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Abstract—Nations will always experience conflicting pressures
to reduce both (i) the funding of militaries and (ii) the probability
that they will not be able to respond to scenarios that may arise.
We develop a multiobjective evolutionary algorithm (MOEA) to
generate force mix options that trade-off between lower bounds
for objective (i) versus objective (ii). A set of military assets or
force mix is evaluated against multiple instances of the future,
each composed of a mix of stochastically generated realistic
scenarios based on historically derived parameters. Scenario
success is evaluated by matching each occurrence with a course of
action (CoA) whose force element (FE) demands can be met. The
lower bound on (i) comes from the assumption that a nation has
complete flexibility to engage in scenarios at times that minimize
simultaneous demand on FEs. The results are compared with the
results from Tyche, a discrete event Simulator, which provides an
more realistic, though pessimistic, point estimate of objective (ii).
Results confirm the expected relative behavior of both models.

I. INTRODUCTION

The military are tasked with a number of essential mis-

sions, such as search and rescue, emergency assistance in the

face of natural disasters, peacekeeping-type activities (e.g.,

under a United Nations mandate), peace enforcement roles,

and, most importantly, protecting a nation from aggression.

Those missions require the use of various assets and trained

personnel, called force elements (FEs). The mix of all assets

and personnel constitute, in military parlance, a force structure

or force mix. The costs related to both the personnel and

the acquisition, maintenance and operation of military assets

can be very high. Such high costs, coupled with limited

(and diminishing) military budgets, have driven the use of

computational force structure studies to determine the best

force structure for carrying out future military missions.

The problem we address in this paper is to determine

the trade-off between large, costly force mixes, with high

probabilities of being able to send our forces to scenarios

arising in the next five years, versus small force mixes having

lower probabilities of being able to respond to all scenarios

that arise. How well a nation can respond to a range of future

scenarios, especially concurrently, depends on a nation’s level

of ambition. We tackle a simpler version of this problem: esti-

mating the lower bound on the force mix size, given a nation’s

level of ambition for the fraction of scenarios that can be

responded to. The lower bound is an optimistic estimate which

assumes that we can schedule scenarios so as to minimize

conflicting demands on the resources that make up a nation’s

force mix. It represents a clear and absolute limit, below which

a nation’s assets should not drop, regardless of fiscal pressures.

Furthermore, national forces do have discretion in when they

engage in scenarios, so some freedom to schedule does exist,

albeit limited.

Previously, two models have been developed to carry out

force mix evaluations: the Stochastic Fleet Estimation un-

der Steady State Tasking (SaFESST) [1] and Tyche [2], [3]

models. SaFESST carries out a specialized constrained strip-

packing (i.e., one-dimensional bin-packing [4]) over multiple

resources. This problem addressed by SaFESST and our

problem are similar to a sparse multi-capacity bin packing

application for job scheduling [5], [6]. However, the number

of each FE type used is not directly proportional to other

FE types for each scenario, meaning that methods normally

applied to multi-capacity bin packing problems would not

be applicable to our problem. We set an upper limit on the

quantity of each FE type. Any tasks or portions of tasks

that fall outside of the constrained bins would be considered

not achievable or ”unscheduled.” Furthermore, by placing a

limit on the size of the force mix (i.e., a threshold on the

number of strips of each FE type or on the height of each

FE bin), SaFESST evaluates this force mix by providing the

list of scenarios that cannot be accommodated in the mix of

all concurrent scenarios. Because SaFESST tightly packs all

scenarios together, it may underestimate the scenario failure

rate and provide a lower bound on the force structure. Tyche,

on the other hand, is a discrete event simulator which evaluates

force structures in detail over time. Decisions about the use of

individual assets are recorded in operational schedules, based

on detailed rules that are meant to mimic the decisions of a

military scheduler. Although the computational complexity of

both models is high, their outputs can provide an assessment of

capability gaps and outline scenarios that cannot be completed.

Since Tyche does not consider any latitude in when a nation

engages scenarios, it tends to form upper bounds on a force

mix [7].

The work reported here expands on SaFESST by using a

multiobjective evolutionary algorithm (MOEA) to determine

a set of trade-offs between minimal force mix and the failure

to respond to scenarios (the original objective in SaFESST).

