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Abstract—Multifactorial optimization (MFO) is a new paradig-
m proposed recently for evolutionary multi-tasking. In contrast
to traditional evolutionary optimization approaches, which focus
on solving only a single optimization problem at a time, MFO was
proposed to solve multiple optimization problems simultaneously.
It is contended that the concept of evolutionary multi-tasking
provides the scope for implicit knowledge transfer of useful
traits across different but related problem domains, thereby
enhancing the evolutionary search for problem-solving. With the
aim of evolutionary multi-tasking, multifactorial evolutionary
algorithm (MFEA) was proposed in [1], and demonstrated
efficient multi-tasking performances on several problem domains,
including continuous, discrete, and the mixtures of continuous
and combinatorial tasks. To solve different problems, the design
of unified solution representations and effective problem specific
decoding operators are required in MFEA. In particular, the
random-key unified representation and the sorting based decod-
ing operator were presented in MFEA for multi-tasking in the
context of vehicle routing problem. However, problems such as
ineffective solution representation and decoding are existed in this
unified representation, which would deteriorate the multi-tasking
performance of MFEA. Taking this cue, in this paper, we propose
an improved MFEA (P-MFEA) with a permutation based unified
representation and a split based decoding operator. To evaluate
the efficacy of the proposed P-MFEA, comparison against the
traditional single task evolutionary search paradigm on 12 multi-
tasking capacitated vehicle routing problems is presented and
discussed.

I. INTRODUCTION

Evolutionary algorithms (EAs) are adaptive search ap-
proaches that take inspirations from the principles of natural
selection and genetics [2, 3]. They have been shown to be
suitable for solving nonlinear, multi-modal, and discrete NP-
hard problems effectively. In the last decades, EAs have been
successfully applied to solve a variety of real world opti-
mization problems, manifesting continuous optimization [4–
6], combinatorial optimization [7, 8], constrained optimization
[9, 10], etc. However, despite the success that EAs enjoyed,
it is worth noting that most EAs are designed to solve a
single problem in a single run, which appears to be inefficient

Fig. 1. Multifactorial Optimization Paradigm for Evolutionary Multi-tasking.

in today’s cloud computing era, where multiple optimization
problems are required to be solved simultaneously.

To this end, recently, Gupta et al. proposed a multifactorial
optimization (MFO) paradigm for evolutionary multi-tasking
on single objective and multi-objective optimization [1, 11,
12]. In contrast to traditional evolutionary search paradigm,
as illustrated in Fig. 1 MFO contends to conduct evolutionary
search on multiple concurrently search spaces corresponding
to different tasks or optimization problems, each possessing
a unique function landscape. Further, in [1], a detailed de-
sign of evolutionary algorithm for MFO (i.e., MFEA), one
that is capable of multi-tasking across multiple optimization
problems was also presented. With the introduction of suit-
able decoding operators for different optimization problems,
MFEA has demonstrated efficient multi-tasking performance
in problem domains including continuous, discrete, and the
mixtures of continuous and combinatorial tasks. It is worth
noting that the decoding operator plays the role of translating
the solutions from the unified search space to some problem



specific solution space, the designs of an unified solution
representation and corresponding problem specific decoding
operator represent two key factors in defining the performance
of MFEA for evolutionary multi-tasking.

Vehicle routing problem (VRP), which represents the cor-
nerstone of optimization for distribution networks, is one of
the most important practical problems of operational research
[13, 14]. To consider MFO of multiple VRPs simultaneously,
a random-key based unified representation together with a
sorting based decoding operator have been proposed in MFEA
[1]. However, there are several drawbacks of this unified
representation and corresponding decoding operator for solv-
ing multi-tasking VRPs. In particular, the simple random-key
representation do not represent VRP solutions effectively. For
example, solutions {0.1, 0.2, 0.3} and {0.5, 0.6, 0.7} represent
two unique solutions in the unified search space, but both
translate to a common VRP solution {1, 2, 3} when using
the simple ascending sorting decoding scheme. Further, the
evolutionary search of the random-key solutions does not
consider the VRP structures of the decoded routing solutions,
which may deteriorate the multi-tasking performance of MFEA
for multiple VRPs.

