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Abstract—In this paper a new algorithm for session identifica-
tion in web logs is outlined, based on the fuzzy c-means clustering
of the available data. The novelty of the proposed methodology
lies in the initialization of the partition matrix using subtractive
clustering, the examination of the effect a variety of distance
metrics have on the clustering process (in addition to the widely-
used Euclidean distance), the determination of the number of user
sessions based on candidate sessions and the representation of the
session data. The experimental results show that the proposed
methodology is effective in the reconstruction of user sessions and
can distinguish individual sessions more accurately than baseline
time-heuristic methods proposed in literature.

I. INTRODUCTION

Examining web data for the extraction of useful access
patterns has been a very active research area over the past
two decades [1]. More specifically, session identification is
the process of locating and extracting from web server logs
the resources requested by a specific user, during the different
visits he or she performs on the website in the course of time.
Discovering these access patterns is useful in a number of
ways; i.e. for personalizing the website, for the prefetching of
links and for the improvement of the web server performance.

Access logs may be gathered at two different locations;
either on the client-side (the web browser) or the web server
side. In the first case, a browser plugin (or a JavaScript
application) actively monitors the pages visited by a specific
user and the time spent on each page and periodically feeds
the collected information to a monitoring server. This method-
ology exhibits certain advantages, such as making the user
and session identification tasks straightforward and pushing
the computational load on the client side, therefore saving
on computing resources. However, it is easy for the end user
to “mask” his or her presence, by blocking the monitoring
procedure (e.g. through the installation of 3rd party software,
such as Ad-Block) as recent research indicates [2].

Server-side collection of web usage information, on the
other hand, is performed by the web server application itself.
Every request received is stored either into a database or in
predefined log files at the web server. This procedure has the
advantage of being able to record all information exchanged
between a website and its visitors, regardless of the use of
blocking software by the latter. However, this comes at the
cost of rendering the user and session identification process
a difficult task, for a number of reasons (no user-identifiable

information in the request, multiple users accessing the website
through a proxy etc).

In this work, we propose a novel algorithm for session
identification, based on the fuzzy c-means clustering of the
available web logs. The novelty of our approach lies in the
specific choices made concerning the initialization of the fuzzy
partition matrix (using subtractive clustering) as well as the
examination of the effect a variety of distance metrics have on
the clustering process, in addition to the widely-used Euclidean
distance. On top of that, the number of user sessions in the
underlying data is approximated with candidate sessions, using
a most appropriate representation for the underlying data. The
following sections describe the proposed methodology in more
detail, along with its ability to uncover user sessions on a
privately collected dataset, especially when compared to other
time-heuristic methods proposed in literature.

II. RELATED WORK

Session identification based on web log data has been
extensively studied in literature. The very first approaches to
this task resorted to time heuristics, by defining a maximum
timeout threshold between two consecutive user requests in
order to place them in the same session. This threshold may
be set to several values, based on empirical data. For example,
it has been determined that a 25.5 minute period exhibits the
most accurate results [3]. Other choices range from 10 minutes
to 24 hours [4], but a widely accepted timeout value used both
in literature and commercial websites is 30 minutes [5].

However, a fixed timeout threshold does not take into
account that various pages may have completely different
content in terms of volume as well as interest for each user.
Additionally, other parameters that may affect the time that a
user spends in a web page, such as each individual’s reading
speed, the site topology, other distractions, etc. In order to
account for the aforementioned cases, dynamic timeout thre-
sholds have been proposed in literature, based on traditional
session identification algorithms [6].

