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Abstract—In our study, we develop a method that merges two
information sources within ants colony optimization heuristic.
Namely artificial ants which occurs for short term optimization
and transporter’s vehicles that occurs in long term and contin-
uous optimization toward solving the real-world vehicle routing
problem. This study is supported by a transporter (Upsilon) of
the region of l’Yonne in France and a transport and logistics
software development company (Tedies). Our method suits for
transporters that use human planners to make decisions about
their tours and intending to move to computer planners without
drastically upsetting the drivers habits. Hence, the pledge of this
study is to take advantage from transport operators practices to
achieve solutions which are as close as possible to the real-world
vehicle routing planning, and keep a human control on the way
optimal paths are computed and applied.

I. INTRODUCTION

In this paper, we propose a new approach for solving
the VRP (Vehicle Routing Problem). Our aim is to inspire
the ACO (Ant Colony Optimization) with the real-world
transporter practices that include the transporter employees
field experience, particularly, the planners and the drivers.
Our study builds upon real-world data of a carrier, Upsilon,
and a company, Tedies that proposes transport and logistics
software for carriers, both operating in the region of lYonne,
France. Doing so, we benefit from the experience that people
acquire during their professional career, including the insight
and intelligence of human resources.

We solve our vehicle routing problem with a cluster-first
route-second approach [1]. To be accomplished, both of these
two stages take advantage from the transporters real-world
practices with the objective of finding more familiar solutions
to the drivers habits. Another purpose of our work is to
update information of the road network database, especially
concerning trucks routes specificities. This is accomplished
by retrieving the feedback after practical routes made by the
fleet of the vehicles.

The solution that we develop is supposed to accompany
the transport operators and the drivers. Thus, we propose
to the transporter a method that gives a solution for its
vehicle routing problem with the advantage that the resulting

routes could be modified by the transport planners and the
drivers if it provides an improved solution. The solution routes
including the modifications when put into practice will be
used as a feedback for next optimization or simply update
and complete the map database. It is a way to earn the trust
of the carrier by offering a customizable system and by taking
into consideration the decisions of more experienced people
within our system. In addition, it allows the product to be more
easily accepted by end users who are drivers.

Our proposed approach deals with an offline optimization
problem. Since our system updates the data from new trips
borrowed by the drivers after they back to the depot, then the
updates will be considered for next optimizations. Also, in
our case, the information data exchange (related to customers
demands) arrives early before the trucks start their routes
(before 3:00am at Upsilon), we run the routes planning with
the data received at this moment, as well as the data of
permanent customers demands, and no new demand is taken
into account during the vehicle routes, then, an online routing
update is not needed in this case.

In the next session, we will give a short review of the vehicle
routing problem. In section III, details about our approach are
stated. Then, we will move to the presentation of some actual
results in section IV. Finally, we will give a conclusion and
short-term perspectives in section V.

II. BACKGROUND AND DISCUSSION

The vehicle routing problem can be defined as : given a set
of customers requesting for a delivery service to a transporter,
these customers have to be visited once (and only once) by one
vehicle of the transporter fleet and the routes must start at the
depot. This must be achieved by minimizing a cost which can
be, for instance, the total amount of time spent on the road
by each driver. It is an NP-hard combinatorial optimization
problem.

Since the sixties, several research studies have been concen-
trated on solving the VRP and its variants with various meth-
ods. Meta-heuristic methods can give good quality solutions in
a fairly short time [2]–[4]. The most common VRP variant is



the VRPTW (Vehicle Routing Problem with Time Windows)
which is the VRP where the vehicles have to deliver each
customer within its specified time window and the total weight
of each vehicle including all the customers demands (parcels)
that it will deliver must not exceed its capacity. We refer the
reader to [5] and [6] for the VRPTW problem formulation
and a survey of the VRPTW resolution methods. Other VRP
variants formulations, overview of exact and heuristic VRP
resolution methods and it variants as well as real-world VRP
applications, technologies and software can be found in [7].

