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Abstract—We present a symbolic framework for recognizing
activities of interest in real time from video streams automatically.
This framework uses regular expressions to symbolically repre-
sent (possibly infinite) sets of motion characteristics obtained
from a video. It uniformly handles both trajectory-based and
periodic articulated activities and provides polynomial time
graph algorithms for fast recognition. The regular expressions
representing motion characteristics can either be provided man-
ually or learnt automatically from positive and negative examples
of strings (that describe dynamic behavior) using offline automata
learning frameworks. Confidence measures are associated with
recognition using Levenshtein distance between a string repre-
senting a motion signature and the regular expression describing
an activity. We have used our framework to recognize trajectory-
based activities like vehicle turns (U-turns, left and right turns,
and K-turns), vehicle start and stop, a person running and
walking, and periodic articulated activities like hand waving,
boxing, hand clapping and digging in videos from the VIRAT
public dataset, the KTH dataset, and a set of videos obtained
from YouTube. Our framework is fast (it runs at nearly 3 times
real time) and on the KTH dataset, it is shown to outperform
three of the latest existing approaches.

I. INTRODUCTION

Intelligence obtained from recognizing activities underlying
the dynamics of moving objects [1], [2] in surveillance videos
is a key enabler for many video analysis applications [3].
While many deployed surveillance systems provide automatic
tracking, describing the activities of tracked objects still gen-
erally requires human intervention. Analysts are prone to miss
events, and even if no events were missed, manually keeping a
log of everything that happens in a video would not be viable.
It is therefore essential to develop techniques to automatically
analyze the motions and behaviors of objects in video streams.
Potentially important events could then be flagged in real
time, giving analysts a more manageable amount of data to
handle.While in the past few years there has been a slew
of research progress in real time activity recognition from
videos, the general problem is inherently hard. Both trajectory-
based activities and periodic articulated activities can have
differences that are nuanced or maybe completely different.
Periodic articulated ac based activities that we describe here
consist of human body movements while standing still and
the trajectory based activities describe the actual movement
of vehicles or other objects in different frames of a video. Ex-
isting approaches have targeted individual activity recognition
problems with specialized complex descriptor matching (such

as bag-of-words or histogram-of-gradients), probabilistic logic,
and classification algorithms. Complex descriptor matching
can be computationally expensive. Despite the recent progress
in activity recognition, there has been no uniform framework
that can be efficiently used to solve a variety of problems
and can be seamlessly integrated with reasoning platforms
to provide inferences at a higher level of abstraction such
as anomalies. We propose a framework for automatically
recogning activities in real time from a video stream. The
frameworks breaks down the activities in a series of sym-
bols before recognizing them, hence, we call it a symbolic
framework. Regular expressions are able to uniformly handle
both trajectory-based and periodic articulated activities and
provide polynomial time graph algorithms for fast recognition.
The regular expressions representing motion characteristics for
activities are in many cases simple enough to be provided
manually (e.g., by an expert analyst or by crowd sourcing,
etc.) providing a generative framework; or they can be learnt
automatically from positive and negative examples of strings
describing dynamic behavior using offline automata learning
frameworks like libalf [4]. Confidence measures are associated
with recognition using Levenshtein distance between a string
representing a motion signature and a regular expression de-
scribing an activity [5]. Since regular languages described by
regular expressions are as expressive as monadic second-order
logic over strings (MSO-S) [6], we get for free, a rich logical
framework that can be integrated with reasoning platforms for
performing high level inference by linking together activities.
We have used our framework to recognize trajectory-based
activities like vehicle turns (U-turns, left and right turns, and
K-turns), start and stop, a person running and walking, and
periodic articulated activities like hand waving, hand clapping,
boxing and digging holes in the ground observed in videos
from the VIRAT public dataset [7], the KTH dataset [8], and
a set of videos obtained from YouTube. Further details and
the experimental results of these example provided in Section
V.

II. RELATED WORK

Our approach builds on top of our robust tracking frame-
work that uses a combination of foreground background
segmentation and a color histogram model to compensate for
trajectory failures. Frameworks have been developed that con-
sider activities as resulting from the execution of a dynamical
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Fig. 1. The architecture of the proposed framework.

