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Abstract—We tackle a production scheduling problem in a
manufacturing system. The aim is to design an efficient exact
method and find a trade-off between tardiness, storage and
energy costs described by a piecewise-linear function. Therefore,
we propose two time-based MILP formulations. The first one
is precedence-oriented and the second is storage-oriented. These
two formulations are compared and tested on realistic instances
in order to show their limits. Good solutions are obtained, even
on the biggest instance.

I. INTRODUCTION

Nowadays, the electricity price increases and the demand-
response market emerges [1]. This incites factories, inter alia,
to take into account the electricity tariff when building their
production plans. There are two main ways to reduce the elec-
tricity bill: reduce the consumption by improving machines
efficiency, or shift consuming activities when electricity is
cheap. This paper is focused on the latter. The electricity cost
function can be constant over time, a peak/off-peak tariff, or
even a more complex cost function. In this paper, a general
form of electricity tariff is studied. Time buckets are consid-
ered, and in each time bucket, a piecewise-linear function of
the instantaneous power consumed gives the electricity cost
per time unit. This kind of electricity tariff penalizes power
peaks above given values, by increasing the variable cost of the
energy and adding a fixed cost. This cost function would allow
grid operators to better regulate the grid by penalizing power
consumption peaks at crucial time periods. Reciprocally, it
might in some contexts be interesting to concentrate energy
consumption, which can be done by decreasing the variable
cost as power grows. Aggregators could also use this kind of
cost function to feed the demand-response market. In order
to evaluate the potential impact of taking into account such
an electricity tariff in a production scheduling problem, a real
manufacturing plant is studied.

The studied Schneider Electric plant produces electrical
cabinets. There are two parallel production lines, one for the
bodies, one for the doors. At a certain point, they are painted,
then put together. The current scheduling strategy in the plant
is led by the will to minimize the stock, and to produce in

due time, with the right quality level. This "zero stock policy"
is inherited from kanban [2], one of the current production
management strong principles. In a manufacturing plant, one
of the only ways to get some flexibility without compromising
the delivery date is to introduce some storage and to change
the inventory policy. In this paper, the potential of challenging
the "zero stock policy" by generating energy-aware production
plans is studied. A more detailed description of the plant
process, as well as a discussion about energy measurement
and energy consumption characterization are given in [3].

In this paper, the challenge is to develop efficient exact
methods to solve the problem as accurately as possible, while
modeling efficiently the piecewise-linear energy costs. In Sec-
tion II, a formal description of the scheduling problem is given.
Then, Section III is dedicated to an overview of existing works
about production scheduling with energy costs. In Section IV,
two different Mixed-Integer Linear Programming formulations
are proposed. Whereas Section V is devoted to the description
of the data-set, computation and analysis of the results.

II. MODELING

In this section, the problem data are first described, then
an optimal solution is characterized, finally the corresponding
Graham’s notation is given and complexity is discussed.

A set of two types of materials is considered: final materials
(different references of electrical cabinets), and intermediate
materials (cabinet bodies and doors, at different production
states). Each material has an associated storage cost that
models the holding cost. For instance, the storage cost of a
body is higher than the storage cost of the corresponding door
since the body is more difficult to transport and to store and
its economical value (quantity of steal) is higher.

Definition 1. Let M be the set of all those materials.
∀matm ∈ M , let scm ∈ R+ be the storage cost of one unit
of the material matm.

The plant receives a set of customer demands, each of them
associated to a desired quantity of a given material and a due



date. A tardiness cost for delivering a demand after the due
date is decided, depending on the kind of demand.

Definition 2. Let D be the set of customer demands, and
∀demd ∈ D, let: duedated ∈ N be the due date of the demand,
fmatd ∈M be the final product to satisfy the demand, qd ∈ N
be the needed quantity of product, tcd ∈ R+ be the cost of
delivering one time unit after duedated.

Each customer demand has to be satisfied by a job, com-
posed of six activities. For each job, the precedence graph
between activities is the same in-tree.

Definition 3. Let: J be the set of jobs; jd ∈ J be a job such
that jd = {a1[d], . . . , a6[d]}; Gd be the precedence in-tree
associated to a job jd; A be the set of all activities associated
to every demand: A =

⋃
jd∈J jd; G be the precedence graph

between all activities, a collection of in-trees: G = (A,A) =⋃
jd∈J Gd .

The plant has a set R = {r1, . . . , r5} of machines with
unitary capacities. Each activity a ∈ A has to be scheduled
on a given machine. Moreover, for each job jd, the same
assigment of the activities of jd on the machines is given.