In this paper, we present a permutation-based multifac-
torial evolutionary algorithm (P-MFEA) for solving multi-
tasking VRPs. Particularly, instead of using a random-key
representation to construct the unified search space in MFEA,
a permutation based unified representation which is able to
describe the customers in VRPs directly is considered. Based
on this unified permutation representation, we subsequently
present a split based decoding operator, which takes the VRP
constraints into consideration and optimizes the number of
vehicles during solution translation from unified space to
routing space, simultaneously. Further, empirical studies on 12
capacitated VRP multi-tasking problems with instances drawn
from the existing commonly used CMT benchmarks proposed
by Christofides et al. [15] are conducted to investigate the
efficacy of the proposed P-MFEA for solving multi-tasking
VRPs.

The rest of this paper is organized as follows: Section II
begins with a brief introduction of MFO. The mathematical
description of the capacitated VRP (CVRP), which serves as
the routing problem domain for investigation in this paper, is
also given in this section. The details of the proposed P-MFEA,
with a permutation based unified representation and a split
based decoding operator, are presented in Section III. Further,
section IV investigates the performance of the P-MFEA on
12 multi-tasking CVRPs, which are extended from existing
commonly used CVRP benchmarks. Lastly, the conclusions
of this study and the possible directions for future works are
given in section V.

II. PRELIMINARY

This section first presents the brief introduction of the
concept of multifactorial optimization, towards evolutionary
multi-tasking. Next, the mathematical description of the ca-
pacitated vehicle routing problem (CVRP), which serves as

the routing problem domain for investigation in this paper, is
presented.

A. Multifactorial Optimization

Consider a situation wherein K optimization tasks are to
be performed, multifactorial optimization (MFO) has been
defined in [1] as an evolutionary multi-tasking paradigm that
builds on the implicit parallelism of population-based search
with the aim of finding the optimal solutions for each task
simultaneously. In MFO, each task is treated as an additional
factor influencing the evolution of a single population of
individuals.

To compare population individuals in a multi-tasking envi-
ronment, the following properties for every individual are also
defined in [1]. Note that each individual in the population is
encoded in a unified search space encompassing the search
space of all the tasks, and can be decoded into a task-
specific solution representation with respect to each of the K
optimization tasks.

- Factorial Cost: The factorial cost fp of an individual p
denotes its fitness or objective value on a particular task
Ti. For K tasks, there will be a vector with length K,
in which each dimension gives the fitness of p on the
corresponding task.

- Factorial Rank: The factorial rank rp simply denotes the
index of individual p in the list of population members
sorted in ascending order with respect to their factorial
costs on one specific task.

- Scalar Fitness: The scalar fitness φp of an individual p
is defined based on its best rank over all tasks, which is
given by φp = 1

minj∈{1,...,K} rjp
.

- Skill Factor: The skill factor τp of individual p denotes
the task, amongst all other tasks in MFO, on which p
is most effective, i.e., τp = argmin{rjp}, where j ∈
{1, . . . ,K}.

With the properties given above, performance comparison
between solutions in MFO can be carried out based on scalar
fitness φ. In particular, individual pa is considered to dominate
pb in multifactorial sense simply if φpa > φpb

. Therefore,
suppose all the tasks are minimization problems, the definition
of multifactorial optimality is given as [1]:

Multifactorial Optimality: An individual p∗, with a list of
fitness or objective value {f∗

1 , f
∗
2 , . . . , f

∗
K} on K tasks, is

considered optimum in multifactorial sense if and only if
∃j ∈ [1, . . . ,K], such that f∗

j ≤ f(xj), where xj denotes
all the feasible solutions in the search space of task Tj .

B. Capacitated Vehicle Routing Problem

The capacitated vehicle routing problem (CVRP) is a fun-
damental problem in combinatorial optimization with wide-
ranging applications in practice [14]. It is a problem to design
a set of vehicle routes in which a fleet of capacitated vehicles
must serve a given list of customers from a common depot.
Formally, the CVRP can be described as a problem defined on
an undirected graph G = (V,E), where V = {v0, v1, . . . , vn}
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Fig. 2. An example of CVRP.

is the vertex set and E = {eij} denotes the arc between
vertices vi and vj . Vertex v0 represents the depot where
k homogeneous vehicles with capacity Q are based. The
remaining vertices denote the customers needed to be served.
Each customer is associated with a non-negative demand
qi ≤ Q. Further, each arc eij is assigned with a non-negative
value cij = cji, which represents the travel distance or cost
from vi(vj) to vj(vi). The objective of CVRP is thus to design
a set of vehicle routes R = {Ci}, i = 1, . . . , k, with minimal
travel cost such that (1) each route starts and ends at the depot
v0; (2) the total demand of each route must be less than or
equal to the vehicle capacity Q; (3) each customer can only
exists in one route. The overall travel cost of R is given by:

cost(R) =
k∑

i=1

c(Ci) (1)

where c(Ci) is the summarization of the travel cost cij incurred
in route Ci.

