
A genetic planner for mission planning of cooperative
agents in an underwater environment

Branko Miloradović, Baran Çürüklü, and Mikael Ekström
School of Innovation, Design, and Engineering

Mälardalen University
Västerås, Sweden

Abstract—In this paper a Genetic Algorithm (GA) is used for
solving underwater mission planning problem. The proposed
genetic planner is capable of utilizing multiple Autonomous
Underwater Vehicles (AUVs) and Remotely Operated Vehicles
(ROVs) in a mission plan, as well as running multiple tasks in
parallel on the agent’s level. The problem is described using
STRIPS modeling language. The proposed planner shows high
robustness regarding initial population set, which is randomly
generated. Chromosomes have variable length, consisting of active
and inactive genes. Various genetic operators are used in order to
improve convergence of the algorithm. Although genetic planner
presented in this work is for underwater missions, this planning
approach is universal, and it is not domain dependent. Results for
a realistic case study with five AUVs and almost 30 tasks show that
this approach can be used successfully for solving complex mission
planning problems.

Keywords— High-Level Planning, Genetic Algorithms, Mission
Planning, Multi-Agent Systems, Underwater robotics

I. INTRODUCTION

A. Formal description languages

In artificial intelligence (AI) given a formal description of
the behaviour of a set of actions, to find a sequence of actions
which lead from a known state of the world to a desired one is
defined as planning [1]. In accordance with this definition, a
simplified model of the world is needed. This simplified model
is generally represented as a set of predicates, or simply rules,
expressing possible states, and a set of actions that can act on
these predicates. Perhaps, the most popular formal language
used for expressing automated planning problems is STRIPS
[2]. STRIPS is a quadruple (C, O, S, G) in which elements have
the following meanings:

 .is the set of conditions ܥ •

• ܱ is the set of actions, where each action has its
preconditions (what must be done before that action) and
post conditions (effects of that action on the world state).

• ܵ is the initial state, with a set of conditions that are true,
and all others are assumed to be false.

 is the goal state, with set of conditions that are either	ܩ •
true or false.

Inspired by STRIPS and ADL (Action Description
Language) Planning Domain Definition Language (PDDL) [3]

was developed in an attempt to standardize AI planning
languages. PDDL separates the planning problem into two main
parts: domain description and problem description. Domain
description consists of requirements, predicates, and actions,
where actions have parameters, preconditions, and effects.
Problem description consists of objects, initial conditions, and
goal-states.

B. Planning domain

Here, two main levels of abstraction are considered. Firstly,
the High-Level Planning (HLP) that allows the user to describe
different tasks regarding operations performed without
specifying the exact actions agent needs to perform. The output
of the HLP is usually a mission plan, consisting of the tasks that
certain agent needs to perform. Secondly, Low-Level Planning
(LLP) that is typically carried out at the agent level and includes
generation of waypoints, actions and other similar low level
(LL) tasks implemented by the programmer. E.g. follow the
human is a high-level (HL) task while generating a set of
waypoints for the movement of the agent following the human
is considered an LL task. A set of LL tasks, or as they are often
called in the literature – actions, form a HL task. Since in this
paper, a problem of mission planning is tackled (high-level of
abstraction), in the further text HL tasks are referred to as just
“task”.

C. Problem formulation

In the proposed solution given a global mission objective,
constraints, and available resources (agents), the planning
activity has to divide the global mission objectives into several
sub-goals. The planner then needs to assign an agent taken
individually, or a set of agents behaving as a team or a swarm to
each sub-goal and schedule these more basic activities on time.
These agents does not necessarily have to be homogenous as
task specialized agents can be in this set too. The output of the
planner should be a global plan of concurrent activities
(schedule) for the set of selected agents with temporal
constraints. This type of problem is a mixed planning/scheduling
problem which well belongs to the more general domain of
combinatorial problems.

In this paper for tackling this problem an evolutionary
algorithm, more specifically a modification of Holland’s simple
genetic algorithm [4], is proposed. The binary data encoding is
replaced with integers, thus the appropriate changes are made in
order to utilize existing genetic operators.

The taxonomy is a very useful as the first separation of
different classes of problem setting. In [5] a formal analysis of
multi-robot task allocation (MRTA) is given, and three different
axes for use in describing MRTA problems are proposed. The
genetic planner presented in this work covers all of these
problems, except for multi-robot (MR) tasks. MR tasks are tasks
that can require more than one robot for its fulfilment.
Furthermore, the problem described here belongs to the class of
NP-hard optimization problems. It is important to note that some
simplifications are assumed, like atomic time, deterministic
effects, and omniscience – world state is completely known.

