, y2 such that y1 = (10, 10, 18) and
y2 = (15, 13, 12). Let ∆1 = (2, 2,−6) and ∆2 = (−5,−4, 4)
be two threshold vectors. Since y1R∆1y2 and y2R∆2y1,
N(Y,RU ) is empty.

As shown in Proposition 9, a sufficient condition for the
existence of the RU -nondominated set is:

Condition 1. There exists an objective j ∈ {1, ..., p} such
that for each threshold ∆i, i = 1, ...,m, ∆i

j > 0.

Condition 1 imposes the existence of at least one criterion
that cannot be deteriorated in any preference situation. We
introduce the following result on N(Y,RU ) under Condition 1.

Proposition 9. Let Y be a set of points in Rp and RU

be a preference relation defined by m thresholds. Under
Condition 1, we have N(Y,RU ) 6= ∅.

Proof. By Corollary 7, we know that N(Y,RU ) ⊆ N(Y ).
We assume by contradiction that N(Y,RU ) = ∅.
Therefore there exists y1, ..., yq in N(Y ) such that
y1R∆i1 y

2R∆i2 ...y
qR∆iq y1, i1, ..., iq ∈ {1, ...,m}. Under

Condition 1, there exists an objective j = 1, ..., p such that
∆i

j > 0, i = 1, ...,m. Thus, y1
j + ∆i1

j ≤ y2
j < y2

j + ∆i2
j ≤

... ≤ yqj < yqj + ∆
iq
j ≤ y1

j . This contradicts the existence of a
circuit in relation RU , hence the proposition.

D. Elicitation framework for thresholds

The elicitation of a threshold vector ∆ can be performed
by identifying specific preference situations as in Example 1.
In each of these situations, the DM can determine two groups
of criteria, being the group of most and the group of least
important criteria, respectively. The thresholds corresponding
to the most important criteria are positive, while thresholds
corresponding to the least important criteria are negative. This
reflects the fact that one is more demanding on the most
important criteria, whereas one is more tolerant on the least
important criteria.

We propose a framework to establish different cases of
dominance between two points. The DM is asked to evaluate
different levels (e.g. small, average, large) of improvement
and deterioration on each criterion. After determing these
values (variable or constant), the definition of thresholds can
be performed by listing typical situations, combining improve-
ments and deteriorations, where a preference is clearly estab-
lished. This approach easily handles heterogeneous criterion
scales since the DM is asked to establish dominance based
on strengths of improvement and deterioration. We give an
example of the elicitation procedure with variable thresholds
in the following.

Example 5. We introduce hereafter a situation with three
objectives, where the DM defines two groups M = {1, 2},
and L = {3}, such that the DM considers objectives in M to
be more important than the objective in L. Therefore the DM
is interested in even moderate improvements for objectives
in M , while only large improvements are considered for the
objective in L. The values of improvements and deteriorations
for each objective are illustrated in Figure 3.
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Fig. 3: Illustration of an improvement/deterioration scale for each criterion.



First, the DM determines that a point y is preferred to
another point y′ if the performances of y on the criteria in
M reflect at least a small improvement compared to y′ and
provided that the difference on the objective in L is not
greater than a strong deterioration. To model this, we can
define the threshold vector ∆1 = (10%, 10%,−70%), which
is represented by the thick line in Figure 3. Furthermore,
the DM states that a point y is preferred to another point
y′ if the performances of y on the criteria in M reflect
at least an average improvement compared to y′ on both
objectives in M , irrespective of the performances on the
objective in L. Difference on the objective in L is thus not
taken into account. Consequently, we introduce the threshold
vector ∆2 = (30%, 30%,−∞).

However, the DM also prefers points that are good on at
least two objectives. If a point y′ is good on only one objective,
namely 1 (respectively 2), there could exist a point y, whose
performances on objectives 2, 3 (respectively 1, 3) are much
better than for y′. This corresponds to large improvements
of y′ on objectives 2, 3 (respectively 1, 3). In these cases,
y is preferred to y′. Large improvements on these pairs of
objectives are modeled by the following threshold vectors
∆3 = (70%,−∞, 100%), ∆4 = (−∞, 70%, 100%). Observe
that, since objectives 1, 2 are more important than objective
3, an improvement on these objectives is more important than
an improvement on the last objective. Therefore the value of
large improvement on these objectives is smaller than the one
on the last objective.

In the following, we present a framework to compute the
RU -nondominated set in discrete MOO algorithms. After re-
minding the general principles of these algorithms, we explain
the additional steps to compute the RU -nondominated set.