In addition to the time-heuristics, another approach to
session identification are the navigation-oriented heuristics [7],
which construct a graph of the website, based on its structure.
In this setting, individual web pages are represented as nodes
and links in between them as edges among the respective
nodes. The sessions are split according to whether a user’s



TABLE I
EXAMPLE EXCERPT FROM A WEB LOG, IN ACCORDANCE TO THE EXTENDED COMMON LOG FORMAT (CLF)

123.456.789.123 [29/Mar/2016:12:44:03] ”GET / HTTP/1.1” 200 612 ”Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)” http://www.google.com/
123.456.789.123 [29/Mar/2016:12:44:03] ”GET /image1.jpg HTTP/1.1” 200 854 ”Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)” /index.html
123.456.789.123 [29/Mar/2016:12:44:03] ”GET /style.css HTTP/1.1” 200 143 ”Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)” /index.html
456.789.123.456 [29/Mar/2016:12:48:29] ”GET /robots.txt HTTP/1.1” 200 98 ”Mozilla/5.0 (compatible; bot)” -
789.123.456.789 [29/Mar/2016:12:55:08] ”POST /form.php HTTP/1.1” 200 558 ”Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:45.0)” http://www.s2.com/

consecutive requests are connected by a direct edge. If there
is not a connection between the currently visited web page
and the previous one, then a new session is considered to
have started.

The methodology above may be easier implemented when
the referrer attribute exists in the logs [5] (Sec. III). For
example, consecutive requests with the same referrer attribute
may be assigned to the same session. Otherwise, a new session
is thought to have been initiated. Of course, time heuristics
and referrer-based methods may be combined together for the
better identification of user sessions [8].

Recently, fuzzy clustering approaches have been introduced
to the session identification problem [9], where user sessions
are being extracted according to time heuristics and then
weights are assigned using fuzzy membership functions of
a number of characteristics, including the frequency of each
URL, the number of bytes downloaded and the time elapsed
between two requests. The preprocessed requests are sub-
sequently being clustered using both the fuzzy c-means and
the fuzzy c-medoids algorithms, employing mountain density
functions in the initialization process (in order to estimate
the number of clusters). Finally, the quality of the produced
clustering is assessed by certain validity indices.

Our approach is inspired from the methodology described
above, especially in the use of fuzzy c-means clustering.
However, a number of fundamental design choices are com-
pletely different. Firstly, the frequency of each URL is not
taken into account. Secondly, the chosen representation tries
to simplify the requests into time data for the clustering algo-
rithm. Subsequently, the fuzzy partition matrix is initialized
using subtractive clustering which is expected to be faster
than mountain clustering because it considers fewer candidate
points as cluster centers. Finally, different distance metrics
between the cluster centroids and the data points are used,
thereby affecting the results of the clustering as well as the
convergence of the algorithm.

III. DATA PREPARATION

A. Data cleaning

Even though web server logs usually contain a variety
of information about each specific request, the majority of
modern web servers’ logging functionality adheres to the
Common Log Format (CLF) [10], a de facto standard imposed
by the World Wide Web Consortium (W3C). Most commonly,
two extra fields are added to the aforementioned standard, that
of the User Agent and the Referrer, yielding to the Extended
Common Log Format (ECLF).

Table I provides an excerpt from a sample log file, in
accordance to the ECLF. Each line of the table corresponds
to single request for a specific resource (html file, image,
style sheet, etc) of the web server. The log entry consists of
several fields, such as the remote host making the request (IP
address or domain name), user authentication information (if
available), a timestamp, the HTTP method (GET, POST, etc),
the actual resource requested, the web server’s response status
code (200, 301, 404, etc), the total number of bytes exchanged
in the request, the User Agent field that characterizes the
operating system and the browser used by the client and finally
the Referrer field, which contains the URL that this specific
request originated from.

In general, web log files contain more data than it is
actually required for session identification. For this reason,
a data cleaning step is necessary. Initially, all unsuccessful
requests (those that have HTTP status codes other than 2xx
and 3xx) are removed. Following, all activity originating from
bots/spiders/crawlers etc is excluded as well. This is achieved
by examining the User Agent field (e.g. 4th entry in Table I).

The final stage of the data cleaning operation involves the
removal of all those resources that the user does not directly
request, but are eventually asked for by the browser itself (in
order to properly render the page the user wanted to view).
These resources include image files, style sheets, javascript
programs, etc. As a result, only the log entries that contain
requests to either HTML pages or to server-side scripts (ASP,
JSP, PHP, etc) are retained. For example, the application of the
data cleaning process in the excerpt of Table I would result
in the removal of the 2nd and 3rd entries (because they are
indirectly retrieved by the browser) and the 4th entry (because
it is a request made by a bot).