Specifically, the objectives being minimized are: (i) force mix

cost, which depends on the required quantities of various asset



types, and (ii) the number of failures to respond to scenarios,

given a maximum limit on the quantity of various asset

types. To minimize both objectives, an MOEA attempts to

schedule the scenario occurrences to minimize peak demands

for the various FEs. In addition to the timing of the scenarios,

however, the search space also includes: (i) the selection of a

course of action (CoA), a possible response to a scenario, for

each occurrence, which affects the assets needed, and (ii) the

order with which scenario occurrences are allotted assets.

We compare the MOEA results to those of a Tyche analysis

using the same stochastic scenario parameters, force mix, and

scenario CoAs [8]. Beyond its greater modelling detail, Tyche

differs from the model reported here in that it does not seek a

trade-off curve for the lower bound estimate of required assets.

II. MODEL

The two minimization objectives (force mix cost and failed

scenarios) drive the model definition. In this section, we

describe the modelling decisions to enable the calculation

of those objectives, the resulting input parameters, the free

parameters to be searched, and their organization into chro-

mosomes for the genetic algorithm (GA).

A. Force Assets

The forces’ assets are broken down by FEs. This is a

generic modelling construct representing any asset, ranging

from planes, tanks, and ships to Command and Control

(C2) headquarters, task forces, and services. We distinguish

between an FE type versus a specific physical unit of that

type of FE (either required or available). One input into the

problem is a nation’s nominal force mix, i.e., the quantity

of each type of FE. For example, 40 fighters or 15 surface

combatant vessels.

B. Scenarios

We use the term scenarios to refer to types of missions

on which the Canadian Armed Forces (CAF) deploy. Scenar-

ios are modelled as randomly occurring and having random

duration. We also distinguish between scenario types versus

specific occurrences of a type of scenario 1 Different scenario

types are defined, each with its own Poisson rate and duration

distribution ( e.g., triangular or boxcar). This model is not a

time domain simulation per se. The Poisson distribution is used

to determine the number of occurrences of each scenario type

within the analysis time window, but the scenario occurrences

are not randomly scattered throughout the timeline. The model

seeks a lower bound, and situating the scenario occurrences in

time represents some of the degrees of freedom being searched

to minimize the objectives.

For each scenario type, there are different CoAs, each

having slightly different requirements as FE quantities. If a

specific CoA is selected for a given scenario occurrence, then

1Because of this distinction, the word “type” sometimes follows the term
scenario.

the FEs needed by that CoA are needed for the entire duration

of the scenario occurrence.2

Using the Poisson rates and duration distributions, a set of

scenario occurrences is generated over a predefined number

of years. This combination of scenario occurrences constitutes

one possible instance of the future (IotF). To gather statistics

on force mix adequacy, our MOEA was applied to multiple

IotFs. In each IotF, the set of scenario occurrences is fixed

during the GA optimization process.

C. Force Mix cost

Without loss of generality, we use notional, artificial nor-

malized costs to illustrate the method. The cost of a force is

based on the required quantity of each type of FE. In contrast,

each FE type is also treated as a “fleet” of FE units whose size

is the number of FEs units available, i.e., the aforementioned

nominal force mix. For a given FE type, if there are N units

in the fleet, then the cost of each unit required is set to 1/N
times the fleet cost. We made the fleet costs uniform for all

FE types and set that cost to 1.0, e.g., the cost of a fleet of

10 ships is the same as the cost of a fleet of 70 aircraft. Thus,

the larger the fleet, the lower the relative cost of an asset with

respect to other FEs.

Since the demand of each FE type determines its contri-

bution to the force mix cost, how the demand is assessed is

important. The current analysis takes the FE demand on the

force mix to be the peak number of a given FE type needed at

any time within the analysis period, i.e., the peak simultaneous

demand for each FE type.3 If this is less than the fleet size,

then it means that the fleet could have been smaller without

impacting the scenario failures.

D. Objective Functions

A MOEA is used to find the trade-off between conflicting

objectives: minimizing a force’s cost and minimizing scenario

failures. The objectives being minimized are: (i) force mix

cost, which depends on the maximum simultaneous numbers

of various types of FEs needed to meet the requirements of

scenarios that arise, and (ii) the number of failures to respond

to scenarios, given a maximum limit on the on the numbers

of the various FE types that can be simultaneously deployed.

