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Abstract—In this paper a Genetic Algorithm (GA) is used for 
solving underwater mission planning problem. The proposed 
genetic planner is capable of utilizing multiple Autonomous 
Underwater Vehicles (AUVs) and Remotely Operated Vehicles 
(ROVs) in a mission plan, as well as running multiple tasks in 
parallel on the agent’s level.  The problem is described using 
STRIPS modeling language. The proposed planner shows high 
robustness regarding initial population set, which is randomly 
generated. Chromosomes have variable length, consisting of active 
and inactive genes. Various genetic operators are used in order to 
improve convergence of the algorithm. Although genetic planner 
presented in this work is for underwater missions, this planning 
approach is universal, and it is not domain dependent. Results for 
a realistic case study with five AUVs and almost 30 tasks show that 
this approach can be used successfully for solving complex mission 
planning problems.  

Keywords— High-Level Planning, Genetic Algorithms, Mission 
Planning, Multi-Agent Systems, Underwater robotics 

I.  INTRODUCTION  

A. Formal description languages 

In artificial intelligence (AI) given a formal description of 
the behaviour of a set of actions, to find a sequence of actions 
which lead from a known state of the world to a desired one is 
defined as planning [1]. In accordance with this definition, a 
simplified model of the world is needed. This simplified model 
is generally represented as a set of predicates, or simply rules, 
expressing possible states, and a set of actions that can act on 
these predicates. Perhaps, the most popular formal language 
used for expressing automated planning problems is STRIPS 
[2]. STRIPS is a quadruple (C, O, S, G) in which elements have 
the following meanings: 

 .is the set of conditions ܥ •

• ܱ is the set of actions, where each action has its 
preconditions (what must be done before that action) and 
post conditions (effects of that action on the world state). 

• ܵ is the initial state, with a set of conditions that are true, 
and all others are assumed to be false. 

 is the goal state, with set of conditions that are either	ܩ •
true or false. 

Inspired by STRIPS and ADL (Action Description 
Language) Planning Domain Definition Language (PDDL) [3] 

was developed in an attempt to standardize AI planning 
languages. PDDL separates the planning problem into two main 
parts: domain description and problem description. Domain 
description consists of requirements, predicates, and actions, 
where actions have parameters, preconditions, and effects. 
Problem description consists of objects, initial conditions, and 
goal-states.  

B. Planning domain 

Here, two main levels of abstraction are considered. Firstly, 
the High-Level Planning (HLP) that allows the user to describe 
different tasks regarding operations performed without 
specifying the exact actions agent needs to perform. The output 
of the HLP is usually a mission plan, consisting of the tasks that 
certain agent needs to perform. Secondly, Low-Level Planning 
(LLP) that is typically carried out at the agent level and includes 
generation of waypoints, actions and other similar low level 
(LL) tasks implemented by the programmer. E.g. follow the 
human is a high-level (HL) task while generating a set of 
waypoints for the movement of the agent following the human 
is considered an LL task. A set of LL tasks, or as they are often 
called in the literature – actions, form a HL task. Since in this 
paper, a problem of mission planning is tackled (high-level of 
abstraction), in the further text HL tasks are referred to as just 
“task”. 

C. Problem formulation 

In the proposed solution given a global mission objective, 
constraints, and available resources (agents), the planning 
activity has to divide the global mission objectives into several 
sub-goals. The planner then needs to assign an agent taken 
individually, or a set of agents behaving as a team or a swarm to 
each sub-goal and schedule these more basic activities on time. 
These agents does not necessarily have to be homogenous as 
task specialized agents can be in this set too. The output of the 
planner should be a global plan of concurrent activities 
(schedule) for the set of selected agents with temporal 
constraints. This type of problem is a mixed planning/scheduling 
problem which well belongs to the more general domain of 
combinatorial problems.  

In this paper for tackling this problem an evolutionary 
algorithm, more specifically a modification of Holland’s simple 
genetic algorithm [4], is proposed. The binary data encoding is 
replaced with integers, thus the appropriate changes are made in 
order to utilize existing genetic operators.  