An illustrative example of CVRP is given in Fig. 2. As
depicted, in Fig. 2(a), five customers labeled by number 1 to
5 need to be served, the integer value in the bracket gives
the corresponding demand of each customer. The capacity of
vehicle is 10, and the value associated with each edge denotes
its corresponding travel cost. Fig. 2(b) presents one feasible
solution of the CVRP given in Fig. 2(a), i.e., R = {C1, C2, C3},
C1 = {1, 2}, C1 = {3, 4}, and C1 = {5}. Based on Eq. 1, the
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Fig. 3. Illustration of unified representation in MFEA. Domain-specific
representations (depicted by different shapes) must be encoded within a unified
representation scheme and the MFEA will directly operate on the unified
representation for optimization on multiple tasks.

total cost of R is given by c(R) = c01 + c12 + c20 + c03 +
c34 + c40 + c05 + c50 = 235.

III. PERMUTATION BASED MULTIFACTORIAL
EVOLUTIONARY ALGORITHM FOR SOLVING VRPS

In this section, we present the details of the proposed
permutation-based multifactorial evolutionary algorithm (P-
MFEA) for solving multi-tasking VRPs. First of all, we recall
the multifactorial evolutionary algorithm (MFEA) proposed in
[1]. As outlined in Fig. 4, the work-flow of MFEA can be
summarized as:

Step 1: Generate an initial population with NP individuals
using random-key as unified representation. Note that,
as illustrated in Fig. 3, an unified representation must
be first defined for different tasks, and the MFEA will
then directly operate on the individuals encoded with
the unified representation.

Step 2: Evaluate each individual on all the tasks by calculating
its factorial cost fp, factorial rank rp, scalar fitness φp

and skill factor τp.
Step 3: Apply genetic operators, i.e., assortative mating, on the

current population to generate an offspring population.
Step 4: Evaluate offspring individuals on selected tasks based

on vertical cultural transmission.
Step 5: Update the scalar fitness φp and skill factor τp of

individuals in both parent and offspring population.
Step 6: Select the fittest NP individuals from both parent and

offspring population to survive for the next generation.
Step 7: If the stopping criteria are not met, then repeat Step 3

to Step 6.
As afore discussed, to evaluate the individual on a specific

task, a particular decoding operator is required to translate
the individual from unified solution space to the task-specific
solution space. For solving multi-tasking VRPs, in [1], a
random-key unified representation together with a clustering
and sorting based decoding operator were proposed. However,
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as discussed in Section I, there are several drawbacks of
this unified representation and decoding operator, which could
deteriorate the search efficacy of MFEA for solving mutli-
tasking VRPs. For instance, they cannot represent the VRP
solutions effectively, the evolution of the unified solutions is
ineffective, since it does not take the VRP structures of the
decoded routing solution into consideration.

To tackle these problems, in the proposed P-MFEA, we
first present a permutation based unified representation [16]
to construct the unified solution space. Based on this unified
representation, a split [17] based operator is proposed to
take the VRP constraints into consideration and optimizes
the number of vehicle routes simultaneously, in the solution
decoding process.

A. Permutation Based Unified Representation for P-MFEA

Permutation based representation is commonly used to
describe solutions in routing problems, such as vehicle routing
[18, 19], arc routing [20, 21], etc. Take Fig. 2(b) as an example,
the corresponding permutation based solution representation is
s = {1, 2, 3, 4, 5}. Each dimension of s directly denotes the
customer needs to be served, and the size of s is equal to the
number of customers.