The FE limits used for objective (ii) can be thought of as the

nominal force mix, consisting of actual assets possessed by

the forces for which there are no alternative providers.

Objective (i) is defined as

NF
∑

i=1

nici ,

where

2This is a simplification which avoids the problem of managing partial asset
use in a given scenario time frame.

3The peak will never exceed the quantity in the force mix. Any scenario
occurrence that would otherwise lead to such a situation is considered to have
failed. In that case, none of the FE demands in the chosen CoA would be
realized. In particular, the scenario occurrence will not consume any time on
the schedules of the actual force assets.
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Fig. 1. Example chromosome.

i = The FE type,

NF = The number of FE types,

ni = The peak number of FE units of type i used

throughout the analysis time period, and

ci = The unit cost for FE i (Section II-C) .

If the scheduling of a scenario occurrence requires that ni

exceed the force mix limit for any FE type i, that occurrence is

simply not scheduled. Objective (ii) is simply a count of such

failed scenario occurrences. These failures are also counted on

a per-scenario-type basis to enable per-scenario-type statistics.

III. GENETIC ALGORITHM

The GA consists of two complementary parts. The problem-

dependent part includes the parameter encoding scheme

and the scheme for computing objectives. The problem-

independent part consists intergenerational mechanics, such as

the selection scheme, crossover operator, mutation operator,

and population replacement.

A. Chromosome Structure

A chromosome represents a candidate solution in the sense

that a schedule of the stochastically generated scenario occur-

rences can be constructed using the parameter values within

the genes. To schedule each scenario occurrence, the genes

must contain the start date/time, duration, and the specific CoA

selected. Since the required FEs are defined for each CoA, a

chromosome also determines the schedule of demands for the

various FE types. The next section describes how values for the

objectives are determined from such a schedule of FE usage.

Figure 1 shows an example chromosome for a hypothetical

case in which there is a total of five scenario occurrences

(of the various scenario types) throughout the period being

simulated. A chromosome consists of a series of one gene

per scenario occurrence. Each gene contains three fields that

govern the scheduling of the corresponding scenario occur-

rence: (i) its start date, (ii) its CoA, which determines its FE

demands, and (iii) a SOK (sort order key, a real number) that

determines the order in which the scenarios have their FE

demands scheduled onto the FE timelines. Given n scenario

occurrences for a given IotF, there are 3n parameters for each

chromosome.

The SOK is compared with the SOKs of the other genes in

the chromosome to determine the order in which the genes’

associated FE demands are scheduled onto the timelines for

the FEs in the force mix. This scheduling is not meant to

represent the nation’s priorities; it is a degree of freedom

being searched by the GA to minimize the objectives. Different

SOK values yield different force mix costs and scenario

failures. Using an explicit scheduling order parameter for

each scenario occurrence gives greater freedom to the GA

search compared to using the gene position as a scheduling

order parameter. The gene positions also determine which

genes are swapped in crossover. Using an explicit scheduling

order parameter decouples this function from the function

of scheduling ordering. As well, using the gene position for

scheduling ordering involves handling different portions of the

chromosome differently in order during crossover to preserve

a full set of genes. This is avoided by using an explicit SOK.

The use of a specific start date/time for each scenario

occurrence differs from the more common scheme of best-

fit bin-packing the scenario occurrences [9]. Forgoing left

packing speeds up the construction of the schedule, especially

when the FE usages for a given scenario occurrence need to

be time-aligned. It also introduces more free parameters into

the search space. The latter admits potentially better solutions,

but also potentially increases the cost of searching the space.

This dual effect was further amplified by the early decision

not to discretize in the time domain. In the details of the GA

design, therefore, a heavy emphasis was placed on exploration

rather than exploitation.

The duration of each scenario occurrence is needed to

construct the schedule of FE usage for each chromosome.

This parameter is stochastically generated when the scenario

occurrence counts are generated, and is not a degree of

freedom to be searched. Hence, it does not form a field within

the genes of a chromosome.

B. Chromosome Evaluation

Keeping in mind that each gene corresponds to a scenario

occurrence, the objective functions are evaluated by scheduling

the demands of the scenario occurrences onto the timelines of

the FE units in the force mix. The scheduling starts with empty

timelines for all FE units. The scenario occurrences are sorted

by their SOKs and processed in the resulting order. For each

scenario occurrence, empty portions on the FE timelines of the

proper type are sought to meet each FE unit demanded. The

timelines are always scanned for openings in the same order,

starting with the lowest numbered FE unit of the required

type so that any empty timelines are always numbered the

highest. The positions of the openings on the timelines, and

their widths, must be able to fit the start date and duration of

the scenario occurrence.