B. User identification

After the data cleaning phase is over, we proceed to identify
individual users. In some cases, this is a straightforward task,
as the ECLF standard permits the storage of user identification
data. However, when the aforementioned information is absent
from the logs, other fields of the ECLF have to be used (e.g.
IP Adddress/Host) in order to identify the user behind each
request.

The simpler approach would be to assign each IP ad-
dress/Host to a different user [11]. This choice is sound
for short periods of time (e.g. in the vicinity of minutes or
few hours) and yields satisfactory results. For longer periods
of time, thought, the user identification process has to be
extended by incorporating the information included in the User
Agent field as well. Proper analysis of the said field permits the
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Fig. 1. Candidate session assignment of the requests made by a sample user

extraction of the operating system and the browser name and
version each request originated from, leading to the formation
of the triplet {Host, Operating System, Browser}.
This triplet contains sufficient information to identify each and
every user for longer time frames (that may exceed 24 hours)
given that IP addresses/domains belonging to known proxy
servers have been filtered out.

The last step of the data preparation process involves the
transformation of the available data to a suitable form for
the session identification algorithm itself (to be outlined in
the following section). For this reason, the timestamps of
the requests made by each user (as identified by the triplet
referenced above) have to be transformed. A timestamp of zero
is assigned to the first request and an offset in time from the
first request is assigned to all subsequent requests belonging
to the same user.

After fixing the timestamps, each request is appointed to a
candidate session. Two consecutive requests may either belong
to the same session or to adjacent sessions. The latter is the
case when the time difference between the aforementioned
requests is more than 10 minutes or there is a change in the
Referrer field [7]. Fig. 1 illustrates this procedure for a sample
user.

IV. FUZZY C-MEANS CLUSTERING

The identification of the number sessions and their bound-
aries (Fig. 1) is a cumbersome task, where hard partitioning
approaches (e.g. k-means clustering) are not expected to
perform well. Soft partitioning approaches on the other hand,
like the the fuzzy c-means clustering [12], allow each data
point to belong to one or more classes and therefore seem to
be a more natural fit for this type of problems.

A. Fuzzy partition matrix

Let us assume that our objective is to cluster a set X
of n data points in c fuzzy classes. Each data point xk is
represented as a vector of l elements. An obvious constraint
on the number of possible classes those points might belong
to, is the following

2 ≤ c < n (1)

Furthermore, let A denote a family of sets, where Ai is the set
of points belonging to the i-th class. Initially, a membership
value in each class is assigned for every data point. That is,
the membership value (µik) of the k-th data point to the i-th
class is defined as follows

µik = µAi
(xk) ∈ [0, 1] (2)

Any given data point may be a member, to some degree, of
any given class; however the sum of its membership values
must be exactly one

c∑
i=1

µik = 1, ∀k = 1, 2, . . . , n (3)

Another limitation is that there can be no empty classes and
corollary there can be no class that contains all the data points

0 <

n∑
k=1

µik < n, ∀i = 1, 2, . . . , c (4)

A family of fuzzy partition matrices Mfc is defined over X
for the classification in c classes, abiding to the constrains of
Equations 3 and 4

Mfc =

{
U |µik ∈ [0, 1];

c∑
i=1

µik = 1; 0 <

n∑
k=1

µik < n

}
(5)



Any matrix U that is a member of the family of matrices
defined in Eq. 5 above (U ∈ Mfc) constitutes a fuzzy c-
partition of the set X of data points. The rows of U represent
the classes, the columns represent the data points and the
elements represent the membership of the specific data point
to the given class.