Definition 4. Let R = {r1, . . . , r5} be the set of considered
machines. ∀jd ∈ J , the assignment of the activities on the
machines is: (a1[d], r1), (a2[d], r2), (a3[d], r3), (a4[d], r2),
(a5[d], r4), and (a6[d], r5).

Besides, each precedence arc (ai[d], aj [d]) ∈ A, holds the
intermediate material reference and quantity and a minimum
delay (time lag) between activities. Since the precedence
graph is a disjoint collection of in-trees, every activity has
at most one successor. Thus, data related to an arc (ai, aj) are
considered as activity ai data.

Definition 5. ∀ai ∈ A, let: vpti be the processing time for
every unit of material ai produces (called variable processing
time); pti be the total minimum processing time of ai; resi be
the machine on which ai has to be processed; pi be the power
consumption of the activity ai; imati be the intermediate
material produced by ai and consumed by aj ; qi be the number
of units of this imati activity ai has to produce for each
unit of final material needed; dmini be the minimum time
lag between the production of each unit of imati and the
consumption of the same unit.

Figure 1 shows the precedence graph of a job jd. The graph
is an oriented in-tree with six activity nodes. Each activity
is scheduled on a different machine, except for the painting
activities that share the same painting machine (represented
by an exclusive or). Each arc of the graph corresponds to
an intermediate material, a quantity, and a minimum delay
between activities. For example, in order to produce one unit
of the final material, Activity a6 has to consume one painted
body and two painted jointed doors. In order to consume a
painted jointed door, a drying delay of the joint of six hours
has to be respected.
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Figure 1. Precedence graph of a job jd

An admissible solution to this scheduling problem is a
schedule of the activities of every job. Both preemptive and
non-preemptive solutions can be considered. Non-preemptive
solutions are more easily applicable in a real factory, but
preemptive solutions can really improve objective value.

Let sti (resp. eti) be the start time (resp. completion time)
of the activity ai. Let stki be the time when activity ai starts
the production of the piece of material corresponding to the
kth piece of final material. The following constraints define
the problem:
• the activities duration has to be respected:

∀ai[d] ∈ A, sti = st1i (1)

eti = stqd×qii + vpti (2)

∀k ∈ {1, . . . , qd × qi}, stk+1
i ≥ stki + vpti (3)

• at most one activity is scheduled on the same machine at
the same time:

∀(ai, aj) ∈ A×A|resi = resj ∧ i 6= j,

sti ≥ stj ⇒ sti ≥ etj (4)

• every piece of material imati consumed by aj must have
been produced by ai at least dmini sooner:

∀aj [d] ∈ A,∀k ∈ {1, . . . , qd × qj},

stkj ≥ max
ai∈A|∃(ai,aj)∈A

(
st
dk×qi/qje
i + vpti + dmini

)
(5)

Moreover, an optimal solution minimizes:
the storage costs ∑

matm∈M
(scm × sqm) (6)

where sqm is the number of units of matm stored,
multiplied by the duration they were held in stock,

the tardiness costs ∑
d∈D

(tcd × ld) (7)
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Figure 2. Energy cost function of the time bucket B1.

where ld is the delivery tardiness of Demand demd,
the energy costs

Definition 6. Let T be the time interval considered for the
scheduling problem. Let pmax be the maximum power that
can be consumed by the studied plant and P = [0, pmax]
be the related interval of definition of possible power values.
Then, let us define power : T → P a function of time that
gives the overall power consumption of the plant at time t,
such that: power(t) =

∑
ai∈A|ai is running at t

pi.

We consider a set of buckets, that are time intervals where
the energy cost function does not change. For each time t
in a bucket Bl, the electricity cost is given by the same
piecewise-linear cost function fBl

, depending on power(t).
The power capacity, for a fixed bucket Bl, is divided into
capacity intervals (non necessarily uniform), such that in each
interval the function fBl

is linear.

Definition 7. Let: B be the set of buckets; Bl ∈ B be a bucket
such that: Bl = [Binfl ,Bsupl [; Il be the ordered set of power
capacity intervals for a given bucket Bl; Ih ∈ Il be a power
capacity interval such that: Ih =]cminh, cmaxh]; fch be the
fixed cost that occurs when: power(t) ≥ cminh; vch be the
variable cost that occurs when: cminh ≤ power(t) ≤ cmaxh;
fBl

: P → R+ be the piecewise-linear cost function for a given
bucket Bl, such that:

fBl
(p) =

∑
Ih∈Il|p>cminh

[
fch+vch×(min(cmaxh, p)−cminh)

]
Figure 2 gives an illustration of the piecewise-linear cost

function fB1 for a fixed bucket B1. In this example, power
capacity is partitioned in a uniform way, every 4 kW. The value
of fB1

(p) is computed by looking over each power capacity
interval, such that p is lower or equal the maximum capacity
of the interval: I0 and I1. For each of those capacity intervals,
the related cost is given by a fixed cost plus a linear function
of the power exceeding the minimal capacity of the interval.