A scenario failure occurs if any of the CoA demands can’t

be met by timelines of the right FE type. If this happens, the

scenario occurrence is discarded and the timelines are restored

to their state prior to attempting to schedule the failed scenario

occurrence.

An attempt is next made to schedule the next scenario

occurrence, as determined by the genes’ SOK fields. This

repeats until all the scenario occurrences are either scheduled

or have failed. The two minimization objectives are then tallied

and stored with the chromosome.

C. Intergenerational Mechanics

We chose to use the Nondominated Sorting Genetic Algo-

rithm II (NSGA-II) [10] for the intergenerational mechanics



due to its popularity in the literature. Our adaptation of NSGA-

II is structured as follows.

The selection for crossover is based on a chromosome’s

rank. As described for NSGA-II [10], the rank is determined

first by the nondominated front to which it belongs, and then

by its proximity to other solutions on the same front. The

crossover scheme was uniform crossover, i.e., a pre-specified

portion of the genes are swapped between a pair of parent

chromosomes. For genes selected for swapping, the three fields

of a gene were kept together and exchanged as a unit.

Mutation was performed on chromosomes drawn from

the population with uniform probability, with replacement.

The probability of mutating the CoAs, start date, and SOK

fields were specified independently. Hence, there was a small

probability of more than one field being mutated, e.g., if

pSD and pCOA were the probabilities of mutating the start

date and CoA fields, respectively, then the probability of a

chromosome being mutated in both fields was pSDpCOA. If a

particular field was to be mutated, then there was a uniform

probability of mutating that field in 1 to Ng genes, where Ng is

specified separately for each field. For a given field, a mutated

value was chosen with uniform probability. If no fields end

up being mutated for a particular chromosome, then another

chromosome must be drawn. This is repeated until the quota

for mutated genes (discussed next) is met.

For each generation, a pre-specified fraction of the pop-

ulation (the lowest ranking chromosomes) was replaced by

newcomers, i.e., mutated chromosomes and offspring from

crossover. The proportion of newcomers consisting of off-

spring versus mutated chromosomes was also pre-specified. To

emphasize exploration of the search space, the replacement by

newcomers was unconditional.

Exploration was also emphasized by mitigating the selective

pressure of ranked selection, which preserves diversity in

the genes. The mitigation is illustrated in Figure 2 for a

notional population of 10. The convention used is that better

chromosomes have higher rank numbers. The bar heights are

proportional to the probability of being selected. The dark bars

represent the normal selective pressure from ranked selection,

while the yellow bars show the pre-specified adjustment to

reduce selective pressure. Under this modification, selection is

done as follows. If we let f0 be the lighter-coloured offset for

rank 1, we can use the same approach as the formula for sum

of an arithmetic series to show that the selected rank should be

⌈
√

2ξ + (f0 + 1/2)2−f0−1/2⌉, where ξ is a random number

between 0 and (N + 1 + 2f0)N/2, and N is the population

size [11]. We set f0 = N/10.

The ranking depicted in Figure 2 is simplified in that

there are no ties in the ranking of chromosomes. In practice,

however, there could be possibly many chromosomes with the

same objective function values, which means that they are

tied. The lower numbered chromosomes within the tie will be

disadvantaged. We address this effect by randomly ordering

the chromosomes before ranking the population. This ensures

that any tied chromosomes are equally likely to be placed in

any one of the tied positions.
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Fig. 2. Mitigating selective pressure in ranked selection.

TABLE I
SCENARIO FREQUENCIES AND DURATIONS

Index Poisson rate
Annual

Duration [days]

min peak max

1 0.2 2 14 16
2 0.08 2 - 27
3 1.4 1 10 188
4 0.3 173 360 4130
5 0.3 223 2555 4751
6 0.09 94 - 250
7 1.2 1 14 133

IV. RESULTS

A. Experiment Setup

This section describes the two groups of parameter values

used to populate our model. The first group pertains to the

military problem as described in Section II. The second

group of the parameters pertains to the GA’s intergenerational

mechanics, as described in Section III-C.