The taxonomy is a very useful as the first separation of 
different classes of problem setting. In [5] a formal analysis of 
multi-robot task allocation (MRTA) is given, and three different 
axes for use in describing MRTA problems are proposed. The 
genetic planner presented in this work covers all of these 
problems, except for multi-robot (MR) tasks. MR tasks are tasks 
that can require more than one robot for its fulfilment. 
Furthermore, the problem described here belongs to the class of 
NP-hard optimization problems. It is important to note that some 
simplifications are assumed, like atomic time, deterministic 
effects, and omniscience – world state is completely known. 

Since much of this research is done in correlation with the 
Smart and Networking Underwater Robots in Cooperation 
Meshes (SWARMs) project, the focus is on the underwater 
mission planning, using different (AUVs) and (ROVs) as agents. 
Even though the main focus is on underwater missions, the 
planning approach shown here is generic, and it is not domain 
dependent. 

The presented planner has task parallelism on agent’s level 
and repetition of tasks with different parameters which is not 
supported by any of the mentioned approaches in the next 
section. In addition, the initial population is completely random, 
the planner does not start with a population of only feasible 
solutions. It is also important to emphasize that multi-agent 
planning is possible with the proposed genetic planner. Agents 
and tasks are encoded in a chromosome, and a chromosome is 
represented as a vector. 

The paper is organized as follows: first, an overview of 
related work is made; then GA is described, following the 
algorithm implementation; next two sections are experimental 
results and a case study; finally, conclusion and future work are 
presented. 

II. RELATED WORK 

There has been a significant number of different attempts to 
solve mission planning problems by applying computational 
approaches. A review of these methods from the military domain 
can be found in [6]. A distributed hierarchical Petri net model of 
mission control procedure for describing logical relations among 
mission level, task level, and behavior level is presented in [7]. 
The mission level takes on the genetic algorithm to plan and re-
plan the global path according to velocity, energy and other 
mission constraints in unstructured, partially unknown or hostile 
environments. A mission planning problem formulated as a 
Constrained Markov Decision Process (CMDP) for finding the 
optimal policy has been presented in [8]. In addition, there are 
attempts to solve this problem with heuristic approaches such as 
tabu search [9] or an evolutionary algorithm. In [10] authors use 
PDDL modeling language and simple genetic algorithm with 
several enhancements. Their approach uses variable 
chromosome length, and it results in efficient memory usage. On 
the other hand, this approach does not allow usage us multi-
agents nor parallelism of tasks.  

The problem of multi-objective optimization with the 
evolutionary algorithm is tackled before, where a way of 
benchmarking obtained solutions is also addressed in [11]. They 
have developed an evolutionary planner called Divide-and-
Evolve that embeds a classical planner and feeds it with a 

sequence of subproblems of the problem at hand. A search for a 
non-dominated solution with objectives being fuel consumption 
and makespan of a mission is shown in  [12] and [13], where the 
mission planning problem was formulated as a Constraint 
Satisfaction Problem (CSP). The CSP model defines several 
constraints, including order and temporal constraints, but this 
allows only sequential task execution (no parallel tasks on a 
single agent), and tasks cannot be repeated multiple times. The 
chromosome encoding is done with two rows vector, where 
columns represent tasks. The cooperative task planning problem 
for multiple AUVs carrying out a series of tasks against multiple 
targets is addressed in [14] . GA was used for finding the optimal 
mission plan. The mission consists of flying to the designated 
location and passing over a set of predefined targets. Targets are 
assumed to be homogenous. A chromosome is encoded as ݊  ݉	ݔ	
matrix, where ݊ is the number of agents and ݉ is the number of 
tasks. The problem here is that ݊ is fixed. This means that the 
chromosome will always have dimension ݊ , even if the plan uses 
a number of agents that is less then ݊. This planner too does not 
support parallelism of tasks on agent level. Another popular way 
for solving resource-constrained project scheduling problem 
(RCPSP) is by using GAs, where chromosome representation is 
based on random keys as presented in [15]. The schedule is 
constructed by using a heuristic priority rule in which the 
priorities and delay times of the activities are defined by the 
genetic algorithm. This approach does not allow use multi-
agents nor parallel tasks on a single agent. A Decomposition 
Based Genetic Algorithm (DBGA) for RCPSP is proposed in 
[16]. This method divides the RCPSP problem into smaller 
problems and obtains the solution for the problem by combining 
the solution of each such subproblem. It is shown that the 
decomposition based approach finds satisfactory near-optimal 
solutions.  