Theoretical VRP problems, for which authors propose meth-
ods for solving VRP problems with fixed parameters [6]
are not efficient for real-world instances. Then, researchers
interested on the real-world VRP category, and develop more
adapted methods for real-world situations [8]. This VRP vari-
ant is referred to as RVRP (Rich Vehicle Routing Problems)
[9]. Generally in this case, some necessary parameters to the
resolution of the VRP could be unknown or inaccurate. For
instance, we can mention travel times, service times, errors in
customers address geocoding [10], new or evolving customers
demands during the problem resolution. In [8], authors propose
a survey of hybrid solution methods for the RVRP. Various
studies have been devoted to solve real-life variant of the VRP.
In the following, we will cite some research studies that use
ant colony optimization system to deal with the real-world
VRP. In [3], the authors work on two real-world industrial-
scale applications for solving two real-world VRP variants.
They adapt the MACS-VRPTW algorithm [11] for real-world
applications for a major supermarket chain in Switzerland to
solve a VRP with time windows problem instance and for
a leading distribution company in Italy to solve a VRP with
pickup and delivery problem. In [12], Montemanni et al. apply
an ACS (Ant Colony System) based approach on a realistic
case study which deals with fuel distribution company data in
the city of Lugano in Switzerland to validate the convenience
of the method on real-life situations.

The goal of our study is to provide a practical tool which
relies on a mutual benefit between the decisions made by our
algorithm and those of the transporter to solve the VRPTW.
This tool is created for Tedies to provide routing planner
software that suits the expectations of the carriers, that is to
say, a more realistic tool.

We have noticed, through our conversations with Upsilon,
that deploying an algorithm that suits the drivers habits is a
crucial point. The same ascertainment have been mentioned
in the study of Rizzoli et al. [3]. Indeed, we must not
drastically shake up the drivers habits. Rather, our mission is
to integrate in their mind right reflexes through the feedback.
Their practices will then influence our algorithm toward good
quality solutions. From this, we focused on developing a tool
that proposes permanent and automatic interaction between
professional experience and optimization algorithm, ensuring
the reliability of optimal solutions. For this study, we do not
take into consideration all the transporters constraints, but we
restrict our study on solving the VRPTW for keeping only
the main characteristics which are useful for carrying out our

objective.
Through our literature reviews, we have noticed that the

ACO has proved its efficiency to real-life vehicle routing
problems [3]. Also, the ACO fits better with the approach
that we seek to implement. In fact, the data of real vehicles
itineraries, which is our feedback data, is injected in the ants
pheromone trail of the ACO to influence the ants by the human
planners and the drivers decisions. This justifies the choice of
using ACO for solving our problem.

We will focus on solving the TSPTW (Traveling Salesman
Problem with Time Windows) with an ant colony optimization
based resolution method because, in this paper, we deal with a
cluster-first route-second strategy. To solve the TSP with ACO,
a set of artificial ants have as task to find the best (shortest or
fastest) vehicle route. Each one passes through the graph of
customers to search for a path (as stated in the first paragraph
of this section), starting from the depot, then stochastically
and progressively choose customers to add to the partial path
and finally back to the depot [13]. They deposit pheromone
trail which dynamically evolves during solution construction
according to the quality of the solution (path) found by each
ant, which are in turn influenced by the pheromone trail.

We refer the reader to the section 2 of the paper of Stützle
et al. [14] for more details on solving the TSP with ACO
heuristics.

III. GENERAL APPROACH

The vehicles trips of the transporter are tracked through
Tomtom® GPS units and the corresponding data (recording
time, GPS coordinates, speed, ...) is recorded with a frequency
of 0.1Hz. We can deduce travel times of the road segments
(ways) from the vehicles speeds saved during the passages
of the vehicles through the ways of the road network. If a
way has many records, we take the average speed of this way.
The graph of customers is deduced from the road network.
In fact, having a set of customers to deliver, we construct a
complete and asymetric graph, where the costs of the edges
are the travel times computed from the fastest paths going
from each customer to another. We use the road network of
OpenStreetMap®, on which we select the region of Burgundy
(France) where Upsilon perform its routing process.

