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Abstract—In connected health services automatic discovery of
recurring patterns and correlations, or insights, provides many
interesting opportunities for the personalization of the services.
In this paper the focus is on insight mining for a health coaching
service. The basic idea in the proposed method is to generate a
large number of insight candidates which have been pre-validated
with domain experts and to score them using the data. The
dynamic performance of the scoring is studied with a collection
of lifestyle sensor data from volunteers. The proposed method
is compared to a conventional data mining approach based on
the Apriori algorithm. We demonstrate that the proposed method
gives significantly more variability among the subjects and types
of insights it finds which may reflect better the underlying
statistics of individual lifestyle patterns of the different subjects.

I. INTRODUCTION

Personal health coaching services typically focus on guiding
the user to adopt a healthier lifestyle, for example, by being
physically more active, sleeping and eating better. In the case
of a conventional human health coach the opportunities for
change are identified in a dialogue between the coach and the
coachee. In an automated coaching machine based on a web
service and an app, for example, it would be necessary to find
those opportunities, or insights, automatically from the data
[1].

Automatic generation of insights is a central topic in data
mining literature. Conventional association mining is based
on algorithms that find co-occurrences of sets of discrete data
items [2], for example, particular books or food items in a
marketing application, office behavioral data [3] or health data
in clinical databases [4], [5]. In the case of health sensors with
continuous data values, such associations cannot be uniquely
defined but require a discretized and probabilistic framework
for the description of insights [6], [7].

Let us call the proposed method the Probabilistic Scoring of
Validated Insights, PSVI. The insights are found by computing
probabilistic confidence scores for a large number of insight
candidates which have been pre-validated by domain experts
in the design phase. The pre-validation is necessary in a health
coaching application to exclude potentially harmful insights.
For example, the data may suggest that the user has a lower
blood pressure on days when the user has slept less in the
previous night. This insight may be interpreted by the user as
an advice to sleep less while it most likely only refers to a
correlation and not to a causal relation.

The proposed method can be seen as a modification of
conventional association mining algorithms such as Apriori [8]
or CHARM [9] but it has also interesting similarities with
various machine learning algorithms. The proposed method
also resembles recommendation systems [10], [11] but the
problem is different and the same methodology is generally
not applicable here.

In Sections II-III we give an overview of the PSVI algo-
rithm and a use case in health programs. In Section IV the
performance of the method is then studied using a collection
of lifestyle sensor data from a group of volunteers, and the
final results are discussed in Section V.

II. PSVI ALGORITHM

Conventional association rule mining is based on counting
co-occurrences of discrete items {Ik, Ij} [12], [2]. In case
that the items are continuous measurements such as a step
count and heart rate the algorithm can also be applied after
discretization [7]. This is often performed by dividing the
continuous measurement range into a small number of bins and
using for example fuzzy membership functions to describe the
associations [13]. The presented PSVI method uses a relative
discretization where one measurement in a context is either
smaller or larger than another measurement. In the Apriori
algorithm the discovery of insights would be then based on
occurrences of the these cases. This basic method is developed
and tested further in this document and it is shown that it is
not necessarily efficient for dynamic selection of interesting
insights.

The interestingness score of an associative rule can be
characterized in many different ways, see, e.g., [14]. Due to
the probabilistic nature of the insights discussed in this paper
let us call this score a confidence value of an insight. For the
purposes of this paper a high confidence should be related to
a detection of an opportunity, which is typically a context or
condition that somehow stands out from the data. For example,
an insight may state that “a user walks less on Mondays than
on Tuesdays”. The confidence value of this statement should
be based on (1) the statistics of walking on those weekdays,
e.g., based on data from an activity bracelet, and (2) the
observation that it differs from some other context.

In an insight mining application we might be interested
in finding the highest scoring insight out of a collection of
statements of the following form “in context a you walk less
than in context b”, where a and b could be, for example, two



different weekdays. Thus, a collection of statements can be
defined as a set sN of N triples {An, Bn,Mn}, i.e., sN =
{{A1, B1,M1}...{AN , BN ,MN}}, where each triple refers to
a particular statement or a measurement Mn and a pair of
contexts An and B n. Let us denote by Pr(XAn |An) the
conditional probability distribution of the measurement values
XAn

of the nth statement conditioned on the context An, and
by pn(xAn) its probability density function (PDF). For exam-
ple, if the nth statement is “on Mondays you walk less than
on Tuesdays”, then pn(xmonday) refers the PDF of the con-
ditional probability distribution Pr(StepCount|Weekday =
Monday) and pn(xTuesday) to that of the conditional proba-
bility distribution Pr(StepCount|Weekday = tuesday).