Since much of this research is done in correlation with the
Smart and Networking Underwater Robots in Cooperation
Meshes (SWARMs) project, the focus is on the underwater
mission planning, using different (AUVs) and (ROVs) as agents.
Even though the main focus is on underwater missions, the
planning approach shown here is generic, and it is not domain
dependent.

The presented planner has task parallelism on agent’s level
and repetition of tasks with different parameters which is not
supported by any of the mentioned approaches in the next
section. In addition, the initial population is completely random,
the planner does not start with a population of only feasible
solutions. It is also important to emphasize that multi-agent
planning is possible with the proposed genetic planner. Agents
and tasks are encoded in a chromosome, and a chromosome is
represented as a vector.

The paper is organized as follows: first, an overview of
related work is made; then GA is described, following the
algorithm implementation; next two sections are experimental
results and a case study; finally, conclusion and future work are
presented.

II. RELATED WORK

There has been a significant number of different attempts to
solve mission planning problems by applying computational
approaches. A review of these methods from the military domain
can be found in [6]. A distributed hierarchical Petri net model of
mission control procedure for describing logical relations among
mission level, task level, and behavior level is presented in [7].
The mission level takes on the genetic algorithm to plan and re-
plan the global path according to velocity, energy and other
mission constraints in unstructured, partially unknown or hostile
environments. A mission planning problem formulated as a
Constrained Markov Decision Process (CMDP) for finding the
optimal policy has been presented in [8]. In addition, there are
attempts to solve this problem with heuristic approaches such as
tabu search [9] or an evolutionary algorithm. In [10] authors use
PDDL modeling language and simple genetic algorithm with
several enhancements. Their approach uses variable
chromosome length, and it results in efficient memory usage. On
the other hand, this approach does not allow usage us multi-
agents nor parallelism of tasks.

The problem of multi-objective optimization with the
evolutionary algorithm is tackled before, where a way of
benchmarking obtained solutions is also addressed in [11]. They
have developed an evolutionary planner called Divide-and-
Evolve that embeds a classical planner and feeds it with a

sequence of subproblems of the problem at hand. A search for a
non-dominated solution with objectives being fuel consumption
and makespan of a mission is shown in [12] and [13], where the
mission planning problem was formulated as a Constraint
Satisfaction Problem (CSP). The CSP model defines several
constraints, including order and temporal constraints, but this
allows only sequential task execution (no parallel tasks on a
single agent), and tasks cannot be repeated multiple times. The
chromosome encoding is done with two rows vector, where
columns represent tasks. The cooperative task planning problem
for multiple AUVs carrying out a series of tasks against multiple
targets is addressed in [14] . GA was used for finding the optimal
mission plan. The mission consists of flying to the designated
location and passing over a set of predefined targets. Targets are
assumed to be homogenous. A chromosome is encoded as ݊ ݉	ݔ	
matrix, where ݊ is the number of agents and ݉ is the number of
tasks. The problem here is that ݊ is fixed. This means that the
chromosome will always have dimension ݊ , even if the plan uses
a number of agents that is less then ݊. This planner too does not
support parallelism of tasks on agent level. Another popular way
for solving resource-constrained project scheduling problem
(RCPSP) is by using GAs, where chromosome representation is
based on random keys as presented in [15]. The schedule is
constructed by using a heuristic priority rule in which the
priorities and delay times of the activities are defined by the
genetic algorithm. This approach does not allow use multi-
agents nor parallel tasks on a single agent. A Decomposition
Based Genetic Algorithm (DBGA) for RCPSP is proposed in
[16]. This method divides the RCPSP problem into smaller
problems and obtains the solution for the problem by combining
the solution of each such subproblem. It is shown that the
decomposition based approach finds satisfactory near-optimal
solutions.

III. GENETIC ALGORITHM

A large number of conventional planning algorithms handle

planning by mapping the search space into a graph or a tree,
searching through the nodes using heuristic functions, cutting
infeasible branches or backtracking from dead-ends. GA solves
planning problem with a different method, sometimes leading to
sub-optimal solutions.

Genetic Algorithms are adaptive heuristic search methods
for solving both constrained and unconstrained optimization
problems that use concepts from evolutionary biology to search
for an optimal solution. GAs belongs to the larger class of
evolutionary algorithms (EAs) and are considered as one of the
most suitable algorithms to solve a problem for which little is
known. GA works by starting with an initial generation of
candidate solutions that are tested against the objective function.
A number of individuals, defined by the population size, are
seeded in the search space. The algorithm tries to calculate the
quality of the current candidate solutions, i.e. its distance to the
solution. In the next iteration, the algorithm tries to reseed
population in the neighbourhood of individuals that are closest
to the solution. Subsequent generations evolve from the previous
generation through genetic operators. Reseeding of the
population across the search space is done according to
probabilistic selection, crossover, and mutation. Probabilistic
distribution guides the chromosomes through the search space,

unaware of its configuration. This means that search is
uninformed, which makes the whole process quite simple,
allowing the population set to be large giving better chances of
finding a good solution. The goal of retaining the best
performing chromosomes from one generation to the next, along
with choosing the parents is carried out by selection operator. In
this way, the best solutions are favoured in the reproduction
process.