For example, the cost induced by the interval I1 is given by
fc1+vc1×(p−4). Finally, the obtained value fB1(p) is a cost
in Euro cents per hour, that has to be integrated over time in
order to obtain the total cost in Euros over a given time period.

The total energy cost over a time period T is given by:

E =
∑
Bl∈B

∫ Bsup
l

Binf
l

fBl
(power(t)) dt (8)

This problem is a generalized flow-shop problem with
precedence, due dates, time-lags, and an energy resource. The
objective considered is a trade-off between tardiness cost,
storage (earliness) cost and energy cost. A convenient and
classical notation for scheduling problems is the Graham’s no-
tation scheme introduced in [4]. In [5], a survey of complexity
results for scheduling problems with time-lags is given, and
the notation lj for time lags in the β field of the Graham’s
notation is introduced. Thus, our problem Π may be described
as follows:

Π : F |res1, in-tree, dj , lj |
∑
j

(wEj Ej + wTj Tj) + E

We also address the preemptive case and note Π′ the problem
Π with preemption allowed.

III. RELATED WORK

Flow-shop scheduling and lot-sizing problems have been
broadly studied in the literature. In [6], a review of production
scheduling is given, covering many aspects of our problem
Π. More recent results are given in [7], NP-hardness is
proven for several previously opened flow-shop problems. In
particular, Π2 : F2|pij = 1, chains|

∑
j(Ti) is proven being

NP-hard. Since Π is more general than Π2, both are NP-
hard. Notice that Π′, where the preemption is allowed for Π,
remains hard (see [8]). 1

Electricity-aware scheduling is an emerging trend. If one
wants to participate in the demand-response market, one can
consider maximum power-peak capacity, or electricity cost
functions, both varying over time. In the first case, the key
point is to manage electricity consumption to respect capacity
constraints.

In [10], a scheduling problem close to ours (except for as-
signment, precedence and objective function) is presented: the
unrelated parallel machine scheduling problem with electricity
costs. The electricity cost function studied has time buckets
with linear cost functions.

In [11], the authors introduce the Energy Scheduling Prob-
lem (EnSP) where activities are defined by their required
energy and minimum and maximum resource requirements.
The problem consists in finding, for each activity, a starting
and completion times but also a power allocation that can vary
over time. The objective considered is the sum of the linear
energy costs and power overrun costs. A two-step approach to

1One could also consider Π as a RCPSP with unitary capacity resources
(machines), a in-tree precedence graph and a more complex objective function.
Point out [9] for a survey about RCPSP.



solve the problem is given, composed of a time-based MILP
model and a constraint propagation technique.

In [12] and [13], this problem is extended with time
windows and linear efficiency functions. Mixed Integer Linear
Programs, satisfiability tests and a hybrid branch-and-bound
method are proposed to solve the problem.

Another extension of the EnSP, given in [14], consists in
considering non-linear efficiency functions. The authors intro-
duce a piecewise-linear lower and upper bounding framework,
as well as two MILP formulations, and a branch and price
procedure to solve the problem. They also show that the
preemptive scheduling problem with piecewise-linear energy
cost is NP-complete.

When the key point is no more the electricity capacity, but
the electricity cost, complex electricity cost functions have to
be considered.

In [15], a short overview of energy-related objectives in
lot-sizing and flow-shops problems is given, but only peak/off-
peak electricity cost functions are considered.

In the same way, in [16], a slightly different version of
problem Π is studied: the time horizon is divided into several
time buckets with a linear electricity cost function associated
with each bucket. The authors also use a local search method
to solve the problem and give a MIP formulation used as one
of the local search operators.

On our side, a piecewise-linear electricity cost function,
varying over time is considered, as explained in Section II.

IV. RESOLUTION METHODS

This section is devoted to the presentation of two time-
based Mixed-Integer Linear formulations: the first one is non-
preemptive and precedence-oriented, and the second one is
preemptive and storage-oriented.