The difference between two probability distributions defined
over the nth statement can be characterized by a divergence
measure dn, given by

dn = D(pn(xAn), pn(xBn)). (1)

Typical divergence measures D are the Kullback-Leibler or
Hellinger divergence. The divergence measures give the value
0.0 if the PDFs are identical and 1.0, if they do not overlap.
Based on this, we generalize the diversion measure to the
cases where xAn

or / and xBn
are scalars. Example statements

of these cases would be “yesterday you walked more than
on a typical Monday”, and “today you walked more than
yesterday”, respectively. For the former case we first normalize
the PDF in question to give 1.0 at its maximum and denote
the normalized variant by p̄n(x) = pn(x)/ max(pn(x)). The
divergence measure is then defined as follows.

dn = 1 − p̄n(xAn
|xBn

) (2)

Finally, for the case of comparing two discrete variables
xAn

and xBn
, we calculate the divergence as indicated in

Equation (3), where dm is a normalization constant reflecting
the range of interesting measurement values.

dn = 1 − exp(−ν(xAn − xBn)2/dm) (3)

Combining the three metrics introduced above (Equa-
tions (1, 2) and (3)) we define the PSVI divergence measure
for the nth statement as follows.

PSVI Dg =






dn, if both xA and xB are distributions
1 − p̄n(xAn |xBn), xA or xB is scalar
1 − exp(−ν(xAn

− xBn
)2/dm), scalars

(4)

In the last part dm is a scaling factor for different mea-
surements, and in the following experiments the coefficient ν
in the exponential was set to ν = 42. Next to a divergence
measure it is also necessary to take into account other factors
that influence the confidence value such as the amount and
quality of data used to score the statement. For that purpose,
we include an additional term Wc = 1 − exp(−c/α + γ)/β
which adds a penalty to the confidence score in case the count
c of the measurements in the context a or b is low. In Section

IV the coefficients were set to α = 0.8, β = 2.0, and γ = 1.3
which were found experimentally.

For a collection of N statements the insight with the highest
confidence is then given by

sw = argmaxsn
WcDg(sn) (5)

Equation 5 resembles in some sense a Bayesian classifier
which selects the class (insight candidate) giving the highest
likelihood (confidence). However, in PSVI the scoring model
is typically not trained using statistical learning methods and
the number of classes can be very large compared to a common
multi-class classification case.

III. USE CASE IN A PERSONAL HEALTH SERVICE

Let us say that the goal is that the service would provide
a new personal insight about the behavior of the user, for
example, every day. This requires a large number of insight
candidates. Moreover, let us assume that each insight has a
fixed probability pw to score above some threshold. Based on
the binomial distribution, the probability that all N cards are
below the threshold on a given day is (1 − pw)N . Thus, in
order to have at least one insight above the threshold, there
should be

N > log(1 − pγ)/ log(1 − pw) (6)

insights to choose from. For example, having a pw = 0.05,
one needs more than 100 insight candidates to have pγ = 0.99
probability that at least one of them scores above the threshold
on one day. It is often desired to avoide repetition and show
each insight only once, which would give a practical rule of
thumb that the number of candidates should be at least 100
times the total number of insights the user is shown in the
course of the health service.

The interface to a personal health service is often a smart-
phone app connected to a wearable device such as an activity
bracelet. The app provides education and motivation that helps
the user to change their behavior to healthier and feedback on
the positive achievements. A typical activity bracelet produces
a few measurement variables, for example, on step counts,
energy expenditure, and heart rate. In addition, an app asso-
ciated with the bracelet may track location data which makes
it possible to detect when the person is at home, work, or
outdoors, for example, and divide a day into segments such
as morning or afternoon.

The conditional PDFs of all the measurement variables
can be estimated for each segment separately and the condi-
tions can represent, for example, different weekdays or other
conditions in data selection. By different combinations of
measurements, segments and conditions one can create a large
number of comparative statements of the type “in context a
and segment c your measurement M is typically higher than
in context b and segment d”. The content can be generated
using Natural Language Generation, NLG, tools available for
example in [15]. The combinatorics leads easily to hundreds
of thousands of insight candidates.



Family Nr Example
I 3023 On Thursday morning your step count is K% lower

than on Tuesday
II 1455 On Sunday evenings you burn less calories than on

other weekdays
III 783 On Fridays your sedentary time is lower than the

community average
TABLE I

EXAMPLES FROM THE THREE INSIGHT FAMILIES

Fig. 1. Segmentation diagram. Change points between segments are typically
found from GPS location data collected with an app.