IV. ADAPTATION TO DISCRETE MULTI-OBJECTIVE
OPTIMIZATION ALGORITHMS

A. Presentation of discrete multi-objective optimization
In discrete MOO, most solution approaches iteratively gen-

erate candidate solutions. A pool of solutions is updated when
a new candidate solution arrives. The candidate solution is ei-
ther inserted or discarded. It can also remove solutions already
in the pool. Furthermore the images of solutions in the pool
can guide the enumeration in the so-called search region [8],
i.e. that part of the objective space that may still contain
nondominated points. The main steps for the computation of
the nondominated set are described in Algorithm 1 hereafter.

Algorithm 1 Generation algorithm

Require: Initialization of the search region.
while The search region is not empty do

Generate a nondominated point y in the search region.
Update the search region by removing the part dominated
by y.

end while

A trivial approach to compute the RU -nondominated set
would be to use a classic MOO algorithm to generate the

nondominated set and filter this set using pairwise compar-
isons in order to obtain the RU -nondominated set (Corol-
lary 7). However the computation time of the nondominated
set increases with the size of the instance. Therefore we
use the preference information to guide the search within
the objective space, in order to have a gain in computation
time. We adapt the main steps of Algorithm 1 to directly
compute the RU -nondominated set. Such methods iteratively
find a nondominated point and then update the search region.
We first present the adaptation of the updating step when
a point is generated (Section IV-B). Then, we present the
adaptation of the generating step of a RU -nondominated point
(Section IV-C).

B. Updating the search region

Most approaches designed to generate the nondominated
set iteratively update a search region containing the remaining
nondominated points. Given any generated point y in Y , they
provide a procedure to remove from the search region the part
that y dominates according to the Pareto dominance. The set
of generated points is denoted by N and its associated search
region by S(N).

S(N) = {y ∈ Rp : there is no y′ in N such that y′ 5 y}

Moreover given a point y in Y , we denote by D(y) the part
of the objective space dominated by y.

D(y) = {y′ ∈ Rp : y 5 y′}

Thus, updating the search region S(N) with a point y can be
reformulated as follows:

S(N ∪ {y}) = S(N)\D(y)

More generally we denote by SR(N) and DR(y) the search
region associated to the preference relation R and the part of
the objective space that y R-dominates, respectively.

SR(N) = {y ∈ Rp : there is no y′ ∈ N such that y′Ry}

DR(y) = {y′ ∈ Rp : yRy′}

Thus, updating the search region SR(N) by a newly generated
point y can be reformulated as follows:

SR(N ∪ {y}) = SR(N)\DR(y)

We introduce a trivial result concerning the region R∆-
dominated by a point y.

Proposition 10. Let y and ∆ be a point and a threshold vector
in Rp, respectively. Then, we have DR∆(y) = D(y + ∆).

Proof. Trivial.

The following corollaries are deduced from Proposition 10.

Corollary 11. Let y and ∆ be a point and a threshold vector
in Rp, respectively. Then, we have:

DRU
(y) = D(y) ∪D(y + ∆)



Therefore we introduce the following formulation for the
search region SRU

(N) associated to the preference relation
RU .

Corollary 12. Let y and ∆ be a point and a threshold vector
in Rp respectively and N be a set of points in Rp. Then,

SRU
(N ∪ {y}) = SRU

(N)\( D(y) ∪D(y + ∆) )

Each time a point y is generated, most of the recent
generic discrete MOO algorithms (see, e.g., [7], [10]) include
a procedure which takes y as an input and removes from the
search region the part of the objective space that y dominates
according to Pareto. From Corollary 12, updating the search
region associated to RU can be done with the same procedure
by not only updating with the original point y but also updating
with an artificial point y + ∆. We illustrate the result above
with Figure 4.
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Fig. 4: After generating y, the part RU -dominated by y is removed from
the search region.

Extending this procedure to several thresholds ∆1, ...,∆m

is straightforward. After generating a point y, the search region
is updated with y and m artificial points y+ ∆1, ..., y+ ∆m.
We now focus on the generation of a new RU -nondominated
point.

C. Generating a RU -nondominated point

The search region can be decomposed as a list of search
zones [8]. Each search zone is induced by a local upper bound
u in Rp and is defined as follows.

{y ∈ Rp : yi < ui, i = 1, ..., p}

The recent discrete MOO algorithms mentionned above main-
tain, more or less explicitly, a list of search zones that
represents the search region. Generating a nondominated point
is done by choosing a search zone in the list and generating a
nondominated point in this search zone if it exists. In the fol-
lowing, we focus on the computation of a RU -nondominated
point in a search zone denoted by its local upper bound u in
the objective space.