After completing the configuration file with all the
information needed regarding tasks, a random population of
individuals is created. Again, each individual holds a plausible
solution to the high-level planning problem. When creating the
initial population, feasibility of candidate solutions is not taken
into account. This means that the initial population is created
completely random consisting of task/agents – active genes, and
“dummy” inactive genes. An example of how population set
looks like is given in the Fig. 1. Where ܣଵ, ,ଶܣ (red	௡ܣ	…
squares) are agent identifiers and ଵܶ, ଶܶ, … ௡ܶ (blue squares) are
task identifiers in the chromosome. Orange boxes represent
inactive “dummy” genes.

Since the length of the mission plan is not known a priori,
chromosomes have a variable length. A variable chromosome
length is used in [10], to the opposite of this approach, a fixed
chromosome length with “dummies” filling up space up to the
predefined chromosome length is proposed in [19]. In this work
a mix of the approaches mentioned above is used, i.e. all
chromosomes have the same length, but that length changes
based on the longest chromosome. Shorter chromosomes are
filled in with inactive genes. This characteristic is bio-inspired
since humans as well as other species also have a certain
percentage of inactive, so-called “junk” genes. Note that in this
work the exact percentage of these genes are not considered, thus
an ad hoc solution is proposed (see below).

The number of inactive genes can be set before running the
algorithm, i.e. the number of inactive genes added to the longest
solution can be set. The other solutions are automatically filled
up with inactive genes forming population set as a matrix of ݊	ݔ	݉, where ݊ is size of a population and ݉ is the number of
genes in the chromosome. This means that ݉ is a sum of active
and inactive genes. Minimum number of inactive genes is zero,
this option is the fastest, but will likely produce worse solution
than setting the number of inactive genes to a value higher than
zero. This is especially important in the initial population set,
where larger number of genes will help algorithm converge in a
lesser number of iterations. Genetic operators, crossover and a
specific type of a mutation (the so-called shrink mutation), will
take care of unnecessary tasks/agents in the candidate solutions
and eventually replace them with inactive genes. This process
.

Fig. 1. An example of a population set.

is done through the crossover operator and allows the creation
of new offspring by the mating process of previously chosen
parents. This operator allows big jumps in the search space by
combining several candidate solutions. If the job of the
crossover operator is to find better solutions by exploiting
current ones, then mutation can be seen as the operator that helps
to explore the entire search space. Mutation allows genetic
algorithms to avoid falling into local minima by maintaining
genetic diversity in the population.

Although there are many different ways of how these
operators work, EA/GA are generally very robust algorithms,
working very well even with the simplest types of operators. The
thing that is more important for obtaining good solutions is the
knowledge representation and the way it is encoded into
chromosomes. There are many different ways of representing
chromosomes as it is shown in [17] and [18]. Bit strings are the
most common way, but it is also possible to use integers/floats,
lists, hashes, objects or any other existing data structure. In the
approach shown in this paper, a gene encodes both agent or task
identifier while a chromosome encodes a complete mission plan.
Therefore, a search for feasible/best solution becomes a search
for the best individual consisting of valid task and agent genes
in the population set. The behaviour of the proposed genetic
mission planner corresponds to the standard EA paradigm:

• After creating an internal knowledge representation
model, an initial random population is created. Each
individual represents a possible solution.

• The evolution process consists in selecting individuals,
applying genetic operators to them and adding the
resulting offspring to the population of the next
generation

• A cost value of each individual is then evaluated and
updated in the fitness function. The evolution process is
repeated until the stopping criterion is met.

IV. IMPLEMENTATION

Inputs to the genetic planner are task constraints, task
parameters, and “main tasks” (MTs), which is a list containing
tasks that need to be executed (e.g. scan seabed, take images,
etc.). Task constraints include information about relations
between tasks and which tasks are allowed to run in parallel. An
example of parallel tasks is to scan seabed and take images at
the same time, but it is not possible to scan seabed and use the
acoustic modem for communication. Task parameters are
characterized by several aspects such as task location, duration,
and energy required for task execution consisting of task
parameters and pre/post conditions, while agents only have
parameters. The structure of a task is shown in the Fig. 2. The
cost of the initial population is evaluated in the fitness function.