In the experiments reported in this paper we use three
families of insights, listed in Table I, with the total of 5261
validated insights. By validation we mean that the insights
candidates were selected by eliminating combinatorical op-
tions that have no value for the application. For example,
an insight that the user “walks more on Tuesday afternoon
than on Friday morning” was eliminated but a similar insight
comparing Tuesday and Friday afternoons was considered
useful. The insight family I consists of direct comparisons of a
measurement value in two contexts, e.g., Monday and Tuesday
morning in one individual user. The family II compares a
measurement in a particular context to a complement such as
Monday v.s. other weekdays. Finally, the III family compares
the data from one user to the averaged PDFs of the entire user
community.

The conditional probabilities of the measurement values
were estimated in a number of different day types and parts
of a day. In the current paper there are eight activity-related
measurement variables such as step count, active minutes,
sedentary time, and maximum heart rate. The contextual
setting contain separate weekdays, and combined statistics of
all days, all work days, and all free days. In addition, the scalar
measurements of ”today” and ”yesterday” were also included.
The daily data was further segmented according to the diagram
shown in Fig. 1. For example, the conditional probability dis-
tribution Pr(XAn

|An) introduced above could, for example,
represent the distribution of step counts (XAn ) in the morning
segment on the condition that they day is Monday (An). Note
that the total combinatorics of the contexts, measurements, and
directions in this case would lead to more than a half million
insight candidates.

The conditional probability distributions were based on the
normal distribution model, i.e., the mean values and standard
deviations. One practical reason is that the normal distribution

has a clear concept of the mean which is needed in the com-
munication of the insight to the end user. For example, in the
insight: “on Mondays you are more active than on Tuesdays”,
the comparison refers to an average Monday and Tuesday and
the confidence score is based on the divergence between the
PDFs defined on the measurement values on Monday and
Tuesday, respectively. The use of a normal distribution also
leads to a very efficient computation of divergence metrics
compared to other alternatives and the practical experience
is that the long-term activity data is often predominantly
normally distributed.

In the insight collection there are typically pairs of insights,
e.g., in ”In A, M is larger than in B” and ”In A, M is smaller
than in B”. Respectively, each insight is associated with a sign
attribute Σn = −1, or 1, to indicate the direction of the insight.
The scoring of a collection of N insights can be performed
using the following pseudo-code

0 n = 0
1 Compute the confidence score for Cn =

Dg{An, Bn,Mn}
2 if (E[Pr(XAn |An)] − E[Pr(XBn |Bn)]) 6= Σn, then

Cn = 0
3 n = n + 1 and return to Step 1 unless n = N

IV. EXPERIMENTAL RESULTS

The experimental data consists of lifestyle sensor data from
17 volunteers, health office workers with regular daily and
weekly patterns. The subjects were using a smartphone app
that records the location and activity data (moves-app) and a
wrist-worn activity sensor which collect step counts, activity
information, and heart rate measurements. In order to study the
properties of the PSVI scoring mechanism in the population
the insight candidates were scored on different days from the
start of the data collection to the end date, which was 20-60
days after the start date. The number of insight candidates
that score above 60% of the confidence value range in the
three families as a function of time are shown in Fig. 2. The
conditional PDFs were computed starting from the first day.
In the first days only insights that compare the measurements
of the current day to the community score high. The number
of available insights grows in the following days and stabilize
within approximately three weeks. Fig. 3 shows the number
of subjects where a particular insight (x-axis) scores above
80% after 33 days of data collection. Approximately 14%
of the cards did not score high in any of the 17 users and
the number of cards that scored high for multiple users was
low. The average probability that an insight scores above 80%
is 2.5%. Equation (6) would suggests, although assuming a
uniform probabilities, that there should be at least 178 insights
for each selection to be 99% sure that there is at least one
insight for every day.

In a typical application of PSVI the insights that have
already been shown to the user would be removed from the
collection and therefore the number of available insights would
reduce over time. The simulation of the insight counts for all
users is shown in Fig.4. It seems that in this collection of



Fig. 2. The number of insight candidates scoring above 60% in the three
families.

Fig. 3. The number of subjects where an insight on a sorted list of insights
scores above 80% after 33 days.

5261 validated insight is sufficient for at least 2-3 months of
daily non-repeating insight messages for each of the 17 users,
which is larger than the minimal value 5261/178 ≈ 30 days
suggested by the rule of Equation (6).