To enable comparison of the results, the military problem

parameters were chosen to match Tyche’s evaluation of force

mix performance using discrete event simulation [8]. To reduce

computational requirements, however, we excluded FEs that

were modelled in the Tyche study as always available, e.g.,

external services, as they do not impact the scheduling. Our

resulting nominal force mix had 39 FE types and a total of

342 FEs units across all FE types.

Seven scenario types from the Tyche study were used.

Their Poisson rates and triangular/boxcar duration distributions

are shown in Table I. The boxcar duration distributions are

those without a peak value under Duration. The stochastic

parameters in Table I were determined from a survey of CAF

operations from 1990 to 2012 [8]. The period over which to

generate scenario occurrences was also chosen to be five years

in order match the Tyche study.

For the CoAs available to each scenario, Figure 3 gives a

rough sense of the variability in demand between CoAs. The

CoAs available to each scenario type are grouped together

along the CoA axis.

Each possible IotF consisted of a set of stochastically

generated scenario occurrences over a five year time window.

There were seven scenario types (see Table I), and each could
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be responded to with one to three CoAs. For each IotF, the

GA created schedules for all FEs to minimize the objectives.

Scenario occurrences were analyzed over 1495 IotFs to gather

statistics on failed scenarios for comparison with Tyche.4

The GA parameters are as follows. The population size

and generational count are both set to 400. For the uniform

crossover, 50% of the genes were swapped. For ranked selec-

tion with less selective pressure, the probability of selecting

the worst chromosome was set to one tenth of the probability

selecting the best one.

Mutation was set to be high to emphasize exploration. The

experimentally set probabilities of mutating the CoAs, start

date, and SOK were {20%,40%,10%}. For these three fields,

there was uniform probability of mutating from 1 to 2 genes,

1 to 4 genes, and only 1 gene, respectively. More mutation

was allowed for in the start date to better explore the extra

degrees of freedom due to our chromosome representation.

Less mutation was allowed for in the SOK because its direct

effect is not local to the gene containing the mutated SOK; the

order in which the demands of the scenario occurrences are

scheduled onto the FE timelines depends on how the SOKs

compare to each other.

The generational replacement scheme was also chosen to

emphasize exploration. For each generation, the lowest rank-

ing 60% of the population members were unconditionally

replaced by newcomers. 40% of the newcomers were created

by crossover, while 60% were mutated chromosomes.

B. General Observations

Visually assessing the efficacy of the GA was challenging

due to the large number of timelines (342) on which the

scenario occurrences may collide. Figure 4 shows a small

portion of the schedule for the FEs in the force mix. Each

set of vertically aligned blocks represents the FE demands of

a single scenario occurrence, and the entire schedule contains

342 timelines, one for each FE unit in the force mix. This

4The number of IotFs was determined by the time available for this study
and holds no particular significance.
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Fig. 4. A portion of the schedule for the force elements in the force structure.

schedule was obtained from one of the nondominated solutions

for one of the IotFs, then constructing the schedule using the

genetic information in the chromosome, but without disallow-

ing overages. The GA search itself does not allow overages

in constructing the schedule to evaluate the chromosome,

but we constructed the schedule with overages to look for

improvements that the GA missed.5 Overages are shown by

“+” signs along the y-axis labels (the dashes demarcate the

beginning of a new platform type, as does a change in the

colors of the scheduled blocks of time).

The challenge to visual inspection being illustrated by

Figure 4 is as follows. There is an apparent failure of the GA

to deconflict the three scenario occurrences in the 500-700 day

time frame. With careful inspection, however, the explanation

can be found on one of the 342 timelines: the burgundy block,

FE 12, unit 01. It is shown as an overage, yet it is the first unit

of that FE type used. This is because the quantities of some

FEs types are zero. It may be that a nation needs to acquire

some of these FEs. When overages are disallowed, however,

the scenario occurrence that requires such FEs is never placed

in the timelines; there is no actual conflict, therefore, and the

schedule is actually appropriate for the given objectives.

Another prominent feature in Figure 4 is the swaths of

time consumed by long running scenario occurrences. We

expected the GA to favour the scheduling of long scenario

occurrences and scenarios with demanding CoAs after other

scenario occurrences. This is because failing such scenarios

frees much of the schedule for many more small or less

demanding scenarios, which helps to minimize the objective

for failed scenarios (see Figure 4). The lengthy usages of the

timeline are scheduled after the shorter blocks, as seen from

the higher FE unit numbers occupied by the large blocks.