III. GENETIC ALGORITHM 

 
A large number of conventional planning algorithms handle 

planning by mapping the search space into a graph or a tree, 
searching through the nodes using heuristic functions, cutting 
infeasible branches or backtracking from dead-ends. GA solves 
planning problem with a different method, sometimes leading to 
sub-optimal solutions. 

Genetic Algorithms are adaptive heuristic search methods 
for solving both constrained and unconstrained optimization 
problems that use concepts from evolutionary biology to search 
for an optimal solution. GAs belongs to the larger class of 
evolutionary algorithms (EAs) and are considered as one of the 
most suitable algorithms to solve a problem for which little is 
known. GA works by starting with an initial generation of 
candidate solutions that are tested against the objective function. 
A number of individuals, defined by the population size, are 
seeded in the search space. The algorithm tries to calculate the 
quality of the current candidate solutions, i.e. its distance to the 
solution. In the next iteration, the algorithm tries to reseed 
population in the neighbourhood of individuals that are closest 
to the solution. Subsequent generations evolve from the previous 
generation through genetic operators. Reseeding of the 
population across the search space is done according to 
probabilistic selection, crossover, and mutation. Probabilistic 
distribution guides the chromosomes through the search space, 



unaware of its configuration. This means that search is 
uninformed, which makes the whole process quite simple, 
allowing the population set to be large giving better chances of 
finding a good solution. The goal of retaining the best 
performing chromosomes from one generation to the next, along 
with choosing the parents is carried out by selection operator. In 
this way, the best solutions are favoured in the reproduction 
process. 

After completing the configuration file with all the 
information needed regarding tasks, a random population of 
individuals is created. Again, each individual holds a plausible 
solution to the high-level planning problem.  When creating the 
initial population, feasibility of candidate solutions is not taken 
into account. This means that the initial population is created 
completely random consisting of task/agents – active genes, and 
“dummy” inactive genes. An example of how population set 
looks like is given in the Fig. 1. Where ܣଵ, ,ଶܣ  (red	௡ܣ	…
squares) are agent identifiers and ଵܶ, ଶܶ, … ௡ܶ (blue squares) are 
task identifiers in the chromosome. Orange boxes represent 
inactive “dummy” genes.  

Since the length of the mission plan is not known a priori, 
chromosomes have a variable length. A variable chromosome 
length is used in [10], to the opposite of this approach, a fixed 
chromosome length with “dummies” filling up space up to the 
predefined chromosome length is proposed in  [19]. In this work 
a mix of the approaches mentioned above is used, i.e. all 
chromosomes have the same length, but that length changes 
based on the longest chromosome. Shorter chromosomes are 
filled in with inactive genes. This characteristic is bio-inspired 
since humans as well as other species also have a certain 
percentage of inactive, so-called “junk” genes. Note that in this 
work the exact percentage of these genes are not considered, thus 
an ad hoc solution is proposed (see below). 

The number of inactive genes can be set before running the 
algorithm, i.e. the number of inactive genes added to the longest 
solution can be set. The other solutions are automatically filled 
up with inactive genes forming population set as a matrix of ݊	ݔ	݉, where ݊ is size of a population and ݉ is the number of 
genes in the chromosome. This means that  ݉ is a sum of active 
and inactive genes. Minimum number of inactive genes is zero, 
this option is the fastest, but will likely produce worse solution 
than setting the number of inactive genes to a value higher than 
zero. This is especially important in the initial population set, 
where larger number of genes will help algorithm converge in a 
lesser number of iterations. Genetic operators, crossover and a 
specific type of a mutation (the so-called shrink mutation), will 
take care of unnecessary tasks/agents in the candidate solutions 
and eventually replace them with inactive genes. This process 
. 

Fig. 1. An example of a population set. 

is done through the crossover operator and allows the creation 
of new offspring by the mating process of previously chosen 
parents. This operator allows big jumps in the search space by 
combining several candidate solutions. If the job of the 
crossover operator is to find better solutions by exploiting 
current ones, then mutation can be seen as the operator that helps 
to explore the entire search space. Mutation allows genetic 
algorithms to avoid falling into local minima by maintaining 
genetic diversity in the population. 