Exploring a search zone can be done by solving the fol-
lowing program with λ a vector of strictly positive weights in
Rp:

Pu


min

p∑
i=1

λiyi

s.t. y ∈ Y
yi < ui, i = 1, ..., p

Remark 1. Problem Pu involves strict inequalities yi <
ui, i = 1, ..., p, that must be transformed into large inequalities
of the type yi ≤ ui − ε where ε is a small enough value. In
our experiments, the objectives take integer values and we set
ε = 1.

Two cases can occur:
• Program Pu is infeasible, in which case the search zone

corresponding to u is retrieved from the search region;
• Program Pu yields a nondominated point y∗. However y∗

can be R∆i -dominated, i = 1, ...,m, by a point outside
the search zone u as illustrated in Figure 5.
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Fig. 5: Point y∗ is RU -dominated by y′, which does not belong to the
zone induced by u.

For the sake of clarity, we first present the generation of
a RU -nondominated point with one threshold vector ∆ and
then explain the extension to several threshold vectors ∆i,
i = 1, ...,m.

1) Case with one threshold:

Proposition 13. Let y∗ be the optimal point of Pu, λ be
a vector of strictly positive weights in Rp and P ∗∆ be the
following program:

P ∗∆


min

p∑
i=1

λiyi

s.t. y ∈ Y
yi + ∆i ≤ y∗i , i = 1, ..., p

1) If P ∗∆ is infeasible, then y∗ ∈ N(Y,RU );
2) If P ∗∆ is feasible, then y∗ /∈ N(Y,RU ).

Proof.
1) If P ∗∆ is infeasible, there exists no point y′ in Y such

that y′ + ∆ 5 y∗. Therefore y∗ is RU -nondominated.
2) If P ∗∆ is feasible and y′ is its optimal point, y′+∆ 5 y∗.

Therefore y∗ is R∆-dominated by y′.



Proposition 13 provides two rules when generating a non-
dominated point y∗.
• If y∗ is R∆-nondominated, then y∗ is added to N and

the search region SRU
(N) is updated with y∗ and y∗+∆

(Section IV-B).
• If y∗ is R∆-dominated by a point y′, then y∗ is not added

to N but the search region SRU
(N) is updated with y′+∆

to avoid enumerating y∗ again, and y∗ + ∆ since there
could be points that are R∆-dominated by y∗ but not by
y′ (see Figure 6).
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Fig. 6: The point y′′ is RU -dominated by y∗, even if y∗ is also
RU -dominated.

Remark 2. Note that using y∗ to update the search region is
redundant with using y′+ ∆. Observe also that y′ can still be
generated in further iterations since y′+ ∆ does not prune y′.

Remark 3. The linear formulation of ∆ (Definition 2) is
helpful, since it only adds linear constraint to the problem.

2) Case with several thresholds:
We extend the generating step for several threshold vector

∆i, i = 1, ...,m. We check for each threshold ∆i, i = 1, ...,m,
if the point is R∆i -dominated by solving the problem P ∗∆i

described in Proposition 13. There are two possible situations:
• If for all i = 1, ...,m, there exists no feasible point for all
P ∗∆i , then y∗ is RU -nondominated. Therefore we add y∗

to the RU -nondominated set. The search region is updated
with y∗, y∗ + ∆1, ..., y∗ + ∆m.

• If, for some k = 1, ...,m the point y∗ is R∆k -dominated
by a point y′, y∗ is not added to the RU -nondominated
set . Programs P ∗∆k+1 , ..., P

∗
∆m are not solved since

y∗ is already proven to be RU -dominated. The search
region is updated with y′ + ∆1, ..., y′ + ∆m and also
y∗+∆1, ..., y∗+∆m for the same reason as in the specific
case with one threshold vector (see Figure 6).

Observe that both updating the search region and comput-
ing a RU -nondominated point require a larger computational
burden than for the Pareto nondominated set. Indeed with
m threshold vectors, updating the search region requires m
additional updates and 1 to m additional optimizations. How-
ever the preference information conveyed by these thresholds

usually leads to a RU -nondominated set which is substantially
smaller than the Pareto nondominated set. This is illustrated
in Section V.

V. NUMERICAL EXPERIMENTS

We performed our experiments using the generic algorithm
presented in [11], which refines Algorithm 1 and maintains
a list of search zones to describe the search region. This
algorithm generates all nondominated points for discrete
MOO problems. We have generated our results on the
Multi-Objective Assignment Problem (MOAP). The MOAP
consists in assigning n agents to n tasks in order to minimize
the total assignment cost. An agent is assigned to one and
only one task and a task is assigned to one and only one
agent. Each agent-task assignment involves p costs. The total
cost of an assignment is computed by adding up the costs
of every chosen agent-task assignment. These objective costs
are random integers uniformly drawn in the interval [1, 20].