Finally, we found that much mutation of the scenario

occurrence start dates was needed to find openings in the

timelines. This was not surprising, since the scheme does not

tightly pack scenarios to guarantee some degree of abutment.

5Without overages, many of the scheduled scenario demands would not be
present on the timelines, and we would be looking at a fairly sparse schedule
without much information about the absent scenarios and why they failed.





a particular FE type has a large fleet size N , then the notional

cost used here can change in small quanta 1/N ; however, most

fleet sizes were small.

Because of the small nondominated fronts, Deb’s crowding

distance scheme [10] to maximize diversity on the nondomi-

nated front was essential.

D. Comparison with Tyche

The GA results were compared with Tyche. This study used

the same scenario parameters, FE demands, and force mix.7

However, Tyche also required additional details, such as FE

basing, travel time, and a response time (if assets can reach

theatre with a time window, that a scenario occurrence would

not fail). We modified the definition of scenario success from

the previous study [8]. Specifically, a scenario occurrence is

successfully responded to if the required FEs can be scheduled

for the entire duration of the scenario occurrence.8

The results of the comparison are shown in Table II. Several

GA configurations were tried for this comparison, but the

main one uses a population of 400, an evolution of 400

generations, and unconditional replacement of the worst pop-

ulation members by the newly generated chromosomes. In the

central columns of the table, these are highlighted with thick

borders, along with the Tyche results. The results of earlier GA

configurations are shown on the flanks to corroborate the GA

results. We compare results at both ends of the nondominated

front (i.e., the solutions with least scenario failures and those

with least cost) to the Tyche failures. These correspond to

columns A–E and G–J, respectively. For each column, the

scenario occurrence counts and failures are aggregated across

all IotFs, the number of which are given in the Instances of

the future row.

In comparing the percentages in Columns E, F and H

of Table II, the GA performed as expected with a heavy

bias towards preserving small-sized scenarios. On the other

hand, scenario types 4, 5, and 6 involve the most heavy

commitment for duration and FE requirements, and result in

the largest number of failures (see similar observations in

Section IV-B). Although the GA yields lower failure rates for

lower commitment scenarios, they are only modestly lower.

The large number of scenario occurrences (scenario types 3

and 7, column B) translate into a sizable reduction of failures.

It is the absolute number of scenarios failures that drives the

GA, and this is reflected in the Failed scenario occurrences

row of columns E and F.

Scenario types 1 and 6 have 100% failure rates. These

are special cases requiring FEs that will never be available,

as described in Section IV-B. One reason for zero-quantity

FEs is that their actual units are monopolized by continuously

running scenarios that we excluded from our model.9 Scenar-

7The Tyche force mix included services provided by entities outside of the
military, which were modelled as always available. Since they imposed no
constraints on the simulation, we excluded them from the force mix.

8In reference [8], a scenario occurrence was successfully responded to if
assets arrived on time, but they could be pulled away for other scenario
occurrence.

9They increase model complexity without changing the results.

ios types 1 and 6 have less than 100% failure in the Tyche

results because of the way in which continuous scenarios were

modelled. Their monopolization of FE was modelled in a way

that made it pre-emptable, albeit infrequently.

In Table II, the GA results for minimizing failures differs

slightly from those for minimizing costs. As one would expect,

minimizing cost leads to failure rates at least as high as those

for minimizing failures. With the exception of scenario type 4,

however, any increases are modest. Apart from high demand

scenario types 4 and 5, the failure rates are still lower than

those for Tyche. This is not surprising, since the GA optimizes

the schedule of scenarios to get a lower bound, while Tyche

deals with each scenario as it arises.

The results of the different GA configurations in Table II

are quite consistent. The 400×400 results (population 400 and

400 generations in the evolution) can be compared with the

125× 125 results using unconditional replacement of popula-

tion members by new chromosomes. For minimizing failures,

this means comparing columns C and E; for minimizing cost,

columns H and I . The failure percentages are very similar.

These results can also be compared with a scheme in which the

new chromosomes compete to enter into the population for the

next generation, i.e., by being combined with the population,

ranked by nondominance first and crowding distance second,

then having the population truncated back to its original size.