1 10 8 3 7 96 4 52

DMFO = 10

An Unified Solution

1 10 8 3 7 96 4 52

Di = 5

1 3 4 52Solution for Ti

 Di = 5

Fig. 5. An example of permutation based representation

Assume that in K VRPs to be performed simultaneously,
the dimensionality of the ith VRP is given by Di. To construct
the permutation based unified representation for multifactorial
optimization, we first define the dimensionality of the unified
search space as DMFO = maxDi, i = 1, . . . ,K. For the
population initialization step, each individual is thus endowed
with a vector of DMFO different integer variables, lying
within the fixed range of [0, DMFO]. The jth dimension of
the vector denotes the jth customer needs to be served. While
addressing task Ti, which has dimension Di less than DMFO,
we simply refer to the dimensions of values from 1 to Di

in the unified search space to represent customers in Ti. For
instance, as depicted in Fig. 5, the dimension of the unified
space is DMFO = 10. If an unified solution is given as
{1, 10, 2, 8, 3, 6, 7, 4, 9, 5}, the solution for Ti with dimension
Di = 5 is then obtained by removing the extra dimensions
with values larger than 5.

B. Split Based Decoding Operator for P-MFEA

Based on the permutation based unified representation pro-
posed above, this section presents a split [17] based decoding
operator to translate solutions in the unified search space to
VRP solution space.

In particular, the pseudo code of the split based decoding
operator is given in Alg. 1. F and P are two vectors with
size N + 1 (N is the number of customers in a given VRP).
For a solution in the unified space S, F (j) and P (j) record
the minimum cost of the routes in which the last customer
is S(j) and the predecessor vertex of S(j), respectively. In
Alg. 1, after the initialization of vector F and P (i.e., line
1-2), line 3-17 will enumerate all the feasible vehicle routes
starting from S(i) and store the routes with minimum cost
accordingly. Line 18 will output the decoded CARP solution
R by injecting the delimiter 0 into S based on the predecessors
recorded in P (N).

Further, the example presented in Fig. 2(a) is again here
used to illustrate how to translate solutions from unified search
space to VRP solution space by the proposed split based
decoding operator. Suppose the unified solution is given as
S = {1, 2, 3, 4, 5}. The decoding operator will evaluate all
the feasible routes as shown in Fig. 6(b) and update F and P
according to the costs of the routes. For instance, for customer



Algorithm 1: Pseudo code of the split based decoding
process.

Input : A solution S in the unified search space.
Output: A feasible VRP solution R.

1 Initialize F [0, · · · , N ], P [0, · · · , N ], N is the number
of customers;

2 F [0]← 0, F [1, · · · , N ]← +∞, P [1, · · · , N ]← 0;
3 for i = 1 to N do
4 Demand← 0, Cost← 0;
5 j ← i;
6 while j < N and Demand ≤ Q do
7 Demand← Demand+ qS(j);
8 if i == j then
9 Cost← c0,S(j) + cS(j),0;

10 else
11 Cost← Cost+ cS(j−1),S(j) − cS(j−1),0

12 +cS(j),0;

13 if Demand ≤ Q then
14 if F [i− 1] + Cost < F [j] then
15 a. F [j]← F [i− 1] + Cost;
16 b. P [j]← i− 1

17 j ← j + 1

18 Obtain R by inserting the delimiters ‘0’ into S based
on P.

S2 = 2, there are two routes with S2 as the last customer to be
served, which are R1 = {0, 1, 2, 0} and R2 = {0, 1, 0, 2, 0}.
Since c(R1) = 45 < c(R2) = 70, F2 and P2 are then set as 45
and 0, respectively. In this manner, F and P can be updated
from dimension 0 to 5. Lastly, the delimiter 0 will be inserted
into S based on P (i.e., P5 = 3 → P3 = 1 → P1 = 0) to
obtain the VRP solution R = {0, 1, 0, 2, 3, 0, 4, 5, 0} with a
minimal cost c(R) = 215, as depicted in Fig. 6(c).

IV. EMPIRICAL STUDY

To evaluate the efficacy of the proposed P-MFEA, empirical
study in the domain of CVRP is presented in this section.

A. Experiment Setup

For the setup of multi-tasking environment, as there is no
common multi-tasking routing benchmark in the literature,
here we build 12 multi-tasking routing problems based on the
existing CVRP instances. In particular, the commonly used 14
Christofides CVRP benchmarks [15] with diverse properties
(e.g., number of vertices, distribution of vertices, routing time
constraints, etc.) are considered in this study. The detailed
properties of the CVRP instances are summarized in Table
I. “CMTi” denotes the number i instance in the Christofides
CVRP benchmark. “N”, “Capacity”, “RT”, “ST” and “BKS”
represent the number of customers, the capacity of vehicle,
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Fig. 6. A demonstration of the decoding process on the VRP presented in
Fig. 2(a) by the proposed split based operator.

the routing time constraint, the service time of vehicle and the
best known solution1, respectively.