Although there are many different ways of how these 
operators work, EA/GA are generally very robust algorithms, 
working very well even with the simplest types of operators. The 
thing that is more important for obtaining good solutions is the 
knowledge representation and the way it is encoded into 
chromosomes. There are many different ways of representing 
chromosomes as it is shown in [17] and [18]. Bit strings are the 
most common way, but it is also possible to use integers/floats, 
lists, hashes, objects or any other existing data structure. In the 
approach shown in this paper, a gene encodes both agent or task 
identifier while a chromosome encodes a complete mission plan. 
Therefore, a search for feasible/best solution becomes a search 
for the best individual consisting of valid task and agent genes 
in the population set. The behaviour of the proposed genetic 
mission planner corresponds to the standard EA paradigm:  

• After creating an internal knowledge representation 
model, an initial random population is created. Each 
individual represents a possible solution. 

• The evolution process consists in selecting individuals, 
applying genetic operators to them and adding the 
resulting offspring to the population of the next 
generation 

• A cost value of each individual is then evaluated and 
updated in the fitness function. The evolution process is 
repeated until the stopping criterion is met. 

IV. IMPLEMENTATION 

Inputs to the genetic planner are task constraints, task 
parameters, and “main tasks” (MTs), which is a list containing 
tasks that need to be executed (e.g. scan seabed, take images, 
etc.). Task constraints include information about relations 
between tasks and which tasks are allowed to run in parallel. An 
example of parallel tasks is to scan seabed and take images at 
the same time, but it is not possible to scan seabed and use the 
acoustic modem for communication. Task parameters are 
characterized by several aspects such as task location, duration, 
and energy required for task execution consisting of task 
parameters and pre/post conditions, while agents only have 
parameters. The structure of a task is shown in the Fig. 2. The 
cost of the initial population is evaluated in the fitness function. 

Fig. 2.   Parameters of agent/task genes.. 



Depending on if the function is being minimized or maximized, 
the vector containing population cost is sorted in ascending or 
descending order. An alternative way used for maximizing 
optimization is to multiply the cost by -1 and do the 
minimization. The fitness function will be described in detail in 
the next section. The iteration process can have different 
stopping criteria. It can be either cost, a maximum number of 
iterations reached or it can stop if the global best solution does 
not improve over a fixed number of iterations. Since the desired 
cost value is not always known, in this case stopping criteria is 
the number of iterations. 

In order to decide which individuals will be chosen for 
breeding, selection operator is introduced. In the literature, many 
different selection methods can be found [18], but the most 
popular are rank, roulette wheel, and tournament selection. 
Although all of these selection methods were implemented, rank 
selection showed the best performance. The rank selection might 
have slower convergence rate because there is not much of a 
difference, with respect to selection probability, between the 
best individuals and the rest of the population. This can also be 
an advantage of this method because there is a lower chance of 
a premature convergence i.e. less chance to get stuck in local 
minima. The population is firstly ranked based on the fitness 
value of each chromosome. After that, a ranking value is 
assigned to each individual, so that the best one will have a value 
of ݊ (number of individuals in the population set), the second 
one will have ݊ − 1, etc. and the worst one will have a value of 
1. Since all the chromosomes have a chance to be selected, this 
method ensures good diversity in the population set. In this work 
using the rank selection operator two equal groups of parents are 
selected for later mating.  

Another selection operator is implemented, and it is called 
elitist selection. The elitism allows best chromosomes from 
current generation to be transferred to the next one unaltered. 
Elitism ensures that algorithm does not diverge, and it 
guarantees that the quality of the obtained solution will not 
deteriorate in the next generation.  The downside of this 
selection operator is that it can lead to premature convergence 
i.e. local minima. Elitism should be used with caution, if too 
many unaltered individuals are carried from one generation to 
another, it could lead to the loss of population diversity.  