This strategy is more exploitative and less exploratory. For

minimizing failures, the columns for comparison are A, C,

and E; for minimizing costs, H , I , and J . Again, the failure

percentages seem relatively consistent despite such variations

in the GA scheme.

V. CONCLUSION AND FUTURE WORK

We presented a multiobjective evolutionary algorithm to

estimate the lower bounds of a force mix by scheduling

scenario demands onto the timelines of the force elements in a

force mix. The algorithm was demonstrated using empirically

determined scenario occurrence patterns, a realistic force mix,

and for each scenario, several courses of action to emulate vari-

ability in force element demands. The intent was to determine

a trade-off curve between force mix cost and probability of

failing to respond to scenarios, in the form of a nondominated

front. The problem encoding involved a large search space, and

special measures were taken to emphasize exploration over

exploitation. The resulting nondominated fronts were found

to be sparse, with few trade-off points. Most of the searches

found all the points on the superfront, indicating at least

convergence to a good local minimum. Our usage is tolerant

of good but imperfect approximations to the Pareto front. This

is because we are using the GA to identify trends in the force

mix lower bound over many IotFs, with possibly very different

sets of scenarios.

The GA results were robust against variations in GA design.

The results were compared with Tyche, a high-fidelity discrete

event simulator. Because of the objective to minimize overall

scenario failures, the GA favoured failing large, demand-

ing, and infrequent scenario types to drive down failures in



TABLE II
SCENARIO OCCURRENCE FAILURE RATES.

A B C D E F G H I J

Which�end�of�ND�front

Population�x�Generations

Replacement�scheme Conditional Unconditional Conditional

Scenario

type FDS Name

%

failed

Scenario�

occurences %�failed

Scenario�

occurences

%

failed

%

failed

Scenario�

occurences

%

failed

%

failed

%

failed

1 1b� Arctic������ 100.0 233 100.0 1518 100.0 99.5 1518 100.0 100.0 100.0

2 3 MTE 0.0 98 0.0 606 0.0 0.2 606 0.0 0.0 0.0

3 4 Vancouver��� 0.0 1476 0.1 10436 0.0 8.1 10436 1.0 2.2 1.9

4 5a� Sudan������� 66.3 334 69.8 2284 65.8 59.1 2284 100.0 99.4 100.0

5 5b� Somalia����� 97.1 349 95.1 2310 95.2 57.3 2310 100.0 100.0 100.0

6 5c� North�Korea� 100.0 109 100.0 607 100.0 87.4 607 100.0 100.0 100.0

7 6 Haiti������� 0.1 1294 0.0 8776 0.0 79.0 8776 3.2 2.3 3.9

161 1000 226 161

Scenario�occurences������� 2943 18700 3893 2943

685 9278 1085 840

23.3 47.7 27.9 28.5

Minimize�failures Minimize�cost

125x125 400x400
Tyche

400x400 125x125

Unconditional Unconditional Unconditional

Instances�of�the�alternate�future 226 1495 1495

3893 26537 26537

Failed�scenario�occurences 908 5828 7109

%�failed 23.2 22.0 26.8

frequent, low demand scenario types. The failure rates for

infrequent, high demand scenarios were higher than those for

Tyche, but lower for infrequent, low demand scenarios. The

failure rates were lower overall for the GA, as expected by

its targeting of a lower bound problem. These are preliminary

results, and further comparative analyses are being undertaken.

Comparison with other force mix analysis tools is also being

pursued.

This study has identified a number of avenues for future

work. For modelling operations more accurately, a scenario

prioritization scheme should be developed to stop demanding

scenarios from being ignored. Alternatively, failure rates could

be minimized on a per-scenario-type basis rather than using the

overall failure rate. Another improvement could be to change

the requirement for an FE to be monopolized for the entire

scenario duration, allowing currently conflicting scenarios to

be co-located. The model could be also extended with a clear

separation between capabilities and FEs. This would allow the

examination of the effectiveness of various FEs delivering the

same capabilities .

The cost/failure trade-off can be studied under force mixes

that reflect different national dispositions in the spectrum of

conflict, e.g. peace keeping versus war fighting. A comparison

with other force mix analysis tools (such as with Tyche in

this paper) would be useful to determine their strengths and

identify the kinds of operational questions that each tool, or

combination thereof, would be best suited to answer.
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