Fig. 2. Parameters of agent/task genes..

Depending on if the function is being minimized or maximized,
the vector containing population cost is sorted in ascending or
descending order. An alternative way used for maximizing
optimization is to multiply the cost by -1 and do the
minimization. The fitness function will be described in detail in
the next section. The iteration process can have different
stopping criteria. It can be either cost, a maximum number of
iterations reached or it can stop if the global best solution does
not improve over a fixed number of iterations. Since the desired
cost value is not always known, in this case stopping criteria is
the number of iterations.

In order to decide which individuals will be chosen for
breeding, selection operator is introduced. In the literature, many
different selection methods can be found [18], but the most
popular are rank, roulette wheel, and tournament selection.
Although all of these selection methods were implemented, rank
selection showed the best performance. The rank selection might
have slower convergence rate because there is not much of a
difference, with respect to selection probability, between the
best individuals and the rest of the population. This can also be
an advantage of this method because there is a lower chance of
a premature convergence i.e. less chance to get stuck in local
minima. The population is firstly ranked based on the fitness
value of each chromosome. After that, a ranking value is
assigned to each individual, so that the best one will have a value
of ݊ (number of individuals in the population set), the second
one will have ݊ − 1, etc. and the worst one will have a value of
1. Since all the chromosomes have a chance to be selected, this
method ensures good diversity in the population set. In this work
using the rank selection operator two equal groups of parents are
selected for later mating.

Another selection operator is implemented, and it is called
elitist selection. The elitism allows best chromosomes from
current generation to be transferred to the next one unaltered.
Elitism ensures that algorithm does not diverge, and it
guarantees that the quality of the obtained solution will not
deteriorate in the next generation. The downside of this
selection operator is that it can lead to premature convergence
i.e. local minima. Elitism should be used with caution, if too
many unaltered individuals are carried from one generation to
another, it could lead to the loss of population diversity.

Once parents are selected, crossover operator combines them
in a process of making offspring. As well as other operators, the
crossover can be done in many different ways. A comparative
study of many different crossover operators can be found in [19],
[20], and [21]. The most popular solutions are single point
crossover, multi-point crossover, uniform crossover, and others.
Although all of these techniques are implemented, single point
crossover produced the best results. This operator is one-point
uniform: after selecting parent chromosomes ܯ(݅, ݆) and 	ܲ(݅, ݆), where ݅ ∈ (1,݉), and ݆ ∈ (1, ݊). Length of the
chromosome is	݊, and ݉ is the number of matings. A cutting
point C is randomly selected to be	ܥ ∈ (2, ݊ − 1). Two
offspring are then created by combining the first part of M
chromosome to the second part of the P chromosome and vice
versa. After crossover is done, chromosomes undergo a fixing
process which is needed since single point crossover can make
up to 50% of the population to be infeasible. A fixing consists
of searching for the agent gene in the chromosome and changing

its location to be the first gene of the chromosome. If the
chromosomes starts with an agent gene, a fixing of this type is
not needed.

Mutation, on the other hand, recovers some of the lost
genetic material and tries to distribute genetic information
randomly. An illustration of how mutation process affects
chromosomes is shown in the Fig. 3. It also introduces new
chromosome structures by randomly altering some of the genes.
Six different mutation operators are introduced in [10], of which
four do the gene altering in a similar way as it is done here. The
mutations used in this algorithm are:

• Swap mutation; swaps the position of two task/agent
identifiers (genes) in the chromosome

• Replace mutation; replaces one task/agent identifier with
another from the list of possible tasks

• Shrink mutation is similar to replace mutation, and the
only difference is that task/agent gene is replaced with
the inactive gene.

• Growth mutation; replaces one inactive gene with an
active task/agent gene.

The same mutation operators are used both for task genes
and agent genes. It is noted that the algorithm yields better
results if the mutation probability increases in the later stages of
the algorithm. The reason for this is that over time population
gets more homogenized, but usually, this leads to local minima
or sub-optimal solution. This way the increased number of
mutations can help producing better solutions. Mutation
occurring probability is chosen to be rather small, from 1 to 10%.
Setting mutation to 100% would give a completely random
search process.

V. FITNESS FUNCTION

In this work a linear function that combines different
variables and various user defined weights into a solution’s cost.
It is common for the best solution to have a cost equal to zero.
Here that is not the case, and the minimum cost can differ as well
as the overall feasibility of the candidate solution. In addition, it
is necessary to select an optimization criterion. It is not sufficient
for a solution to be only feasible, but the goal is to reach globally
optimal solution in as many cases as possible. It cannot be
guaranteed that the optimal solution will be found, since the
algorithm always starts from a different position in a search
space. Even if the initial population set is always the same, the
algorithm would not output the same solution due to stochastic
nature of genetic operators. In order to obtain a good solution,
.