B. Fuzzy c-means clustering algorithm

1) Euclidean distance: The fuzzy c-means (FCM) cluster-
ing algorithm computes a valid fuzzy partitioning of the input
data in c clusters. This is achieved by assigning every data
point to one or more clusters, based on its distance from
each cluster center. The most widely used distance metric in
literature is the Euclidean distance, yielding to the objective
function of Eq. 6

Jm(U, V ) =

n∑
k=1

c∑
i=1

(µik)md2(xk,vi) (6)

where V is the set of cluster centers and d(xk,vi) is the
Euclidean distance between the k-th data point and the center
of the i-th cluster (vi)

deuclidean(xk,vi) = ||xk − vi||22 =

√√√√ l∑
j=1

(xkj − vij)2 (7)

The exponent m of Eq. 6 is called the weighting parameter
[12] (or the fuzzifier) and it controls the amount of fuzziness
in the clustering process, taking values in [1,+∞). Smaller
values of the objective function correspond to a better par-
titioning of the input data; therefore computing the optimal
partitioning may be expressed as the following minimization
problem

arg min
Mfc

Jm(U, V ) (8)

Constrained optimization problems, such as that of Eq. 8
above, cannot be solved deterministically. They may be ap-
proximated, however, by using Lagrange multipliers and then
by computing the partial derivatives of the Lagrange function
with respect to the membership values and the cluster centers
[13]. Equating the partial derivatives to zero and keeping fixed
one set of the variables, the values of the other set may be
computed. This proccess is continued iteratively until a given
level of accuracy ε has been reached (Alg. 1).

In the special case of the Euclidean distance discussed here,
fixing the membership values leads to the following equation
for computing the cluster centers (it should be noted that each
cluster center is itself an l-dimensional vector as well)

vij =

n∑
k=1

(µik)mxki

n∑
k=1

(µik)m
(9)

Algorithm 1 Iterative Optimization Algorithm for Euclidean
FCM
Require: Number of classes c, fuzzifier m, accuracy level ε
Input: c× n empty fuzzy partition matrix U = {µik}
Output: Fuzzy partition matrix U

1: Initialize U (0)

2: repeat
3: Update the c cluster centers v(t) according to Eq. 9
4: Update the membership values mik according to Eq.

10
5: until ||U (t) − U (t−1)|| ≤ ε

After updating the cluster centers, the values of the member-
ship functions are renewed according to Eq. 10 below

µik =

[
c∑
j=1

(
d(xk,vi)

d(xk,vj)

) 2
m−1

]−1
(10)

2) Lp norms: The Euclidean distance discussed before is a
special case of a more general distance metric, the Minkowski
distance, defined below

d(xk,vi) = ||xk−vi||pp = p

√√√√ l∑
j=1

(xkj − vij)p, p ∈ [1,+∞)

(11)
Eq. 11 is also referred to as the Lp-norm and even though p
may reach positive infinity, it most usually lies in [1, 2].

Other interesting cases of the Minkowski distance include
the Manhattan distance (p = 1)

dmanhattan(xk,vi) = ||xk − vi||11 =

l∑
j=1

(xkj − vij) (12)

and the Chebyshev distance (p = +∞)

dchebyshev(xk,vi) = ||xk−vi||+∞+∞ = lim
p→+∞

l∑
j=1

(xkj−vij)p

(13)
In order to be able to use the Minkowski distance in the

objective function of Eq. 6 and therefore in the minimization
problem of Eq. 8, it must be re-written in quadratic form [12]

dminkowski(xk,vi) =
√

(xk − vi)>A(xk − vi) (14)

where A is a positive definite l× l matrix. Setting the matrix
A to a suitable form yields the desired distance function. For
example, if A = I , Eq. 14 computes the Euclidean distance; if
A = E, (eij = 1,∀i, j), it computes the Manhattan distance
and so forth. As a result, Eqs. 9-10 along with Alg. 1 may be
used with the distance functions presented above as well.