Figure 1 shows the general steps for solving our vehicle
routing problem by integrating the real routes feedback. We
first notice that the Upsilon’s fleet of vehicles serves almost
the same region and the majority of the transporter customers
are permanent. Only 30% of new customers apply for collec-
tion/delivery requests. The habitual and daily process of the
transport operators is to dispatch the customers requests among
the vehicles, then the experienced drivers planify the visiting
order of customers. The real vehicle paths that have been
recorded by Tomtom GPS units during their routes will be used
to help the ACO heuristic and inspire it by a good and realistic
practical solution to enhance the solution quality of our next
optimization problems and make the solution converge faster.

For our clustering, we develop a carrier real-world inspired
clustering which is motivated by geographical and practical



considerations. The transport planners naturally follow divi-
sion by town areas, which is an intuitive way to construct
clusters as the customers are mainly grouped into clusters
in different towns. Our aim is to draw upon the practices of
experienced transport professionals to construct our clusters.
We will not detail our clustering algorithm in this paper
because we want to emphasize our contribution to the ant
colony optimization heuristic. However, to provide insights,
we dispatch the customers requests into clusters according to
the historical dispatch of the vehicle routes of the carrier, in
order to get clusters that matches the geographical division of
regions. Other clustering methods can be adopted, however, to
go with the rest of our heuristic, the clustering method have
to give results that suits the drivers habits and each cluster
(vehicle) have to evolve daily in the same area.

The clustering is followed by finding an optimal route on
each cluster of customers. It consists of the TSPTW, that we
solve with an ant colony optimization metaheuristic that we
have adapted to deal with our objective.

The drivers are not supposed to apply our solution exactly
as it is provided, they are free to make some alterations if they
guess that it may enhance the solution quality in terms of cost
and/or more realistic tours completion that suits the ground
reality (taking a fastest path than the one given by our system,
bypass work areas recently identified by the drivers, exchange
two delivery points between two routes, ...). This strategy will
enhance the database with new information without corrupting
the optimal solution if the driver is wrong. The drivers will
then go for deliveries following our optimized routes which
include their personal touch. Then the real truck routes will
be saved through the GPS units so as to be used as a feedback
for future optimizations. We integrate the trucks feedback data
in the ACO heuristics, through the pheromone trail of the ants
that we combine with the trucks trail. This includes a step
of segmenting the real routes to reconstitute the route edges
and then add trucks trail to the initial amount of pheromone,
corresponding to the real routes edges. During the solution
construction, we also consider the trucks trail in the step of
pheromone trail update, in order to keep the influence of real-
life vehicle routes. The details on the real routes segmentation,
pheromone initialization and pheromone update are stated in
sections III-A, III-B and III-C, respectively.

In addition to travel times update, the feedback data can
give us information on prohibited access to trucks according
to the vehicle category, also, we can deduce the service times
at customers by identifying the breakpoints duration at each
customer during the route.

To summarize, it is an optimization loop that contains three
main steps: solution construction (with ACO and transport
operators experience), practical implementation of the solution
and using the feedback for enhancing the realizability and the
quality of the next problem solution.

A. Segmentation of real vehicle routes

This step consists of real (practical) route segmentation
in order to reconstitute the edges that compose each real

Real routes segmentation

Pheromone initialization:
marking with trucks trail

Carrier real-world
inspired clustering

Construct optimized routes

Put the optimized
routes in practice

Update travel times

Fig. 1. Trucks routes feedback integration to solution.

path borrowed by a vehicle. The extremities of the edges are
determined by the visited customers. The customers locations
are known by our system, but since the visiting order of
customers in practice can be modified by the drivers we have to
re-identify them on the vehicle itinerary (because the practical
route would be different from our computed routes), . On the
real path of the vehicle, the visited customers are known as
collection/delivery points. We localize the delivery points on
a vehicle path where the speed of the vehicle is null, then we
associate each delivery point to a customer. We refer the reader
to [10] for more details about delivery points identification.
Figure 2 shows an example of the segmentation on a vehicle
path. The points are the customers (delivery points) and the
edges resulting from segmentation are delimited between each
pair of successive customers in the vehicle route.