Fig. 3. Mutation operator.

the algorithm needs to run many times. A quality of the solution
also depends on the optimization criterion, and in this work three
different criteria can be selected:

• minimizing the makespan of the entire mission as shown
in (2) (see below)

• minimizing the energy used for the whole mission as
shown in (3) (see below)

• aggregating both time and energy, thus optimizing a
multi-objective function (4)

Let ௝ܶ be the finish time of the last gene in an agent’s plan
vector (ଵܶ, ଶܶ, … , ௝ܶ) and ܣ௜ is the makespan of ݅ -th agent’s plan.

௜ܣ = (ଵܶ, ଶܶ, … , ௝ܶ) (1)

Thus, the minimization function is as follows:

(ݐ)݂ = min	(max(ሼܣଵ, … , (௡ሽܣ + ௞ܹ ∙ ∑ ௜௡௜ୀଵܣ) (2)

where ݊ is the number of agents used in a mission plan and ௞ܹ
is a user defined weight.

Let ܧ௡ be the energy used per each agent in the mission,
where ݊ is the number of agents involved in the mission plan,
then the energy minimization function will be:

 ݂(݁) = min	(∑ ௜)௡௜ୀଵܧ (3)

(ݔ)݂ = ௜ܹ ∙ (ݐ)݂ + ௝ܹ ∙ ݂(݁) (4)

where ௜ܹ and ௝ܹ are weights defined by a user. Equations (2)
and (3) should be normalized before ݂(ݔ) is calculated.
Depending on the selected optimization criteria one of these two
costs is selected or both. If mission duration is selected, the cost
of the plan with longest makespan would be minimized. A
weighted sum of agents’ makespan is added in the (2) with a
purpose to force minimization of each agent’s makespan.
Although, the first member of the equation is sufficient to

minimize the mission duration, the second member minimizes
the makespan of all agents. In this way some agents can be
available for the use in some other mission, while some other
agents still perform tasks in the first mission.

Two main levels can be distinguished in the fitness function.
A “mission plan level” and an “agent plan level” (Fig 4). In the
mission plan, all of the penalties, awards, and costs that are
related to the entire mission are computed, while in the agent’s
plan level only task constraints and a single agent cost are
calculated. There is also a sub level in the mission plan level that
calculates agent’s constraints and penalties.

The fitness function iterates through the population to,
evaluate the fitness of each chromosome. A chromosome is
firstly divided into agent plans. Each of these agent plans is
tested and assessed separately, which means that each of these
plans has its own penalty and makespan or energy cost that
contribute to the fitness of the chromosome on the mission plan
level. This procedure is repeated for the whole population in
every generation. Penalties are calculated first, and then added
to the cost function forming an overall fitness for a given plan.
On mission plan level five different conflicts are sanctioned with
a penalty. These penalties are added if:

• there are no agents in the mission plan

• one or more of MTs is missing from the plan

• more agents are used then there are available ones

• there is unassigned tasks or plan does not start with an
agent gene

• there is an agent plan that does not have at least one of
the MTs

In the mission plan level, beside penalties, there is also an
award system. There are two types of awards, with the first one
being awarded if the planner reaches a feasible solution, i.e. the
sum of all penalties is equal to zero. The other award is being
added for each agent used in the mission plan, thus favoring the
use of as many agents as possible. This is especially important if
the optimization criterion is the makespan of a mission. The
.

Fig. 4. Fitness function scheme of work.

agent plan level also has its penalties for the contempt of task
constraints. These penalties are added if:

• preconditions are not fulfilled

• postconditions are not fulfilled

• location condition is not met for a given task

 On the agent plan level, each plan is evaluated separately in
the function that is in charge of plan evaluation. This function
iterates through the plan and checks if task constraints are
fulfilled. Besides the task constraints, this function calculates
both the duration of the plan and the energy consumed by the
agent to fulfill that plan. Both costs and penalties are summed
and sent to the mission plan level where they are being added to
the cost and penalties of the mission plan level. Now equation
(4) is expanded into:

(ݔ)݂ = ௜ܹ ∙ (ݐ)݂ + ௝ܹ ∙ ݂(݁) + ܲ + (5) ܦ

where ܲ is the sum of all penalties and ܦ is the sum of all awards
in a mission plan. The sum of all penalties shows if the mission
plan is feasible, i.e. if the sum is equal to zero, the mission is
feasible, otherwise it is not. In general, feasible solutions are
preferable even though they might not be optimal or even close
to optimal solution. In the end all of these penalties, awards and
costs are combined with weight factors and an overall mission
plan cost is formed. This is the cost used, by selection operator
for establishing the rank of chromosomes in the population set.