Once parents are selected, crossover operator combines them 
in a process of making offspring. As well as other operators, the 
crossover can be done in many different ways. A comparative 
study of many different crossover operators can be found in [19], 
[20], and [21]. The most popular solutions are single point 
crossover, multi-point crossover, uniform crossover, and others. 
Although all of these techniques are implemented, single point 
crossover produced the best results. This operator is one-point 
uniform: after selecting parent chromosomes ܯ(݅, ݆) and 	ܲ(݅, ݆), where ݅ ∈ (1,݉), and ݆ ∈ (1, ݊). Length of the 
chromosome is	݊, and ݉ is the number of matings. A cutting 
point C is randomly selected to be	ܥ ∈ (2, ݊ − 1). Two 
offspring are then created by combining the first part of M 
chromosome to the second part of the P chromosome and vice 
versa. After crossover is done, chromosomes undergo a fixing 
process which is needed since single point crossover can make 
up to 50% of the population to be infeasible. A fixing consists 
of searching for the agent gene in the chromosome and changing  

its location to be the first gene of the chromosome. If the 
chromosomes starts with an agent gene, a fixing of this type is 
not needed. 

Mutation, on the other hand, recovers some of the lost 
genetic material and tries to distribute genetic information 
randomly. An illustration of how mutation process affects 
chromosomes is shown in the Fig. 3. It also introduces new 
chromosome structures by randomly altering some of the genes. 
Six different mutation operators are introduced in [10], of which 
four do the gene altering in a similar way as it is done here. The 
mutations used in this algorithm are: 

• Swap mutation; swaps the position of two task/agent 
identifiers (genes) in the chromosome  

• Replace mutation; replaces one task/agent identifier with 
another from the list of possible tasks 

• Shrink mutation is similar to replace mutation, and the 
only difference is that task/agent gene is replaced with 
the inactive gene. 

• Growth mutation; replaces one inactive gene with an 
active task/agent gene. 

The same mutation operators are used both for task genes 
and agent genes. It is noted that the algorithm yields better 
results if the mutation probability increases in the later stages of 
the algorithm. The reason for this is that over time population 
gets more homogenized, but usually, this leads to local minima 
or sub-optimal solution. This way the increased number of 
mutations can help producing better solutions. Mutation 
occurring probability is chosen to be rather small, from 1 to 10%. 
Setting mutation to 100% would give a completely random 
search process.  

V. FITNESS FUNCTION 

In this work a linear function that combines different 
variables and various user defined weights into a solution’s cost. 
It is common for the best solution to have a cost equal to zero. 
Here that is not the case, and the minimum cost can differ as well 
as the overall feasibility of the candidate solution. In addition, it 
is necessary to select an optimization criterion. It is not sufficient 
for a solution to be only feasible, but the goal is to reach globally 
optimal solution in as many cases as possible. It cannot be 
guaranteed that the optimal solution will be found, since the 
algorithm always starts from a different position in a search 
space. Even if the initial population set is always the same, the 
algorithm would not output the same solution due to stochastic 
nature of genetic operators. In order to obtain a good solution, 
. 

Fig. 3. Mutation operator. 



the algorithm needs to run many times. A quality of the solution 
also depends on the optimization criterion, and in this work three 
different criteria can be selected:  

• minimizing the makespan of the entire mission as shown 
in (2) (see below) 

• minimizing the energy used for the whole mission as 
shown in (3) (see below) 

• aggregating both time and energy, thus optimizing a 
multi-objective function (4) 

Let ௝ܶ be the finish time of the last gene in an agent’s plan 
vector ( ଵܶ, ଶܶ, … , ௝ܶ) and ܣ௜ is the makespan of ݅ -th agent’s plan. 

௜ܣ  = ( ଵܶ, ଶܶ, … , ௝ܶ) (1) 

Thus, the minimization function is as follows: 

(ݐ)݂  = min	(max(ሼܣଵ, … , (௡ሽܣ + ௞ܹ ∙ ∑ ௜௡௜ୀଵܣ ) (2) 

where ݊ is the number of agents used in a mission plan and ௞ܹ 
is a user defined weight. 