B. Pheromone initialization using trucks trail

By this step we want to incorporate the trucks trail in
the ants pheromone trail of the ACO heuristics. The trucks
trail is used to inspire the ants by real-life practices and the
pheromone trail is used to guide the ants to move toward
an optimal solution. The ACO heuristics in our study will
contain information about the historical real vehicles paths
by adding an amount of trucks trail, referred to as ”vehicles
(trucks) pheromone trail”, according to the costs (real travel
times) of the edges resulting from routes segmentation. In
other terms, we add to the initial ant pheromone trail, the
vehicles pheromone trail on the graph edges that have been
borrowed by these vehicles during the past real routes. The
quantity of the vehicles pheromone trail that we add to the



Fig. 2. Edges reconstitution from a vehicle path on customers locations

corresponding edges depends on the real routes costs. We,
hence, proceed to the pheromone initialization as follows.

τ0(e) =

{
τ0 if e ∈ E \ U
τ0 + λ×

(
1
CR

+ 1
C(e)

)
if e ∈ U

Such that U is the set of graph edges resulting from the
segmentation of the vehicle paths (in section III-A). τ0 is the
default initial amount of pheromone. CR is the total travel time
of the real vehicle route R and C(e) is the travel time of the
edge e that belongs to R. The rate λ defines the intensity of
the trucks trail. τ0(e) is the initial amount of pheromone of
edge e including, eventually the trucks trail.

The edges that have at least an extremity which is a new
customer will only be processed with default initial pheromone
initialization (with value τ0) since the customer does not exist
in previous routes. This does not impact the solution because,
during the solution computation, the ants of the ACO heuristic
will add these new customers to the vehicles routes (under
construction) at the best positions.

C. Pheromone update
In the pheromone update step of the ACO heuristic, we will

update the quantity of pheromone according to the paths found
by the elite ants.

First, the pheromone evaporation is processed on all the
edges of the graph G, as follows.

τ(e) = (1− ρ)τ(e) + ρτ0(e) (1)

where ρ is the rate of pheromone evaporation and, instead
of using default pheromone value (in the second term of the
equation (1)) as for a basic pheromone evaporation, we use
τ0(e), which is the initial amount of pheromone on edge
e which, eventually, includes the vehicles pheromone trail
computed in sections III-A and III-B.

Second, through the following equation we show how the
amount of pheromone is updated by adding pheromone trail
to the graph according to the paths costs of the elite ants.

τ(e) = min(τ(e) +
σ − µ
Cµ

, τmax)

TABLE I
SOME VRP RESULTS

Day HumPlan(h) HeurOpt(h) Gain(h) NbCust Runtime(m)

1 24.81 13.8 11.01 98 4.37

2 20.38 12.87 7.51 85 3.43

3 22.71 14.55 8.16 96 3.93

4 19.34 13.44 5.90 70 2.31

5 22.91 16.74 6.17 103 4.39

6 18.68 10.39 8.29 71 2.99

7 20.78 12.46 8.32 72 2.80

8 20.20 12.9 7.30 88 3.39

9 18.37 11.41 6.96 79 3.35

10 18.25 14.98 3.27 109 5.13

11 23.45 19.43 4.02 117 6.55

12 17.75 14.11 3.64 88 4.22

13 24.89 15.42 9.47 92 3.84

14 20.05 16.02 4.03 104 5.46

15 26.94 20.99 5.95 128 6.00

AVG 21.30 14.63 6.67 94 4.14

where σ is the number of elite ants, µ is the rank of the elite
ant (best ant is of rank 0) and Cµ is the total time cost of the
elite ant µ path. The maximum value of the pheromone can
not exceed τmax to allow more diversification by avoiding the
creation of highways of pheromone to which the ants will
be easily attracted [15]–[17]. Then, τ(e) is the amount of
pheromone on edge e at the current ACO iteration.

IV. EXPERIMENTATION, RESULTS AND DISCUSSION

We work on a fleet of eight vehicles through which we
have collected around seven months of data. We compare the
solution resulting from our algorithm to the routes planned by
human planners of Upsilon.