VI. EXPERIMENTAL RESULTS

The presented genetic planner is implemented in MATLAB
2015b on a Windows workstation, i7@2.8GHz, and 32GB of
RAM. It is usually challenging to find a good ratio between
population size and a number of iterations executed. These two
parameters are the one that can be set before running the GA that
has the biggest influences on the running time. Running time is
not the best indicator of the performance of GA since the load of
CPU can vary. It is usually used to give a rough evaluation of
GA’s performance. A number of generations are used more
often for evaluating the performance of GA. After many runs, it
is noted that there is an almost linear correlation between time,
the number of individuals, and the number of generations.

In the problem described in the case study section, for one
iteration it takes an average of 0.003 seconds more per additional
individual in the population set. Larger population size leads to
a solution in a lesser number of generation, but as described the
running time increases per generation. There is a need to find an
optimal combination of these two parameters. In the Fig. 5 mean
cost values for various population sizes are shown. GA was run
30 times with each set of parameters and then mean value was
computed. It can be noted that the population size of 20
individuals is too small for this kind of problem, while the rest
of the test, values have the same mean values at a higher number
of iterations. At 500 iterations mean cost value is the same for
the population size of 100 individuals, while at 800
iterations all values from 50-500 blend in at a minimum of mean
cost value. The value of 500 iterations is chosen as the optimal
one for stopping criterion, and for the population number 100 is
chosen. Various population sizes are tested over 500 iterations
run and presented in the Fig. 6. It can be noted that for
.

Fig. 5. Mean cost values for various population sizes.

populations over 400 iterations mean cost value and median
values does not change much.

VII. CASE STUDY

The mission scenario that will be presented here consists of
six MTs. Three of these tasks are ScanArea (Task 3), and the
other three are TakeImage (Task 4). In this scenario, mission
planner has five agents at its disposal. Thus, at least one agent
will have to perform two or more MTs. Every one of these agents
has different velocity and energy consumption rate. Calculations
of these parameters are fairly simplified since that is not in the
scope of this paper. Simplified calculations are also used for
evaluating tasks duration, i.e. the theoretical time that it takes for
an agent to finish a task.

Although only six tasks are used as an input, the mission plan
will end up having 29 active genes. As it is previously
mentioned, inputs to the planner are so called MTs. MT can be
any task from the list of tasks shown in Table 1. GA then makes
sure that all necessary tasks for completion of MT are in the
chromosome. A simple example of this is if Task 3 is chosen as
MT and agent is not at the starting location defined in Task 3,

Fig. 6. Median, minimum, maximum, and mean cost values with standard
deviation for various population sizes over 500 generations.

C
os

t

GA needs to generate Task 2 or Task 1 in the sequence before
Task 3, otherwise, the fitness function will characterize this
solution as infeasible.

The output of the genetic planner is a mission plan. X axis
accounts for a timeline [s], while Y-axis represents tasks. Small
battery icons in the top left corners show the energy level of each
AUV after completion of assigned tasks. In this case, all tasks
are assumed to be below the surface, and that is why there is no
Task 1 in any of the plans. It can be noted that agents 1, 2, and 5
have some tasks running in parallel, thus making a makespan
shorter. The mission plan for this particular scenario,
represented by Gantt chart can be seen in Fig. 7. Parallel task
constraints can be seen in Table 1.

Results for different population sizes run over 500 iterations
are shown in Table 2. The table displays population size, mean
value, standard deviation, median value, minimum and
maximum values and the time took per run. Same columns
except the first one, which now shows a number of generations,
have Table 3. Results presented in Table 3. are for a various
number of generations for a population size of 200.

Convergence rate of the genetic planner is shown in Fig 8. The
blue curve stands for the minimum cost value in each generation,
while magenta shows the average cost of the fittest individual
throughout generations. Parameters used in this case study are
as following: mutation rate 10%, the population size of 100, and
the number of generations is limited to 500..

Fig. 7. Gantt Chart of a mission plan with battery status.