Definition 8. In both formulations, the considered time hori-
zon T is discretized such that:
• τ is the time step (ex: 10mn)
• H is the number of time steps considered (ex: 60)
• T = {0, τ, . . . , (H − 1) × τ} is the set of instants

considered
• t ∈ T is a given time instant considered (ex: 6h45)

A. Time-Based Precedence-Oriented Formulation

This formulation is based on a classical time-based schedul-
ing formulation (see [17]) that uses time-indexed boolean vari-
ables giving the starting time of each activity. This formulation
does not allow preemption and thus addresses Problem Π.
There are classical: precedence constraints with minimum
delays, tardiness constraints and tardiness cost. Moreover,
the storage constraints used give an approximation of the
storage cost. Indeed, for each precedence arc (ai, aj), the
whole material quantity is considered stored between the sti
and stj . This is exact if and only if the production rate and
consumption rate of both activities are the same. Otherwise
this is an approximation of the storage costs that allows us to
store material only if it is profitable regarding the others costs.

Finally, modeling piecewise-linear energy costs with a linear
program was a challenge and is the biggest contribution of
this paper. Note that the electricity cost depends on the power
consumption of all activities at the same time, thus this is a
coupling constraint.

Let the decision variables of this formulation be:
yi,t ∀ai ∈ A,

∀t ∈ T
a boolean variable that is worth
1 if the activity ai starts at t, 0
otherwise

eti ∀ai ∈ A the completion time of the activ-
ity ai

stockm ∀matm ∈M the total amount of time dur-
ing which one unit of material
matm is stored

tardd ∀demd ∈ D the (positive) amount of time
between the due date of demand
demd and its delivery date

powert ∀t ∈ T the power consumption of the
whole production plan at time t

βt,h ∀t ∈ T
∀Ih ∈ Il|
t ∈ Bl

a boolean variable equals to 1 if
the power capacity interval Ih is
used at time t

αt,h ∀t ∈ T
∀Ih ∈ Il|
t ∈ Bl

a real variable equals to the
power value used in the capacity
interval Ih at time t

A feasible non-preemptive solution, regarding yi,t variables,
is defined by the following equations:∑

t∈T
yi,t = 1 ∀ai ∈ A (9)∑

t∈T
t× (yj,t − yi,t) ≥ dmini ∀(ai, aj) ∈ A (10)

∑
ai∈A|resi=r

t∑
t′=tinf

yi,t′ ≤ 1 ∀r ∈ R,∀t ∈ T (11)

eti =
∑
t∈T

(yi,t × t+ yi,t × pti) ∀ai ∈ A (12)

Equation (9) is a classical assignment constraint that ensures
activities can start only once. Equation (10) defines start-to-
start precedence constraints with minimum delay. Equation
(11) is the disjunctive constraint that ensures every machine
is used by at most one activity at the same time. In this
constraint, tinf = b t−ptiτ c × τ + 1 is the first time step
where ai can have begun and still being running at time t.
Finally, Equation (12) sets the completion time of each activity,
regarding their starting time.

Then, the following constraint is used to compute how much
storage is used over the whole time horizon.

stockm =
∑

(ai,aj)∈A|mati=matm

∑
t

[
t× τ × (yj,t − yi,t)× qi

]
,∀matm ∈M (13)



Equation (13) allows us to recover: the idle time between the
starting time of activity ai (that produces material matm) and
the starting time of activity ai (that consumes it), multiplied by
the quantity of material matm produced. Note that this is an
approximation of the real storage duration of matm, since that
supposes activities have the same consumption and production
rate.

The following classical tardiness constraints ensure that
tardd is the positive tardiness of demand demd, regarding
its due date.

tardd ≥ et6[d]− duedated ∀demd ∈ D (14)
tardd ≥ 0 ∀demd ∈ D (15)

Equation (14) ensures that the tardiness of a given demand
demd is greater than the amount of time between its due date
and the completion time of the last activity of the job jd.
Equation (15) ensures that this tardiness is positive.

Equation (16) computes the instantaneous power used by
the whole set of activities, at every time step.

powert =
∑
ai∈A

t∑
t′=tinf

pi × yi,t′ ∀t ∈ T (16)

Previous time-steps have to be looked over in order to deter-
mine if an activity is running at time t, following the same
principles as Equation (11).

Now, let us introduce the constraints defining the piecewise-
linear energy cost function, as described in Section II.

∀t ∈ T, ∀Ih ∈ Il|t ∈ Bl,

βt,h ≥
powert − cminh

pmax
(17)

αt,h ≤ (cmaxh − cminh)× βt,h (18)

αt,h ≥ (cmaxh − cminh)× βt,h+1 (19)

∀t ∈ T, powert =
∑

Ih∈Il|t∈Bl

αt,h (20)

Equation (17) forces βt,h to 1 when the power consumed at
time t is greater than the minimal capacity of the interval.
Equation (19) ensures that if the capacity interval Ih+1 is
(partially) covered, then the capacity interval Ih is entirely
covered. Equation (18) ensures that if the capacity interval
Ih is (partially) covered, then βt,h is worth 1. Equation (20)
ensures that the sum of capacity interval covering equals to
the power consumed at the same time.