C. Partition matrix initialization
The iterative algorithm for FCM outlined in Sec. IV-B is

very sensitive to the initialization of the fuzzy partition matrix
(first step of Alg. 1). A poor choice on the initialization
parameters may lead to a local optimum of the objective
function (Eq. 6) instead of the global one. This issue may
be addressed by the techniques presented next.
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Fig. 2. Cluster assignment of the requests of the same sample user. Circles represent the cluster centers (color online)

1) Mountain clustering: The mountain clustering method
[14] is used to estimate the number and initial locations of the
cluster centers. Firstly, a grid is formed on the data space and
the potential cluster centers are positioned inside the grid (e.g.
the central points). Secondly, a mountain function is computed
for those potential cluster centers, that represents a data density
measure (Eq. 15 below)

m(v) =

n∑
k=1

e−αd(v,xk) (15)

where d(v,xk) is a distance metric between the potential
cluster center v and xk, the k-th data point (α is a constant
that determines the smoothness of the mountain function).

The form of Eq. 15 designates that the data density measure
at a point v is affected by the amount of data points that are
near it. The more data points that are near the tested point,
the higher the value of the mountain function is.

Cluster center selection is based on the value of the moun-
tain function. More specifically, the first cluster center c1 is
defined to be the point with the highest value. After it has been
selected, the form of the mountain function has to be revised,
in order to eliminate its effect. Therefore, Eq. 15 becomes

mnew(v) = m(v)−m(c1)e−βd(v,c1) (16)

where β is a new smoothing factor.
The second cluster center c2 is selected to be the point

where mnew(v) reaches its maximum. Again, after fixing c2,
Eq. 16 has to be revised in order to eliminate the effect of the
newly appointed cluster center. This iterative process continues
until the desired number c of clusters has been reached.

2) Subtractive clustering: The main drawback of the moun-
tain clustering method described above is that it is com-
putationally expensive, as the number of calculations grows
exponentially with the dimensions of the problem. In order to

amend this disadvantage, the subtractive clustering method has
been proposed [15]. Its main difference to mountain clustering
is that it uses data points as candidate cluster centers instead
of grid points.

Under this modification, the required computations now
become proportional to the problem size. Even though in many
problem domains it is not necessary for the cluster centers
to coincide with the data points, this approximation is good
enough, when the reduced computations are considered.

Since every data point is a potential cluster center, the
density measure is computed as

Dk =

n∑
j=1

e−α||xk−xj ||2 , α =
4

r2a
(17)

where ra is a neighborhood radius.
As in the case of mountain clustering, high density values

mean that a data point has a lot of neighboring points. Again,
the first cluster center xc1 is set to the data point with the
highest density value. After xc1 has been fixed, the density
measure has to be revised, in order to eliminate its effect in
the selection of the second cluster center

Dk,new = Dk −Dc1e−β||xk−xc1
||2 , β =

4

r2b
(18)

where rb is a positive constant that defines a neighborhood in
which the density measure will be reduced to. This procedure
is iteratively repeated, until the desired number c has been
reached, selecting a new cluster center at each step and
amending the density function accordingly. Fig. 2 illustrates
the result of the session identification for the sample user of
Fig. 1; the red circles denote the uncovered cluster centers
(different sessions of the same user).



V. VALIDITY INDICES

The FCM algorithm analyzed in the previous section (Al-
gorithm 1) requires that the number of clusters c is specified
beforehand. However, in many problem domains, including
the one addressed in this work, this number of clusters is not
known and it is in fact part of the desiderata themselves. After
all, different number of initial clusters would result in different
partitioning of the input data.

It is therefore evident that a way of assessing the quality of
the produced clusterings is more than necessary. To this end,
a number of validity indices have been proposed in literature
[16]. In general, they fall in two categories; those based on
the membership values only and those examining both the
membership values and the input data.