For MOAP we used the following instance sizes:

• p = 3 and n = 30 (3-MOAP30);
• p = 3 and n = 40 (3-MOAP40);
• p = 3 and n = 50 (3-MOAP50).

The thresholds used for the experiments are the one used
in Example 1.

• ∆1 with a1 = (10%, 10%,−70%) and b1 = (0, 0, 0);
• ∆2 with a2 = (30%, 30%, 0) and b2 = (0, 0,−∞);
• ∆3 with a3 = (70%, 0, 100%) and b3 = (0,−∞, 0);
• ∆4 with a4 = (0, 70%, 100%) and b4 = (−∞, 0, 0).

We computed the Pareto nondominated set and the RU -
nondominated set with RU being the union of the Pareto
dominance and R∆1 , R∆2 , R∆3 , R∆4 .

A computer with a Linux Debian operating system, 3.2
GHz processor and a 16 GB memory limit has been used
for the experiments. CPLEX 12.6.3 is the solver provided for
the algorithm. We used 10 instances for each problem size
to compute our results. We report the average CPU time (s),
the average size of the different R-nondominated set, denoted
by |N(Y,R)|, R being either Pareto dominance or RU . Since
RU does not satisfy Condition 1, we also give the number of
empty RU -nondominated sets (# Empty) in Table I, II, III.

TABLE I: CPU Time and Number of Points for 3-MOAP30 Instances.

3-MOAP30 CPU time(s) |N(Y,R)| # Empty
Pareto 1424.61 6181.4 -
RU 325.53 443.9 0

TABLE II: CPU Time and Number of Points for 3-MOAP40 Instances.

3-MOAP40 CPU time(s) |N(Y,R)| # Empty
Pareto 4774.81 14679.7 -
RU 800.71 562.6 0



TABLE III: CPU Time and Number of Points for 3-MOAP50 Instances.

3-MOAP50 CPU time(s) |N(Y,R)| # Empty
Pareto 11753.18 24916.8 -
RU 1602.90 553.8 0

We observe that for all instances the gain in computation
time is significant. The number of RU -nondominated points is
also reduced compared to the Pareto nondominated set. The
ratio concerning the difference of size of each nondominated
set does not correspond to the ratio on the difference of
computation time. Indeed, there are between 1 and 4 additional
optimizations to check for RU -dominance. Therefore the time
spent for each generated RU -nondominated point is larger than
the time spent for a Pareto nondominated point. Observe that
even if ∆1,∆2,∆3 and ∆4 do not satistfy Condition 1, there
is no empty set in all instances.

In order to evaluate the quality of the returned RU -
nondominated set, and its consistency with the threshold
vectors, we compare it with the Pareto nondominated set.
For this purpose, after computing these two sets, we take
as indicators the minimum and maximum values on each
objective over each of these two sets. These values correspond
to the ideal and nadir point values, respectively. We report the
results on one 3-MOAP40 instance in Table IV.

TABLE IV: Ideal and Nadir Points for a 3-MOAP40 Instance.

3-MOAP40 instance Ideal Nadir
f1 f2 f3 f1 f2 f3

Pareto 49 52 55 507 509 489
RU 101 92 309 188 171 466

Several observations can be made on this instance. The
threshold vectors ∆1,∆2,∆3 and ∆4 represent a situation
where f1 and f2 are more important than f3. Indeed, the
maximum value on f1 and f2 have significantly decreased,
while the maximum performance on f3 has only slightly
decreased. On the contrary, the ideal point has only slightly
increased on f1 and f2 in comparison with f3. This underlines
the fact that good performances on f3 are less considered.
Observe that the deterioration on f1 and f2 is the consequence
of avoiding points being good on only one objective. Finally,
note that the modifications of the ideal and nadir point on f1

and f2 are comparable, which seems natural since objectives
f1 and f2 are both considered of similar importance.

VI. CONCLUSIONS

We presented an original preference relation based on re-
quirement and tolerance values, that translate the Pareto dom-
inance. This not necessarily transitive preference relation can
have a variable preference structure and integrates the notion
of non-compensation. To use this preference relation, we based
our approach on a general scheme of multi-objective discrete
optimization algorithms. After testing on several instances of
MOCO problems, we observe that the results are promising.

This work offers several research directions such as eliciting
methods for the thresholds or use a set of thresholds defined

by constraints. Applying this preference relation with approx-
imation algorithms such as, e.g., multi-objective evolutionary
algorithms could be useful in the case where the computa-
tional effort is too demanding for exact algorithms. Covering
sets [12] could also be studied in this framework when
the nondominated set according to the preference relation is
empty.
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