Further, the multi-tasking routing problem is built by pairing
instances with different routing properties, such as different
number of customers, different routing time constraints, etc.
The built 12 multi-tasking problems for investigation in this
study are summarized in Table II.

Next, in this study, the traditional single evolutionary algo-
rithm (label as SEA hereafter) is considered as the baseline
for comparison. For fair comparison, both the SEA and the
proposed P-MFEA are configured with the same evolutionary
operators and parameters, which are detailed as follows:

1) Population size: Popsize = 30.

1The best known solution of the CVRPs to date in the literature are drawn
from: http://neo.lcc.uma.es/vrp/known-best-results/.



TABLE I
PROPERTIES OF THE CHRISTOFIDES CVRP INSTANCES (n, RT , ST AND
BKS DENOTE THE Customer Number, Routing Time Constraint, Service

Time AND Best Known Solution, RESPECTIVELY).

CVRP Instances N Capacity RT ST BKS
CMT1 50 160 ∞ 0 524.61
CMT2 75 140 ∞ 0 835.26
CMT3 100 200 ∞ 0 826.14
CMT4 150 200 ∞ 0 1028.42
CMT5 199 200 ∞ 0 1291.29
CMT6 50 160 200 10 555.43
CMT7 75 140 160 10 909.68
CMT8 100 200 230 10 865.94
CMT9 150 200 200 10 1162.55
CMT10 199 200 200 10 1395.85
CMT11 120 200 ∞ 0 1042.11
CMT12 100 200 ∞ 0 819.56
CMT13 120 200 720 50 1541.14
CMT14 100 200 1040 90 866.37

2) Max Generation: Gmax = 1000.
3) Independent run times: Runs = 20.
4) Evolutionary operators:

• Crossover: OX(Ordered Crossover) [22].
• Mutation: Swap mutation [23].

5) Local search operators: Exchange [24], Or-opt [24],
2-opt move [24].

6) Probability in assortative mating [1]: RMP = 0.7.
7) Local search probability: PLS = 0.1.

B. Results and Discussion

Table III tabulates the performance of the single evolution-
ary algorithm SEA and the proposed permutation based mul-
tifactorial evolutionary algorithm P-MFEA on the 12 multi-
tasking CVRPs across 20 independent runs. Note that SEA
solves the CVRP instances in each multi-tasking problem
separately while P-MFEA on the other hand, optimizes the
two CVRP instances simultaneously. “B.Cost” and “Ave.Cost”,
“Std.Dev” denote the best cost, averaged cost and standard
deviation, respectively. The superior performance in Table III
is highlighted in bold.

As can be observed, in Table III, P-MFEA achieved superior
or competitive performance against SEA on 22 out of total
24 CVRP instance, in terms of “Ave.Cost”. With respect to
“B. Cost”, P-MFEA has found better best cost solutions on
6 CVRP instances than SEA. Further, it is noted that on
instances, such as “CMT1”, “CMT6”, and “CMT8”, which
have small number of customers, P-MFEA and SEA always
obtained the same ‘B. Cost” and “Ave.Cost”. However, when
it turns to solve the CVRP instances, such as “CMT5”,
“CMT10”, and “CMT13”, which have larger number of
customers and contain more complex routing structure, P-
MFEA always can find better solutions than SEA with respect
to both ‘B. Cost” and “Ave.Cost”.

Further, to access the efficiency of the proposed P-MFEA,
the representative search convergence traces of P-MFEA and
SEA on the multi-tasking CVRPs are presented in Fig. 7.
The Y -axis of the figures denote the averaged travel cost ob-
tained, while X-axis gives the respective computational effort
incurred in terms of generations made so far. As depicted,
generally, P-MFEA converges faster than SEA on most of the
multi-tasking CVRPs. It is worth noting that on the instances
with small number of customers, i.e., “CMT1”, “CMT6”,
and “CMT8’, although P-MFEA and SEA obtained the same
solution quality (as presented in Table III), P-MFEA converges
much fast than SEA, e.g., “CMT6” in Fig. 7(b), “CMT8’ in
Fig. 7(d), etc. Further, on the instance with larger number of
instances, i.e., “CMT5”, “CMT13”, etc. faster or competitive
convergence speed can also be observed by P-MFEA against
SEA, e.g., “CMT5” in Fig. 7(c), “CMT13” in Fig. 7(e), etc.