In our algorithm, the service times at the customers are
not considered, as we set them to null value. This is why
for our comparisons with real vehicle paths set in tour, we
have deleted from the vehicles total traveling times the periods
during which the vehicles were at standstill to get only the
time during which the vehicles were moving. Although we
have the real travel durations of the vehicles, we judged that
it is more convenient to use our processed data (travel times)
retrieved from all the vehicles through all the days of recording
(see first paragraph of section III). The results of table I are
obtained by setting τ0 = 1, τ max = 20 and ρ = 0.7, for
100 iterations and a number of ants and elite ants respectively
set to half and to quarter of the number of customers. Details
about parameter setting of ACO heuristics can be found in
[14]. The value of parameter ρ might be rather high in order
to ensure the persistence of the initial pheromone containing
the trucks trail. This occurs in equation (1) where 70% of the
amount of pheromone will be evaporated and replaced by 70%
of the initial amount of pheromone containing the trucks trail.
It leads to more diversification as well as ensuring the trucks
trail persistence through the iterations.



Note that the paths on which we conduct the vehicles could
be forbidden for lorries. In fact, we have no information about
ways with denied access to heavy trucks in OpenStreetMap®

database. However, we can retrieve the feedback from the real
vehicle routes accomplished by the drivers to progressively
complete OpenStreetMap® database with denied access ac-
cording to the vehicles kind.

Including the trucks trail in the pheromone initialization is
a way to start from feasible paths and give to the heuristics
a high probability to improve the quality of the real hu-
man planned routes, and reintroducing the trucks trail in the
pheromone update with a given rate drives the heuristic toward
the right direction, and avoid constructing more expensive
routes than human planners (It is what we will see in figure
3). If not, all the initial amount of pheromone which contains
trucks trail will disappear through the iterations because of the
evaporation step of the pheromone update.

We have compared in table I human planned vehicle routes
(HumPlan) to our computed vehicle routes (HeurOpt), with the
corresponding runtime which does not include the clustering
computation. The routes costs in the table are in hours and
the runtime in minutes. Gain is the vehicle routes traveling
time that we have saved by using our heuristic. The number
of customers delivered each day by the fleet of the vehicles is
indicated in column NbCust. We have an average gain of 6.67
hours per day for the whole fleet in 4.14 minutes of runtime.

Figure 3 shows the convergence of the solutions costs in
function of the number of iteration in the ACO heuristic, in
the situation where we have injected the trucks trail in the
ants pheromone trail and in the situation where not (by default
only ants pheromone). For this test, we deal with 15 days of
tours of a vehicle, the solution cost in the figure is the mean
of the costs of all these tours, given an iteration. We clearly
see a gap between the two curves as the solution costs with
trucks pheromone trail has a head start given by the historical
routes of the vehicle, thanks to the pheromone initialization
containing trucks trail, and this gap is kept throughout the
ACO iterations, thanks to our pheromone update step that
maintains the influence of the trucks trail.

Under this feedback loop system, namely the continuous re-
injection of the optimization results of the last vehicle routes
for solving the next vehicle routing problem of the transporter,
the ACO heuristic will always have a good depart, as the ants
will be inspired by the trucks trail all along searching for a
solution. Thus, the solution will be improved in permanence
through the days.

V. CONCLUSION AND PERSPECTIVES

This paper focuses on how we make human planners
and drivers experience cooperate with the ants of the ACO
heuristics in order to solve the real-world VRPTW.

We use ants for their ability to explore systemically a lot of
solutions but we use also the experience of drivers to help the
algorithm to reach more quickly a high quality solution and
to enrich the database with new paths. Ants and human are
highly complementary.

Fig. 3. Routes cost convergence through the ACO iterations

Our aim with this approach is not to instantly reach the
best solution as soon as we start optimizing the vehicle routes
of the transporter. But, we propose an optimization loop that
includes what we have learned from the last practical routes
in the future vehicle routing optimizations, then, the quality
of the solutions will be progressively enhanced through the
days. We deal with a classical vehicle routing problem with
time windows and backhauls by leaving aside other real-world
parameters to concentrate on exposing the idea of introducing
the real-world routes feedback in the problem resolution with
ant colony optimization. We note that our method is suitable
for transporters which have regular customers.

In future works, we plan to develop more deeply our
methods, concerning mainly the clustering method, the details
and other characteristics of our ACO heuristics and emphasize
other findings. In addition, we will integrate this tool in Tedies
software and run it with Upsilon data in order to see the
evolution of the quality of the vehicle routes through the days.
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