Finally, the objective function of this time-based
precedence-oriented formulation is defined below.
Energy objective∑

t∈T

∑
Ih∈Il|t∈Bl

fch × βt,h + vch ×αt,h (21)

Tardiness objective ∑
d

tardd × tcd (22)

Storage objective ∑
m

stockm × scm (23)

Then, the overall MILP formulation is given by:

min (21) + (22) + (23)
s.t. (9) - (20)

B. Time-Based Storage-Oriented Formulation

This second formulation allows preemption and is driven
by the amount of materials in storage. The key point is that a
precedence link between activities is equivalent to a shared
storage of material. Indeed, the stock of mati has to be
filled by ai before aj could be scheduled. In fact, managing
stock levels is somehow the dual point of view of ensuring
precedence, as the materials graph is the dual graph of the
precedence graph. Now, let us show how precedence con-
straints are replaced by storage constraints in this formulation.

The decision variables given below are the ones that are
different from the previous formulation. Let:

xi,t ∀ai ∈ A,
∀t ∈ T

be a boolean that is equal
to 1 if ai is running be-
tween t and t+ τ

duri,t ∀ai ∈ A,
∀t ∈ T

be the duration of ai that
covers [t, t+ τ ]

zd,t ∀demd ∈ D,
∀t ∈ T ∪ {H × τ}

be a boolean that is equal
to 1 if demand demd is
supplied at time t

stockm,t ∀matm ∈M,
∀t ∈ T ∪ {H × τ}

be the amount of material
matm stored at time t

Moreover, tardd, powert, αt,h and βt,h are defined in the
same way as in Subsection IV-A.

As this formulation allows preemption, consistency between
x boolean variables and dur amounts of time is ensured by
the following equations.

duri,t ≤ τ × xi,t ∀ai ∈ A,∀t ∈ T (24)
duri,t ≥ xi,t ∀ai ∈ A,∀t ∈ T (25)∑

t∈T
(duri,t) = pti ∀ai ∈ A (26)

Equation (24) ensures that xi,t = 0 implies duri,t = 0 and
bound dur by τ , while Equation (25) ensures that duri,t

is not null if xi,t is not null. Equation (26) ensures that an
activity is executed during its required processing time. Note
that a solution of this formulation does not give starting and
completion time of each activity: given the duration of an
activity over a time-step, its starting time has to be decided.

Disjunctive constraints relative to machines unitary capacity
are stated in Equation (27).∑

ai∈A|resi=r

xi,t ≤ 1 ∀r ∈ R,∀t ∈ T (27)

Note that the disjunction concerns the whole time-step even
if two activities could be scheduled one after the other in the



same time-step. A relaxation of this constraint using duri,t

variables is currently investigated.
Delivery and tardiness constraint are re-formulated as below.

∀demd ∈ D,∑
t∈T∪{H}

zd,t = 1 (28)

tardd =
∑

∀t∈T∪{H}

(t× zd,t)− duedated (29)

tardd ≥ 0 (30)

Equation (28) ensures each demand is delivered once. Equa-
tions (29) and (30) ensures delivery is after due date and
tardiness is consistent.

The key point of this formulation is the following flow-like
equations that regulates material storage. The idea is that the
quantity of a material matm stored at time t is given by the
quantity of the same material stored at time t− τ , minus the
quantity consumed at time t − τ , plus the quantity produced
at time t − τ . In order to compute those quantities, one has
to look over each precedence arc related to matm. Then the
quantity of material produced by an activity ai is given by:
vpti/duri,t−τ . This reasoning works for every precedence
arc without a minimum delay requested. But when there is a
minimum delay dmini on a precedence arc (ai, aj), another
virtual material matficti has to be created to ensure the delay.
Indeed, for a given time-step t, the stock of mati, as well as
the stock of matficti are influenced by what was produced at
time-step tdelay = b t−dmini

τ c × τ .

∀matm ∈M, ∀t ∈ T ∪ {H × τ}, stockm,t = stockm,t−τ

+
∑

ai∈A|mati=matm

(
duri,t−τ

vpti

)
−

∑
demd∈D|fmatd=matm

(zi,t × qd)

−
∑

(ai,aj)∈A|mati=matm∧dmini=0

(
durj,t−τ

vptj

)

−
∑

ai∈A|mati=matm∧dmini>0

(
duri,tdelay−τ

vpti

)
(31)

Equation (31) regulates the stock of each material matm.
Every activity ai increases stockm,t of the quantity of matm it
can produce in duri,t−τ . Every demand that consumes matm
decreases stockm,t of qd units if it is delivered at time t. Every
activity aj decreases stockm,t of the quantity of matm it can
consume in durj,t−τ , if there is no minimum delay on the
arc (ai, aj). If there is a minimum delay on arc (ai, aj), then
the material matm is automatically consumed dmini time
units after having being produced. The quantity automatically
consumed increases another virtual stock introduced below.