Let ܧ௡ be the energy used per each agent in the mission, 
where ݊ is the number of agents involved in the mission plan, 
then the energy minimization function will be: 

 ݂(݁) = min	(∑ ௜)௡௜ୀଵܧ  (3) 

(ݔ)݂  = ௜ܹ ∙ (ݐ)݂ + ௝ܹ ∙ ݂(݁) (4) 

where ௜ܹ and ௝ܹ are weights defined by a user. Equations (2) 
and (3) should be normalized before ݂(ݔ) is calculated. 
Depending on the selected optimization criteria one of these two 
costs is selected or both. If mission duration is selected, the cost 
of the plan with longest makespan would be minimized. A 
weighted sum of agents’ makespan is added in the (2) with a 
purpose to force minimization of each agent’s makespan. 
Although, the first member of the equation is sufficient to 

minimize the mission duration, the second member minimizes 
the makespan of all agents. In this way some agents can be 
available for the use in some other mission, while some other 
agents still perform tasks in the first mission.   

Two main levels can be distinguished in the fitness function. 
A “mission plan level” and an “agent plan level” (Fig 4). In the 
mission plan, all of the penalties, awards, and costs that are 
related to the entire mission are computed, while in the agent’s 
plan level only task constraints and a single agent cost are 
calculated. There is also a sub level in the mission plan level that 
calculates agent’s constraints and penalties.  

The fitness function iterates through the population to, 
evaluate the fitness of each chromosome. A chromosome is 
firstly divided into agent plans. Each of these agent plans is 
tested and assessed separately, which means that each of these 
plans has its own penalty and makespan or energy cost that 
contribute to the fitness of the chromosome on the mission plan 
level. This procedure is repeated for the whole population in 
every generation. Penalties are calculated first, and then added 
to the cost function forming an overall fitness for a given plan. 
On mission plan level five different conflicts are sanctioned with 
a penalty. These penalties are added if: 

• there are no agents in the mission plan 

• one or more of MTs is missing from the plan 

• more agents are used then there are available ones 

• there is unassigned tasks or plan does not start with an 
agent gene 

• there is an agent plan that does not have at least one of 
the MTs  

In the mission plan level, beside penalties, there is also an 
award system. There are two types of awards, with the first one 
being awarded if the planner reaches a feasible solution, i.e. the 
sum of all penalties is equal to zero. The other award is being 
added for each agent used in the mission plan, thus favoring the 
use of as many agents as possible. This is especially important if 
the optimization criterion is the makespan of a mission. The 
.

Fig. 4. Fitness  function scheme of work.



agent plan level also has its penalties for the contempt of task 
constraints. These penalties are added if: 

• preconditions are not fulfilled 

• postconditions are not fulfilled 

• location condition is not met for a given task  

 On the agent plan level, each plan is evaluated separately in 
the function that is in charge of plan evaluation. This function 
iterates through the plan and checks if task constraints are 
fulfilled. Besides the task constraints, this function calculates 
both the duration of the plan and the energy consumed by the 
agent to fulfill that plan. Both costs and penalties are summed 
and sent to the mission plan level where they are being added to 
the cost and penalties of the mission plan level. Now equation 
(4) is expanded into: 

(ݔ)݂  = ௜ܹ ∙ (ݐ)݂ + ௝ܹ ∙ ݂(݁) + ܲ +  (5) ܦ

where ܲ  is the sum of all penalties and ܦ is the sum of all awards 
in a mission plan. The sum of all penalties shows if the mission 
plan is feasible, i.e. if the sum is equal to zero, the mission is 
feasible, otherwise it is not. In general, feasible solutions are 
preferable even though they might not be optimal or even close 
to optimal solution. In the end all of these penalties, awards and 
costs are combined with weight factors and an overall mission 
plan cost is formed. This is the cost used, by selection operator 
for establishing the rank of chromosomes in the population set. 

VI. EXPERIMENTAL RESULTS 

The presented genetic planner is implemented in MATLAB 
2015b on a Windows workstation, i7@2.8GHz, and 32GB of 
RAM.  It is usually challenging to find a good ratio between 
population size and a number of iterations executed. These two 
parameters are the one that can be set before running the GA that 
has the biggest influences on the running time. Running time is 
not the best indicator of the performance of GA since the load of 
CPU can vary. It is usually used to give a rough evaluation of 
GA’s performance. A number of generations are used more 
often for evaluating the performance of GA. After many runs, it 
is noted that there is an almost linear correlation between time, 
the number of individuals, and the number of generations.  