TABLE I. LIST OF AVAILABLE TASKS

Task # Action Parallel Task Constraints
Task 1 GoTo_aboveSurface Task 4, Task 6, Task 7
Task 2 GoTo_belowSurface Task 4, Task 6, Task 7
Task 3 ScanArea Task 4, Task 5
Task 4 TakeImage Task 1 & 2, Task 3, Task 6, Task 7
Task 5 Measure at Location Task 4, Task 6, Task 7
Task 6 Comm. Status report Task 1 & 2, Task 4, Task 5
Task 7 Comm. Send data Task 1 & 2, Task 4, Task 5
Task 8 Progress monitoring Task 1 & 2, Task 6, Task 7
Task 9 Follow Pipe Task 4, Task 5, Task 6, Task 7
Task 10 Follow moving object Task 4, Task 5, Task 6, Task 7
Task 11 “Dummy Task” -

TABLE II. POPULATION SIZE RESULTS FOR 500 ITERATIONS

Pop. Mean Std. Median Min. Max. Timea
10 -735.4 292.3 -762.4 -1192.6 36.4 32.3
20 -763.1 223.6 -742.9 -1222.6 -332.1 62.7
40 -1040.7 166.8 -1045.5 -1255.1 -626.1 85.7
80 -1081.0 140.0 -1071.4 -1255.3 -663.6 143.8
120 -1125.2 93.2 -1128.0 -1245.4 -939.0 190.9
160 -1146.7 75.5 -1170.9 -1252.1 -1023.6 245.1
200 -1149.5 91.4 -1197.0 -1252.3 -953.6 295.6
250 -1125.0 119.7 -1187.4 -1255.1 -875.2 363.3
300 -1123.6 121.4 -1170.8 -1255.3 -913.9 425.3
350 -1145.5 109.2 -1175.3 -1255.3 -935.8 505.1
400 -1170.1 72.3 -1195.0 -1255.3 -1001.1 569.7
500 -1166.4 72.6 -1195.3 -1255.1 -1002.0 719.9
600 -1175.3 66.1 -1194.6 -1254.2 -1047.7 869.2

TABLE III. RESULTS FOR VARIOUS NUMBER OF GENERATIONS FOR 200
POPULATION SIZE

Gen. Mean Std. Median Min. Max. Timea
50 216.3 346.5 161.0 -274.7 891.4 27.6
100 -388.9 271.1 -433.2 -738.2 176.4 54.1
150 -768.4 226.2 -803.7 -1143.4 -172.1 80.5
200 -877.7 145.4 -868.3 -1155.6 -623.9 115.6
250 -975.7 102.5 -949.3 -1234.3 -811.2 131.3
300 -1049.5 96.9 -1033.0 -1255.3 -904.3 159.2
400 -1153.6 77.7 -1184.6 -1254.9 -1006.8 212.9
500 -1153.1 100.8 -1197.8 -1247.0 -864.8 263.5
600 -1157.0 88.6 -1198.9 -1255.3 -947.0 327.0
800 -1191.9 58.7 -1212.3 -1254.2 -1023.2 427.2
1000 -1193.9 56.2 -1208.6 -1254.2 -1041.1 544.4

a. Time is expressed in seconds

Fig. 8. Convergence plot.

T
as

ks
T

as
ks

T
as

ks
T

as
ks

T
as

ks

0 100 200 300 400 500

Number of iterations

-2000

-1000

0

1000

2000

3000

4000

5000

6000

Generation = 500, Minimum Cost = 1255.3 Average Cost = -691.4

average cost
minimum cost

VIII. CONCLUSION AND FUTURE WORK

In this paper a genetic planner for multi-agent mission
planning is presented. The novelty aspect of the proposed
solution is that it can handle solutions that require task
repetitions for a successful mission. The initial population set
consists of random task/agent genes with variable chromosome
length. Data structure used for encoding agents/tasks into a
chromosome is based on integer identifiers, whereas a
chromosome is represented as a vector.

As in other cases with population-based search, different
parameters, and their initiated values, can greatly affect the
performance of the proposed algorithm. However, for the
problem presented in Section VII. Case Study, approxametaly
500 iterations and population size of 100 - 200 individuals give
the best results in a reasonable time span. For the future work it
is planned to extend the current system in the following
directions:

• include an option for handling multi-agent tasks to allow
assignement of several agents to a task. This also
includes adding a “delay” gene in the chromosome
representation.

• extend the fitness function for multi-objective search, in
order to deal with two or more (e.g. makespan, energy
consumtion, and mission safety/risk) criterion forming a
Pareto optimal front.

• introduce more heterogeneity in an AUV set, especially
in the sensors domain. This will also result in additional
test in the cases of using AUVs from different
manufactorers.

• propose a complete Mission Management Tool (MMT)
for computing the initial planning of activities, monitor
their execution and in the case of unexpected events
make appropriate decisions about re-planning.

ACKNOWLEDGMENT

The research leading to the presented results has been
undertaken within the SWARMs European project (Smart and
Networking Underwater Robots in Cooperation Meshes), under
Grant Agreement n. 662107-SWARMs-ECSEL-2014-1, which
is partially supported by the ECSEL JU and the VINNOVA.