∀(ai, aj) ∈ A|dmini > 0,∀t ∈ T ∪ {H × τ},

stockfict
i,t = stockfict

i,t−τ +
duri,tdelay−τ

vpti
− durj,t−τ

vptj
(32)

Equation (32) regulates the stock of each fictive material
matficti induced by every precedence arc (ai, aj) producing
mati with a not null minimum delay.

Finally, Equation (33) computes the instantaneous power
used by the whole set of activities, at every time step, while
Equations (17) - (20) ensure the electricity cost is computed
as in the previous formulation.

powert =
∑
ai∈A

pi × xi,t ∀t ∈ T (33)

Note that this equation induces a pessimistic computation of
the power consumed during a time-step as all activities are
considered being simultaneous.

Then, the overall MILP formulation is given by:

min (21) + (22) +∑
matm∈M

∑
t∈{τ,...,H×τ} stockm,t × τ × scm

s.t. (17) - (20) & (24) - (33)

V. EXPERIMENTS AND RESULTS

This section reports on a computational comparison of both
formulations described in Section IV and the formulation given
in [16] that addresses the same problem.

The algorithms compared have been implemented in Java
using the Concert library of IBM ILOG CP optimizer 12.6.1
on an Intel(R) Core(TM) i7-4810MQ CPU (2.80GHz).

The experiments have been conducted on three different
instances, whose data have been built using the real plant data.
The first one has two demands for a time horizon of two days.
The second one has six demands for a time horizon of five
days. The third one has no precedence (there are only the
door line data), and two hundreds and ten demands for a time
horizon of seven days.

The painting process is a carousel on which doors and
bodies are hung, painted, then unhung. In those instances, the
painting process is modeled by two activities and resources
and a painting delay between them.

The electricity cost functions are the same in every instance:
there are three time buckets for each day and two intervals
of capacity in each bucket. For the sake of the example, the
second capacity interval costs less than the first one. Moreover,
only the door line and the body line require electricity.

Our experimental study aims to compare resolution methods
in term of solution quality, run time and memory usage. For
the time-indexed formulations, several time steps are tried in
order to evaluate their impact on run time and solution quality.
Maximum run time is also tuned to see how the methods
behave through their resolution process.

Before presenting results, let us comment the size of the
each formulation, depending on input data size. Table I gives
the number of variables and constraints for each formula-
tion. We can see that the storage-oriented formulation has
more variables and constraints than the precedence-oriented
formulation, while both have O

(
|T | ×

[
|J |+

∑
Bl∈B |Il|

])
variables. On the other hand, the overlaps formulation used
in [16] has O

(
|J |2 + |J | × |B|

)
variables and constraints.



Table I
DIMENSION OF THE STUDIED MILP FORMULATIONS

Formulations Overlaps Precedence-oriented Storage-oriented

Variables 4|J |2 + 16|J |+ 18|J | × |B| |T | × (6|J |+ 2
∑

Bl∈B |Il|+ 1) + 13|J | |T | × (19|J |+ 2
∑

Bl∈B |Il|+ 1) + 8|J |
Including binaries 4|J |2 − 3|J |+ 6|J | × |B| |T | × (6|J |+

∑
Bl∈B |Il|) |T | × (7|J |+

∑
Bl∈B |Il|) + |J |

Constraints 8|J |2 + 23|J |+ 30|J | × |B| |T | × (3
∑

Bl∈B |Il|+ 7) + 25|J | |T | × (22|J |+ 3
∑

Bl∈B |Il|+ 7) + 19|J |

Now, let us present Figure 3 that holds Gantt diagrams
obtained with each method on the same given instance. Each

(a) Overlaps formulation

(b) Time-based precedence-oriented formulation

(c) Time-based storage-oriented formulation

Figure 3. Gantt diagrams obtained on a two-days instance.

solution is optimal for its formulation and one-hour time-
steps were chosen for the sake of the example. The X-axis
represents the time horizon while the Y-axis represents the
resources (electricity and machines). Considered resources are
(top-down): electricity, body line, door line, a worker who
hangs materials to be painted, another worker who unhangs
those materials, door jointing machine, workers who assembly
bodies and doors.