The first validity index to be examined in this work is the
Fukuyama and Sugeno (FS) index [17], that combines both
the membership values and the data points

VFS =Jm(U, V )−Km(U, V )

=

c∑
i=1

n∑
k=1

µmikd2(xk,vi)−
c∑
i=1

n∑
k=1

µmikd2(vi, v̄) (19)

where v̄ is the mean of the cluster centers and d(xk,vi) is
a distance metric. The term Jm(U, V ) quantifies the com-
pactness of the representation with respect to the c cluster
centers while the term Km(U, V ) measures the distance of
each cluster center to their mean. The optimal number of
clusters c∗ is found by solving the following minimization
problem

arg min
2≤c≤n−1

VFS (20)

A similar validity index is the Xie and Beni (XB) index [18]

VXB =
Jm(U, V )

n ·min
i,j

d2(vi,vj)
(21)

which tries to combine two desired properties of a good clus-
tering; compactness and separation. The numerator computes
how compact the fuzzy partitions are and the denominator how
well distinguished the cluster centers are. The optimal number
of clusters c∗ is once again expressed as a minimization
problem

arg min
2≤c≤n−1

VXB (22)

The last validity index to be examined is the partition coeffi-
cient and exponential separation (PCAES) index [19]

VPCAES =

c∑
i=1

PCAESi,

PCAESi =
1

µM

n∑
k=1

µ2
ij − exp

{
−min
k 6=i

d2(vi,vk)

βT

}
(23)

where

µM = min
1≤i≤c

n∑
k=1

µ2
ij , βT =

1

c

c∑
i=1

d2(v,v̄), v̄ =
1

n

n∑
k=1

xk

(24)

TABLE II
DATASET CHARACTERISTICS

No. of log entries (initial) 5,148,780
No. of log entries (after cleaning) 121,117
No. of unique URLs 36,281
No. of unique sessions 14,133

Higher values of VPCAES designate the compactness and
separation of each cluster from the others while lower values
indicate that at least some of the clusters are not that compact
or well separated from the others. The optimal number of clus-
ters c∗ is approached by solving the following maximization
problem

arg max
2≤c≤n−1

VPCAES (25)

VI. EXPERIMENTS

The proposed methodology has been tested on a private
web log dataset, collected from the Online Community of the
Students of the School of Electrical and Computer Engineering
at NTUA [20], over a period spanning 14 days in November,
2015. The web logs were in the form of text files, adhering to
the Extended Common Log Format and they also contained
ground truth information about the user sessions (Table II).
Initially, the dataset was cleaned, according to the reasoning of
the Section III-A; requests with status codes not in the 200 and
300 ranges were removed, along with all bot activity (crawlers,
spiders, feed readers etc). Following, all requests that did not
involve directly an HTML resource (such as images, fonts,
style sheets, javascript code) were removed as well. Lastly, the
IP addresses of the remaining requests were checked against
known lists of proxy servers. Only a small percentage of proxy
servers were found in the remaining logs, which were removed
as well.

After the completion of the data cleaning phase, we pro-
ceeded to user identification, as discussed in Section III-B.
The browser and the operating system each request originated
from were extracted from the User Agent field. Requests that
matched all three fields, occurring within a 24 hour time frame
(from the first appearance) were considered to come from the
same user and therefore were assigned to the same user id.
Users with too few requests were removed from our test set.
Finally, on the remaining user ids we performed the candidate
session id assignment outlined in Section III-B (Fig. 1) and
then presented the input data to the session identification
algorithms discussed below.

Two families of algorithms have been tested; a time-
heuristics based one, serving as the baseline, and the FCM,
outlined in Section IV-B. The default time out period of the
former algorithm was set to be 25.5 minutes, because this
value has been predominantly used in literature (Section II).

The FCM algorithm is dependent on a number of configura-
tion parameters. Firstly, the initialization of the fuzzy partition
matrix must be accounted for. This issue has been tackled by
following both approaches presented in Section IV-C; that of
mountain clustering (Section IV-C1) and that of subtractive



TABLE III
RESULTS

Algorithm Effective Rate Identification Rate F1 Score
Validity indices

VFS VXB VPCAES VFS VXB VPCAES VFS VXB VPCAES(for the FCM algorithm)
Time-heuristic algorithm 53.88 % 40.37 % 46.16 %(Threshold 25.5 min)