REFERENCES
[1] M. Castilho, L. A. Kunzle, E. Lecheta, V. Palodeto and F. Silva, "An

investigation on genetic algorithms for generic STRIPS planning," in
Advances in Artificial Intelligence - IBERAMIA, Berlin, Springer-Verlag,
2004, pp. 185-194.

[2] R. E. Fikes and N. J. Nilsson, "STRIPS: a new approach to the
application of theorem proving to problem solving," in International
Joint Conference on Artificial Intelligence, London, England, 1971.

[3] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld and D. Wilkins, "PDDL-the planning domain definition
language," Yale Center for Computational Vision and Control, New
Haven, 1998.

[4] J. H. Holland, Adaptation in natural and artificial systems, MIT Press,
1975.

[5] B. P. Gerky and J. M. Maja, "A formal analysis and taxonomy of task
allocation in multi-robot systems," Internation Journal of Robotics
Research, vol. 23, no. 9, pp. 939-954, 2004.

[6] A. Boukhtouta, A. Bedrouni, J. Berger, F. Bouak and A. Guitouni, "A
survey of military planning systems," in The 9th ICCRTS Int. Command
and Control Research and Technology Symposium, Copenhagen,
Denmark, 2004.

[7] W. Hongjian and B. Xinqian, "A GA Path Planner Based on Domain
Knowledge for AUV," Oceans’04, pp. 1570-1573, 2004.

[8] X. C. Ding, A. Pinto and A. Surana, "Strategic planning under
uncertainties via constrained markov decision processes," in
International Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany, 2013.

[9] L. Belfares, W. Klibi, N. Lo and Guitouni, "Multi-objective tabu search
based algorithm for progressive resource allocation," European Journal
of Operational Research, no. 177, pp. 1779-1799, 2007.

[10] A. H. Brie and P. Morignot, "Genetic planning using variable length
chormosomes," in International Conference on Automated Planning and
Scheduling, Monterey, 2005.

[11] M. Khouadija, M. Schoenauer, V. Vidal, J. Dreo and P. Saveant, "Pareto-
Based multiobjective AI planning," in 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, 2013.

[12] C. Ramirez-Atencia, G. Bello-Orgaz, M. R-Moreno and D. Camacho, "A
hybrid MOGA-CSP for multi-UAV mission planning," in Proceedings
of the Companion Publication of the 2015 on Genetic and Evolutionary
Computation Conference, Madrid, Spain, 2015.

[13] G. Bello-Orgaz, C. Ramirez-Atencia, J. Fradera-Gil and D. Camacho,
"GAMPP: Genetic algorithm for UAV mission planning problems,"
Intelligent Distributed Computing IX, pp. 167-176, 2016.

[14] L. Geng, Y. Zhang, J. Wang, J. Y. Fuh and S. Teo, "Cooperative task
planning for multiple autonomous uavs with graph representation and
genetic algorithm," in Control and Automation (ICCA), Hangzhou,
China, 2013.

[15] J. Magalhaes-Mendes, "Project scheduling using a competitive genetic
algorithm," in International Conference on Simulation, Modelling and
Optimization, Santander, 2008.

[16] Vanhoucke, D. Debels and Mario, "A decomposition-based genetic
algorithm for the resource-constrained project-scheduling problem,"
Operations Research, vol. 55, no. 3, pp. 457-469, 2007.

[17] L. García-Hernández, A. Araúzo-Azofra and L. Salas-Morera, "A review
on encoding schemes used by genetic algorithms in plant layout design,"
in 13th International conference on project engineering, Badajoz, 2009.

[18] Z. Michalewicz, Genetic algorithms + data structures = evolution
programs, Springer-Verlag Berlin Heidelberg, 1996.

[19] C. H. Westerberg and J. Levine, "Genplan: combining genetic
programming and planning," in 19th Workshop of the UK Planning and
Scheduling Special Interest Group (PLANSIG), Milton Keynes, England,
2000.

[20] T. Blickle and L. Thiele, "A comparison of selection schemes used in
evolutionary algorithms," Journal of Evolutionary Computation, vol. 4,
no. 4, pp. 361-394, 1996.

[21] J. Magalhaes-Mendes, "A comparative study of crossover operators for
genetic algorithms to solve the job shop scheduling problem," WSEAS
Transaction on Computers, vol. 12, no. 4, pp. 164-173, 2013.

[22] N. Soni and T. Kumar, "Study of various crossover operators in genetic
algorithms," International Journal of Computer Science and Information
Technologies, vol. 5, pp. 7235-7238, 2014.

[23] S. Picek, M. Golub and D. Jakobovic, "Evaluation of crossover operator
performance in genetic algorithms with binary representation," in Bio-
Inspired Computing and Applications, Berlin, Springer Berlin
Heidelberg, 2011, pp. 223-230.