A. Comparison of Apriori and PSVI scoring methods

To compare the popular Apriori and the PSVI scoring
methods, the Apriori method was adapted for the selection
of insights form a pre-defined collection. In practice, we
computed the number of occurrences of the conditions related
to the pre-scripted statement, for example, the number of times
step counts per minute on Monday morning are higher than
on Monday afternoon. The count was divided by the total
count of Mondays in the data series to produce an Apriori
interestingness measure. This was performed only for the 3023
insights from the family I of Table I because there is no unique
way to count the corresponding differences in the families II
and III.

The confidence values for each insight in the two methods
after 9 days, and 51 days of data are shown in sub-panels of
Fig. 5. The number of insights with a non-zero confidence
score increases in going from 9 days to 51 days of data in

Fig. 4. The number of insight cards above 80% as a function of time in a
content feed simulation where the top scoring insight is shown once per day
in the program and removed from the collection.

Fig. 6. The number of unique score values.

both methods. However, the Apriori method gives a large
number of insights with the same score. This difference is
more pronounced in Fig. 6 which shows the number of unique
score values in the collection of 3023 insights as a function of
time from the start of the program. In the first days, the number
of unique confidence values is similar in the first days but
thereafter the proposed PSVI method has a significantly larger
variability in insight scoring while with the Apriori scoring
method hundreds of insights get the same confidence value.

The variability in the confidence scores suggests, but does
not prove that the insights based on the PSVI method would
be more individualized than the ones from the Apriori method.
The mean inter-subjective correlation coefficients between the
confidence values between all subjects in Fig. 7 may be
considered as a more direct evidence of the personalization of
the insight content. In the Apriori method the correlation value
between subjects is significantly higher than in the proposed
method and increases when the data grows, while in the PSVI
method the correlation between confidence values reduces.
One may expect that the differences between subjects become
more clear when the mining algorithm has more data available
about every subject, however, without ground truth this can be
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Fig. 5. Confidence spectra of the 3023 insight candidates in the two methods after 9 days of data (left) and 51 days of data (right) in one test subject. The
insight candidate with the highest score is shown on the title line.

Fig. 7. Average Pearson correlation coef .

only assumed to indicate a higher level of personalization.

B. Inter-subjective correlations in insight families

The temporal dynamics in the three insight families are
illustrated in Figs. 8 and 9. The three insight families have
similar temporal dynamics in counts of unique insights and in
the reduction of intersubjective correlations over time.

V. DISCUSSION AND CONCLUSIONS

Classic data mining methods such as Apriori are, in princi-
ple at least, unsupervised methods that discover recurring asso-
ciations between data items. The method (PSVI) introduced in
this paper is based on probabilistic scoring of a large collection
of pre-validated insight candidates. The method can be seen

Fig. 8. The number of unique PSVI score values in the three families as a
function of time.

as an example of a supervised discovery method because all
insights are known in advance. In practice the difference is
very small if the pre-validated collection contains the entire
space spanned by the data. The pre-validation is a necessary
element to eliminate nonsense and potentially harmful insights
in a health application. However, it also requires that all data
items are known in advance. This is typically the case for
example in a health service applicaiton but not the case,
for example, in conventional data mining applications for
example in online marketing where new items are continuously
appearing.

In the paper we have introduced a new method, PSVI, for
automatic discovery of insights from continuous multivariate



Fig. 9. The intersubjective correlation coefficient in the three insight families
as a function of time.

time-series. The method was compared to a conventional data
mining approach based on an adaptation of the famous Apriori
algorithm [8] to the same use case. The results suggest that
the PSVI provides more variability in the scoring of insights
between individuals and a better resolution in the score values
than the Apriori method based on counting associations. This
may indicate that the proposed method provides insights that
are more personal than the insights provided by Apriori.
However, it should be noted that the Apriori method based
on counting frequencies of co-occurrances is not well-suited
for the current application where the differences between data
items are in distributions of measurements rather than in
frequencies of conditions.

The design of the insight library is a critical step and the
analysis and experiments given in the paper give some guide-
lines on how it should be designed to meet the requirements on
confidence and availability of insights. In particular, a simple
rule of thumb in Equation (6) seems to be appropriate for the
selection of the minimal number of insight candidates.

In the current paper only numeric evidence of the
performance was reported. The current authors already have
encouraging initial user test results from a small user panel
in the application of an automated health service but a proper
testing is a part of future work. The PSVI method can be
used in all applications where there is a need for a controlled
and pre-validated mining of comparative insights from sensor.
The performance numbers depend on platform but one may
anticiapte the proposed scoring method is computationally
somewhat more expensive than the Apriori algorithm. The
method has been implemented in a cloud-based health data
service platform [16] where the PSVI, implemented using the
Apache Spark library primitives [17], can score approximately
20000 insights per second and per processing node.
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