Since P-MFEA and SEA share the same configuration of
evolutionary operators and parameters, and the only difference
is the MFO paradigm incorporated in the former, the superior
performance obtained by P-MFEA in terms of both solution
quality and search efficiency confirmed the efficacy of auto-
mated implicit information transfer in MFO paradigm as well
as the effectiveness of our proposed unified representation and
specific decoding operator for solving multi-tasking CVRPs.

V. CONCLUSION

In this paper, a permutation-based MFEA has been proposed
to improve the multi-tasking performance of MFEA in the
context of VRPs. Our main contributions can be summarized
in two-folds. First of all, we have presented a permutation
based unified solution representation, which is more effec-
tive than the random-key unified representation in MFEA.
Secondly, we have proposed a split based decoding operator
to translate solution from unified space to problem specific
space. It takes the VRP constraints into consideration and
optimizes the number of vehicle routes simultaneously, during
the decoding process. The efficacy of the proposed P-MFEA
have been confirmed on 12 multi-tasking CVRPs, which are
extended from existing commonly used CVRP benchmarks.

As this paper only considered CVRP as the routing problem
domain of study, in the future, we would like to further inves-
tigate the proposed P-MFEA on other variants of VRPs, such
as VRP with time window, VRP with stochastic demand, etc,
towards more generalized and efficient multi-tasking VRPs.
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TABLE II
SUMMARY OF THE MULTI-TASKING PROBLEMS INVESTIGATED.

Multi-tasking Problems P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

CMT Instances
CMT1 CMT1 CMT3 CMT3 CMT3 CMT6 CMT6 CMT8 CMT8 CMT11 CMT12 CMT13

+ + + + + + + + + + + +
CMT3 CMT6 CMT4 CMT5 CMT12 CMT8 CMT10 CMT13 CMT14 CMT13 CMT14 CMT14

TABLE III
NUMERICAL RESULTS OF P-MFEA AND SEA (“B.Cost”, “Ave.Cost”, “Std.Dev” DENOTE THE BEST COST, AVERAGED COST AND STANDARD DEVIATION

ACROSS 20 INDEPENDENT RUNS, RESPECTIVELY. THE SUPERIOR PERFORMANCE IS HIGHLIGHTED IN BOLD.).

Multi-tasking Problems CVRP Instance Proposed P-MFEA Single Solver
B.Cost Ave.Cost Std.Dev B.Cost Ave.Cost Std.Dev

P1
CMT1 524.61 524.61 0.0 524.61 524.61 0.0
CMT3 826.14 828.51 1.3 826.14 829.02 0.9

P2
CMT1 524.61 524.61 0.0 524.61 524.61 0.0
CMT6 555.43 555.43 0.0 555.43 555.43 0.0

P3
CMT3 826.14 828.19 1.4 826.14 829.02 0.9
CMT4 1031.96 1037.19 4.7 1032.18 1035.90 3.2

P4
CMT3 826.14 828.72 1.0 826.14 829.02 0.9
CMT5 1300.76 1314.02 4.5 1306.01 1314.76 3.5

P5
CMT3 826.14 828.46 1.3 826.14 829.02 0.9
CMT12 819.56 819.56 0.0 819.56 819.56 0.0

P6
CMT6 555.43 555.43 0.0 555.43 555.43 0.0
CMT8 865.94 865.94 0.0 865.94 865.94 0.0

P7
CMT6 555.43 555.43 0.0 555.43 555.43 0.0
CMT10 1403.59 1410.45 3.8 1409.08 1410.84 2.7

P8
CMT8 865.94 865.94 0.0 865.94 865.94 0.0
CMT13 1545.55 1555.21 6.6 1548.78 1556.83 4.9

P9
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(a) Convergence traces of P1
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(b) Convergence traces of P2
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(c) Convergence traces of P4
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(d) Convergence traces of P8
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(e) Convergence traces of P10
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Fig. 7. Convergence traces of P-MFEA versus the SEA on representative multi-tasking CVRPs. Y -axis: Averaged travel cost; X-axis: Generation.
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