Figure 3a shows the overlaps formulation results. In this
formulation, linear cost functions are taken into account in-
stead of piecewise-linear cost functions. Indeed, only the first
power capacity interval of each bucket is considered. Thus,
scheduling energy consuming activities at the same time is
not significant in this formulation. The door line activities
are scheduled early to benefit of the cheap electricity tariff.
The body activities are scheduled just before the mounting
activities, when the electricity is cheap again, in order to pay
a small storage cost.

However, the precedence-oriented formulation schedules
body activities at the same time as door activities. That allows
the schedule to benefit from the second power capacity interval
where the electricity cost is much lower than every other costs.
In this case, paying more storage costs is interesting to gain
even more on electricity cost.

On the other hand, the storage-oriented formulation uses
preemption to refine the trade-off between storage costs and
electricity costs. Indeed, body activities are preempted to
benefit from the low electricity costs in the first bucket as well
as reducing storage costs by scheduling the last part of body
activities at the latest time possible. Moreover, hanging and
unhanging tasks are preempted to save storage cost because
of the low consumption rate of the mounting activities.

Now, let us look at numeric results on Table II. The first
three columns give the context of the experiment: the instance,
the time-step used and the maximum run-time allowed. In-
stances are denoted by the couple: (number of jobs, number
of days). The other columns give, for each formulation: the
gap between the best integer objective value and the best
relaxed objective value, the energy cost, the storage cost and
the tardiness cost of the best solution obtained.

Now, let us analyze the results. On the smallest instance
(2,2), all formulations give an optimal solution in less than ten
minutes. The time-indexed formulations obtain a lower cost
than the Overlaps formulation because of the linear energy
cost function considered by the latter. The storage-oriented
formulation obtains better results than the others, because the
preemption is allowed.

For the (6,5) instance, the overlaps formulation is closer to
the optimal than the time-indexed formulations. Its tardiness
cost is the smallest among all solutions. However, the energy
cost obtained (and thus the objective value) is worse than those
of the other formulations because of the linear energy cost
function used.

For the (210,7) instance, the overlaps formulation does not
give a feasible solution after ten minutes, nor after one hour,
unlike the time-indexed formulations. The storage-oriented
formulation has a better gap than the precedence-oriented one
and gives a better objective function result.

Increasing the time step should decrease the run-time
needed by the time-indexed formulations to get feasible solu-
tions. On the other hand, an optimal solution with a big time-
step would be worse than (or equal to) an optimal solution with
a small time-step. The experiments show that increasing the
time-step globally improves the solution found by the storage-
oriented formulation. That is not the case for the precedence-



Table II
NUMERIC RESULTS

Formulations Overlaps Precedence-oriented Storage-oriented
Instances τ (mn) run-time gap ener. stor. tard. gap ener. stor. tard. gap ener. stor. tard.

(2, 2) 10 10 mn 0 % 40,8 36,7 0 0 % 22 37 0 0 % 24,4 18,2 0
(6, 5) 10 10 mn 0.31 % 111,87 24,4 5,52 7.85 % 66,24 47,1 23,6 12.11 % 69,58 17,93 19,08
(6, 5) 15 10 mn " " " " 8.55 % 67,99 46,74 23,6 2.34 % 66,24 11,03 21,06
(6, 5) 15 1 hour " " " " 6.96 % 67,41 45,12 9,16 1.37 % 66,24 11,39 11,16

(210, 7) 10 10 mn ∞ ∞ ∞ ∞ 98,23 % 4074,2 60,76 5129,5 63.77 % 3892,42 1,34 795,9
(210, 7) 15 10 mn " " " " 98,25 % 4566 95,64 5937,16 5.00 % 4070,85 1,02 4,5
(210, 7) 15 1 hour " " " " 95,78 % 4332,6 44,84 1183,36 3.07 % 4156,05 0.89 0,04

oriented formulation.
Finally, the size of the formulations, discussed in Section

V, has only partially the expected influence on the solution
quality. Indeed, although the overlaps formulation is event-
based, the fact it depends on |J |2 results in finding no solution
for the biggest instance. On the other hand, albeit the storage-
oriented formulation has a biggest number of variables and
constraints than the precedence-oriented one, allowing the
preemption is sufficient to give better results in the same
conditions. A trade-off has to be made between the quantity
of preemption allowed and the objective value.

VI. CONCLUSION

In this paper, a scheduling problem taken from a real
manufacturing plant is formalized. Two MILP formulations
are given in order to solve the problem efficiently with some
modeling approximations. The emphasis is put on the electric-
ity cost modeling and a set of piecewise-linear cost functions
is considered. We show that good solutions can be found for
realistic instances, with both the proposed formulations.