Fuzzy c-means - Mountain clustering
Euclidean distance, m = 2 61.40 % 90.10 % 39.27 % 67.96 % 39.81 % 94.17 % 64.51 % 55.22 % 55.43 %
Euclidean distance, m = 5 41.73 % 75.19 % 24.53 % 51.46 % 47.09 % 69.41 % 46.09 % 57.91 % 36.25 %
Manhattan distance, m = 2 59.91 % 90.10 % 36.26 % 67.48 % 39.81 % 96.11 % 63.47 % 55.22 % 52.65 %
Manhattan distance, m = 5 41.29 % 75.59 % 27.52 % 52.91 % 46.60 % 72.82 % 46.38 % 57.66 % 39.94 %
Chebyshev distance, m = 2 61.59 % 89.23 % 26.52 % 45.15 % 28.16 % 69.90 % 52.10 % 42.81 % 38.45 %
Chebyhsev distance, m = 5 82.61 % 75.59 % 21.14 % 36.89 % 46.60 % 57.77 % 51.00 % 57.66 % 30.95 %
Minkowski distance, m = 2, 61.30 % 90.22 % 40.25 % 68.45 % 40.29 % 95.14 % 64.68 % 55.70 % 56.57 %
p = 1.5
Minkowski distance, m = 5, 41.90 % 75.00 % 25.91 % 51.46 % 46.60 % 68.93 % 46.19 % 57.48 % 37.66 %
p = 1.5

Fuzzy c-means - Subtractive clustering
Euclidean distance, m = 2 42.07 % 84.85 % 41.15 % 81.07 % 40.78 % 83.50 % 55.39 % 55.09 % 55.13 %
Euclidean distance, m = 5 46.38 % 68.32 % 27.94 % 46.60 % 33.50 % 70.39 % 46.49 % 44.96 % 40.00 %
Manhattan distance, m = 2 42.60 % 85.57 % 40.61 % 81.17 % 40.29 % 83.98 % 55.85 % 54.78 % 54.75 %
Manhattan distance, m = 5 46.60 % 62.71 % 27.54 % 46.60 % 35.92 % 68.45 % 46.60 % 45.68 % 39.28 %
Chebyshev distance, m = 2 43.34 % 84.04 % 42.75 % 80.58 % 38.35 % 80.10 % 56.36 % 52.67 % 55.75 %
Chebyshev distance, m = 5 45.25 % 67.77 % 28.32 % 48.54 % 39.81 % 69.42 % 46.84 % 50.16 % 40.23 %
Minkowski distance, m = 2, 41.23 % 86.46 % 39.86 % 81.07 % 40.29 % 83.01 % 54.66 % 54.97 % 53.86 %
p = 1.5
Minkowski distance, m = 5, 47.06 % 62.50 % 29.61 % 46.60 % 33.98 % 70.87 % 46.83 % 44.02 % 41.77 %
p = 1.5

clustering (Section IV-C2). The hyper-parameters for both
methods were set according to [21]. Following, the value of the
fuzzifier needs to be fixed; larger values of m result in more
fuzzy clusters while lower values of m correspond to more
crisp clusters. For this reason, the FCM configuration included
both a high and a low value for the fuzzifier. Then, the distance
metric has to be specified; all four distance metrics outlined
in Sections IV-B1 and IV-B2 have been used (Euclidean,
Manhattan, Chebyshev and Minkowski). Lastly, the validity
index that would determine the optimal number of clusters
should be decided upon; the Fukuyama-Sugeno, the Xie-Beni
and the PCAES indices have been used for this task (Section
V).

VII. RESULTS

The performance of the implemented algorithms is evalu-
ated on two metrics; the effective rate and the identification
rate [6]. The former is similar to the Precision metric of the
Information Retrieval Theory while the latter is similar to the
Recall metric of the same theory. More formally, let SI be
the set of all sessions (for all users) identified by a given
algorithm. Some of them match to existing sessions in the
dataset, forming the set of the “real” sessions (RI), while
others don’t have a match, forming the set of “false” sessions
FS. By definition SI = RI ∪ FS. Finally, let TR be the set
of all real sessions (for all users) existing in the dataset. Yet
again, by definition, RI ⊆ TR.