In the problem described in the case study section, for one 
iteration it takes an average of 0.003 seconds more per additional 
individual in the population set. Larger population size leads to 
a solution in a lesser number of generation, but as described the 
running time increases per generation. There is a need to find an 
optimal combination of these two parameters. In the Fig. 5 mean 
cost values for various population sizes are shown. GA was run 
30 times with each set of parameters and then mean value was 
computed. It can be noted that the population size of 20 
individuals is too small for this kind of problem, while the rest 
of the test, values have the same mean values at a higher number 
of iterations. At 500 iterations mean cost value is the same for 
the population size of 100 individuals, while at 800 
iterations all values from 50-500 blend in at a minimum of mean 
cost value. The value of 500 iterations is chosen as the optimal 
one for stopping criterion, and for the population number 100 is 
chosen. Various population sizes are tested over 500 iterations 
run and presented in the Fig. 6. It can be noted that for  
. 

Fig. 5. Mean cost values for various population sizes. 

populations over 400 iterations mean cost value and median 
values does not change much. 

VII. CASE STUDY 

The mission scenario that will be presented here consists of 
six MTs. Three of these tasks are ScanArea (Task 3), and the 
other three are TakeImage (Task 4). In this scenario, mission 
planner has five agents at its disposal. Thus, at least one agent 
will have to perform two or more MTs. Every one of these agents 
has different velocity and energy consumption rate. Calculations 
of these parameters are fairly simplified since that is not in the 
scope of this paper. Simplified calculations are also used for 
evaluating tasks duration, i.e. the theoretical time that it takes for 
an agent to finish a task. 

Although only six tasks are used as an input, the mission plan 
will end up having 29 active genes. As it is previously 
mentioned, inputs to the planner are so called MTs. MT can be 
any task from the list of tasks shown in Table 1. GA then makes 
sure that all necessary tasks for completion of MT are in the 
chromosome. A simple example of this is if Task 3 is chosen as 
MT and agent is not at the starting location defined in Task 3, 
 

Fig. 6. Median, minimum, maximum, and mean cost values with standard 
deviation for various population sizes over 500 generations. 
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GA needs to generate Task 2 or Task 1 in the sequence before 
Task 3, otherwise, the fitness function will characterize this 
solution as infeasible. 

The output of the genetic planner is a mission plan. X axis 
accounts for a timeline [s], while Y-axis represents tasks. Small 
battery icons in the top left corners show the energy level of each 
AUV after completion of assigned tasks. In this case, all tasks 
are assumed to be below the surface, and that is why there is no 
Task 1 in any of the plans. It can be noted that agents 1, 2, and 5 
have some tasks running in parallel, thus making a makespan 
shorter. The mission plan for this particular scenario, 
represented by Gantt chart can be seen in Fig. 7.  Parallel task 
constraints can be seen in Table 1. 

Results for different population sizes run over 500 iterations 
are shown in Table 2. The table displays population size, mean 
value, standard deviation, median value, minimum and 
maximum values and the time took per run. Same columns 
except the first one, which now shows a number of generations, 
have Table 3. Results presented in Table 3. are for a various 
number of generations for a population size of 200.  

Convergence rate of the genetic planner is shown in Fig 8. The 
blue curve stands for the minimum cost value in each generation, 
while magenta shows the average cost of the fittest individual 
throughout generations. Parameters used in this case study are 
as following: mutation rate 10%, the population size of 100, and 
the number of generations is limited to 500.. 

Fig. 7. Gantt Chart of a mission plan with battery status. 