In the real manufacturing plant context, those formulations
are aimed to be integrated in a decision-aid tool. Such a tool
could be used by the plant manager to generate and compare
possible production plans, as well as their impact on each of
the cost functions. A good way to build a decision-aid tool
would be to use these formulations as local search operators,
on accurately chosen time-windows.

Finally, from a fundamental research point of view, the
following tracks are considered. Adding setup costs on ac-
tivities in the storage-oriented formulation would discourage
preempting too many times activities if the gain is not so big.
Modeling in an exact way the instantaneous power consumed
could be investigated, using [11]. An event-based formulation
taken into account piecewise-linear energy cost functions is
currently under study. Experiments with benchmark instances
will follow.

ACKNOWLEDGMENT

This work has been conducted as part of the Arrow-
head European project and has been partially funded by the
Artemis/Ecsel Joint Undertaking, supported by the European
Commission and French Public Authorities, under grant agree-
ment number 332987.

REFERENCES

[1] M. H. Albadi and E. El-Saadany, “A summary of demand response in
electricity markets,” Electric power systems research, vol. 78, no. 11,
pp. 1989–1996, 2008.

[2] Y. Sugimori, K. Kusunoki, F. Cho, and S. Uchikawa, “Toyota production
system and kanban system materialization of just-in-time and respect-
for-human system,” International Journal of Production Research,
vol. 15, no. 6, pp. 553–564, 1977.

[3] C. Desdouits, J.-L. Bergerand, P.-A. Berseneff, C. L. Pape, and D. Yan-
culovici, “Energy study of a manufacturing plant,” in ECEEE Industrial
Efficiency Summer Study, Berlin, Germany, in press.

[4] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, “Optimiza-
tion and approximation in deterministic sequencing and scheduling: a
survey,” Annals of discrete mathematics, vol. 5, pp. 287–326, 1979.

[5] X. Zhang, “Scheduling with time lags,” Ph.D. dissertation, Erasmus
University Rotterdam, 2010.

[6] S. C. Graves, “A review of production scheduling,” Operations research,
vol. 29, no. 4, pp. 646–675, 1981.

[7] P. Brucker and S. Knust, “Complexity results for single-machine prob-
lems with positive finish-start time-lags,” Computing, vol. 63, no. 4, pp.
299–316, 1999.

[8] T. Gonzalez and S. Sahni, “Flowshop and jobshop schedules: complexity
and approximation,” Operations research, vol. 26, no. 1, pp. 36–52,
1978.

[9] P. Brucker, A. Drexl, R. H. Möhring, K. Neumann, and E. Pesch,
“Resource-constrained project scheduling: Notation, classification, mod-
els, and methods,” European Journal of Operational Research, vol. 112,
no. 1, pp. 3–41, 1999.

[10] J.-Y. Ding, S. Song, R. Zhang, R. Chiong, and C. Wu, “Parallel machine
scheduling under time-of-use electricity prices: New models and opti-
mization approaches,” IEEE Transactions on Automation Science and
Engineering, vol. 13, no. 2, pp. 1138–1154, 2016.

[11] C. Artigues, P. Lopez, and A. Hait, “The energy scheduling problem: In-
dustrial case-study and constraint propagation techniques,” International
Journal of Production Economics, vol. 143, no. 1, pp. 13–23, 2013.

[12] M. Nattaf, C. Artigues, and P. Lopez, “A hybrid exact method for a
scheduling problem with a continuous resource and energy constraints,”
Constraints, vol. 20, no. 3, pp. 304–324, 2015.

[13] M. Nattaf, C. Artigues, P. Lopez, and D. Rivreau, “Energetic reasoning
and mixed-integer linear programming for scheduling with a continuous
resource and linear efficiency functions,” OR Spectrum, vol. 38, no. 2,
pp. 459–492, 2016.

[14] S. U. Ngueveu, C. Artigues, and P. Lopez, “Scheduling under a non-
reversible energy source: An application of piecewise linear bounding of
non-linear demand/cost functions,” Discrete Applied Mathematics, vol.
208, pp. 98–113, 2016.

[15] O. Masmoudi, A. Yalaoui, Y. Ouazene, and H. Chehade, “Lot-sizing
in flow-shop with energy consideration for sustainable manufacturing
systems,” IFAC-PapersOnLine, vol. 48, no. 3, pp. 727–732, 2015.

[16] G. German, C. Desdouits, and C. Le Pape, “Energy optimization in a
manufacturing plant,” in ROADEF annual conference. ROADEF, 2015.

[17] A. A. B. Pritsker, L. J. Waiters, and P. M. Wolfe, “Multiproject
scheduling with limited resources: A zero-one programming approach,”
Management science, vol. 16, no. 1, pp. 93–108, 1969.