The effective rate is defined to be the ratio of the “real”
sessions identified over the overall sessions (identified)

ER =
|RI|
|SI|

(%) (26)

while the identification rate is set to be the ratio of the “real”
sessions identified over the overall sessions existing in the
dataset

IR =
|RI|
|TR|

(%) (27)

As with the precision and recall metrics of information theory,
an algorithm is considered to be more efficient when it exhibits
a better trade-off of both metrics defined beforehand. For
this reason, they are combined together by calculating their
harmonic mean, yielding to the F1 score

F1 = 2 · ER · IR
ER+ IR

(%) (28)

Table III summarizes the results of the experiments of
the algorithms discussed above, on the three validity indices
outlined in the previous section. The worst outcome, in terms
of the F1 score, is achieved by the time-heuristic algorithm; an
indication that the baseline approach which considers a fixed
amount of session duration is not always fit for every user.

The system which exhibits the best F1 score is the FCM
algorithm, where the fuzzy partition matrix is initialized with
the mountain clustering method. The distance metric used is
the Minkowski distance with an exponent of p = 1.5; in the
”middle” of the range between the Manhattan distance (p = 1)
and the Euclidean distance (p = 2). Finally, the fuzzifier m is
set to a low value.

An almost similar level of effectiveness is accomplished
by some other configurations of the FCM algorithm as well;
namely the (Euclidean distance, m=2) and (Manhattan Dis-
tance, m=2) when the fuzzy partition matrix is initialized
with the mountain clustering method and the (Chebyshev



Distance, m=2), (Euclidean Distance, m=2), (Manhattan Dis-
tance, m=2), (Minkowski Distance, m=2) when the fuzzy
partition matrix is initialized with the subtractive clustering
method. What all those configurations have in common is
a low fuzzifier value, resulting in a more crisp clustering
of the session data. Indeed, higher fuzzifier values make the
boundaries between the clusters less distinguishable, which in
turn results in a greater overlap between successive sessions. It
may also be deduced that the value of the fuzzifier (first term
of the product of Eq. 6) influences the form of the objective
function to a greater extend than the distance function (second
term of the same product).

Another interesting observation is that the XB index (Eq.
21), when used in conjunction with the FCM algorithm for
the determination of the optimal number of clusters, achieves
by far the best results in the effective rate. This behaviour is
attributed to the fact that this index penalizes more the compact
representations than the other two. However, this comes at the
cost of exhibiting a much lower identification rate; it clearly
misses to uncover all the underlying sessions.

The opposite is true for the PCAES index (Eq. 23); it
demonstrates a higher identification rate when compared to
the other two, since it favours more compact representations at
the largest possible distance between them. Yet, this tendency
of trying to place clusters as far as possible from one another
fails to properly model those sessions that occur in short (time)
proximity and hence the lower effective rate.

VIII. CONCLUSION

In this paper, a new method for session identification in
web log data has been proposed, based on the fuzzy c-means
clustering algorithm. The novelty of the approach lies in the
initialization of the fuzzy partition matrix using the subtractive
clustering technique, the introduction in the FCM of more
distance metrics (Manhattan, Chebyshev, Minkowski) as well
as the use of candidate sessions in order to determine the real
number of sessions in the underlying web log data. In order
to accomplish this goal, an appropriate representation of the
session data has been employed.

Preliminary results on a reference dataset justify the choices
made, especially when compared to baseline approaches such
as the time-heuristic methodologies. However, there is still
room for improvement. A different mountain function could
be tried, either to subtractive or to mountain clustering, that
takes into account the temporal nature of the data at hand
and the particularities of session identification. In addition, the
FCM algorithm could be initialized with other methods such
as Particle Swarm Optimization and Ant Colony Optimization
and apart from these, other validity indices could be introduced
in order to determine the quality of the clustering.
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