TABLE I.  LIST OF AVAILABLE TASKS 

Task # Action Parallel Task Constraints 
Task 1 GoTo_aboveSurface Task 4, Task 6, Task 7 
Task 2 GoTo_belowSurface Task 4, Task 6, Task 7 
Task 3 ScanArea Task 4, Task 5 
Task 4 TakeImage Task 1 & 2, Task 3, Task 6, Task 7 
Task 5 Measure at Location Task 4, Task 6, Task 7 
Task 6 Comm. Status report Task 1 & 2, Task 4, Task 5 
Task 7 Comm. Send data Task 1 & 2, Task 4, Task 5 
Task 8 Progress monitoring Task 1 & 2, Task 6, Task 7 
Task 9 Follow Pipe Task 4, Task 5, Task 6, Task 7 
Task 10 Follow moving object Task 4, Task 5, Task 6, Task 7 
Task 11 “Dummy Task” - 

TABLE II.  POPULATION SIZE RESULTS FOR 500 ITERATIONS 

Pop. Mean Std. Median Min. Max. Timea 
10 -735.4 292.3 -762.4 -1192.6 36.4 32.3 
20 -763.1 223.6 -742.9 -1222.6 -332.1 62.7 
40 -1040.7 166.8 -1045.5 -1255.1 -626.1 85.7 
80 -1081.0 140.0 -1071.4 -1255.3 -663.6 143.8 
120 -1125.2 93.2 -1128.0 -1245.4 -939.0 190.9 
160 -1146.7 75.5 -1170.9 -1252.1 -1023.6 245.1 
200 -1149.5 91.4 -1197.0 -1252.3 -953.6 295.6 
250 -1125.0 119.7 -1187.4 -1255.1 -875.2 363.3 
300 -1123.6 121.4 -1170.8 -1255.3 -913.9 425.3 
350 -1145.5 109.2 -1175.3 -1255.3 -935.8 505.1 
400 -1170.1 72.3 -1195.0 -1255.3 -1001.1 569.7 
500 -1166.4 72.6 -1195.3 -1255.1 -1002.0 719.9 
600 -1175.3 66.1 -1194.6 -1254.2 -1047.7 869.2 

TABLE III.  RESULTS FOR VARIOUS NUMBER OF GENERATIONS FOR 200 
POPULATION SIZE 

Gen. Mean Std. Median Min. Max. Timea 
50 216.3 346.5 161.0 -274.7 891.4 27.6 
100 -388.9 271.1 -433.2 -738.2 176.4 54.1 
150 -768.4 226.2 -803.7 -1143.4 -172.1 80.5 
200 -877.7 145.4 -868.3 -1155.6 -623.9 115.6 
250 -975.7 102.5 -949.3 -1234.3 -811.2 131.3 
300 -1049.5 96.9 -1033.0 -1255.3 -904.3 159.2 
400 -1153.6 77.7 -1184.6 -1254.9 -1006.8 212.9 
500 -1153.1 100.8 -1197.8 -1247.0 -864.8 263.5 
600 -1157.0 88.6 -1198.9 -1255.3 -947.0 327.0 
800 -1191.9 58.7 -1212.3 -1254.2 -1023.2 427.2 
1000 -1193.9 56.2 -1208.6 -1254.2 -1041.1 544.4 

a. Time is expressed in seconds 

Fig. 8. Convergence plot. 
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VIII. CONCLUSION AND FUTURE WORK 

In this paper a genetic planner for multi-agent mission 
planning is presented. The novelty aspect of the proposed 
solution is that it can handle solutions that require task 
repetitions for a successful mission. The initial population set 
consists of random task/agent genes with variable chromosome 
length. Data structure used for encoding agents/tasks into a 
chromosome is based on integer identifiers, whereas a 
chromosome is represented as a vector.   

As in other cases with population-based search, different 
parameters, and their initiated values, can greatly affect the 
performance of the proposed algorithm. However, for the 
problem presented in Section VII. Case Study, approxametaly 
500 iterations and population size of 100 - 200 individuals give 
the best results in a reasonable time span. For the future work it 
is planned to extend the current system in the following 
directions: 

• include an option for handling multi-agent tasks to allow 
assignement of several agents to a task. This also 
includes adding a “delay” gene in the chromosome 
representation. 

• extend the fitness function for multi-objective search, in 
order to deal with two or more (e.g. makespan, energy 
consumtion, and mission safety/risk) criterion forming a 
Pareto optimal front. 

• introduce more heterogeneity in an AUV set, especially 
in the sensors domain. This will also result in additional 
test in the cases of using AUVs from different 
manufactorers. 

• propose a complete Mission Management Tool (MMT) 
for computing the initial planning of activities, monitor 
their execution and in the case of unexpected events 
make appropriate decisions about re-planning. 
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