system [9], based on 3D Markov Random Field to recognize
trajectory-based and articulated activities like dancing, talking,
etc. [10]. In contrast, we use a symbolic regular expression-
based framework for representing possibly infinite sets of
motion signatures. Using a normalized edit distance measure,
representation and retrieval of object trajectories has also been
proposed [11]. A generative mixture model was designed for
activity recognition using the velocity data collected from
trajectories [12]. Context-free grammars have proven to be
useful to recognize complex activities before like in [13]. Time
complexity for recognition of context-free languages is O(n?)
whereas that for regular ones is linear and hence computation-
ally less expensive. Besides, context-free languages cannot be
directly tied to a logical framework unlike regular expressions.
Other frameworks include representing contexts to facilitate
activity recognition [14] and logic programming [15]. Our
regular expression-based framework is equivalent to MSO-S
which lies at the boundaries of decidability and thus has more
expressive power compared to first order logic (over strings)
[16]. Deep Learning and Convolution Neural Networks have
made strides in image analyisis and video recognition such as
[17], [18] and[19]. These techniques require huge amount of
data and state of the art processing capabilities and whereas
our approach works with smaller data size and mediocre
processors. A Symbolic Framework is also more robust to
addition of new classes as the entire model doesn’t need to be
trained again. Dynamic Bayesian Networks have been used
for detecting activities in [20] and [21]. We use a measure
based on the Levenshtein distance to quantify the accuracy
(or uncertainty) of recognition of an activity. Markov Logic
Network has been used to recognize interesting activities in
video [22]. The power of finiite state machines to describe
dynamic systems and the ease of use is described in [23].
[24] present a scalable classifier system that works on a high
dimesional problems using an encoder called XCS based on
finite state machines. These advancements make the use of
symbolic framework a solid approach in problems such as
recognizing activites. Also, [25] propose a framework based
on qualitative spatio-temporal graphs and graph isomorphism
(similarity). [26] represent sequences of complex arm-hand
acting by a robot using regular languages. We represent human
motion by using directional histograms that are fitted with
Gaussians instead.

III. THE PROPOSED FRAMEWORK

Activities are associated with possibly infinite sets of motion
signatures (think of the numerous ways in which a U-turn
can be made). In our framework, activities are represented by
regular expressions describing their motion signature. Incom-
ing full motion video is first input to a stabilization engine
for jitter correction and background noise subtraction. The
stabilized video is then input to a tracker. The output of the
tracker is input to an activity analyzer. The analyzer smooths
the data and from the tracked video, extracts strings describing
motion signatures of moving objects in it. The strings are then
matched against regular expressions representing activities
using approximate pattern matching algorithms for “soft”
matching. The various components of the symbolic framework
are described in detail below. An overview of the Framework
is presented in Fig. 1.

A. Regular Expressions, Directions, and Periodicity

A regular expression [27] describes a pattern representing
a (possibly infinite) set of strings (i.e., a language) over
an alphabet. In addition to supporting efficient string search
operations which are polynomial in the number of bytes of data
to be searched, regular expressions offer great flexibility in
symbolically describing sets of strings and can be conveniently
represented by finite state automata that allows efficient ma-
nipulation using graph algorithms. In terms of expressiveness,
regular languages (i.e., those described by regular expressions)
are as expressive as monadic second-order logic over strings
(MSO-S) [6]. MSO-S subsumes temporal logics like LTL
[28] that are popularly used for describing dynamic behavior
sequences. We will use the flexibility of the framework of
regular expressions to describe and classify object motions
and recognize underlying activities. Fig. 2 shows an example
where we use the characters a through % to represent unit
vectors in both the cardinal (N, S, E, W) and ordinal (NW,
NE, SW, SE) directions respectively. The optimal unit length
depends on scale and noise but our experiments used numbers
on the order of 1 pixel width. Any arbitrary trajectory can
be approximated by the combination of multiple unit vectors.
Using this language of motion description, the string abc
represents a movement to the east, then from there to the
northeast, then from there to the north. In practice, we use
24 characters to more finely quantize direction, rather than 8.
These unit vectors are represented by the characters a through
T.

Articulated activities with periodic motion like digging,
gesturing, etc., can also be mapped to regular expressions
as shown in Fig. 6 and illustrated in Section III-D. Here,
we fit Gaussians with the running average of the directional
histogram differences as data. The widths of Gaussians are
subsequently mapped to character strings to extract the peri-
odicity information in them.

B. Classifying Motions

To classify motion signatures obtained from a video, one
first needs to track moving objects. From the trajectories,
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Fig. 2. Cardinal and ordinal directions are mapped to characters.
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Fig. 3. The position (x, y) of a left-turning vehicle before and after smoothing.

symbols are extracted corresponding to motion characteristics
in individual frames. Finally, the strings obtained from the
video are (approximately) matched against regular expressions
representing activities.

1) Tracking: We use an in-house tracking algorithm based
on a combination of foreground-background segmentation and
a color histogram model, a detailed description of which is
beyond the scope of this paper.

2) Symbol Extraction: Symbol extraction is the process of
translating tracked object positions into strings of characters.

Symbol extraction involves two steps: smoothing of the data
and mapping of the data into character symbols.

3) Data Smoothing: Object tracking is imperfect; the tra-
jectories of real-world motion usually do not follow any
smooth pattern. For example, even if a car makes a smooth
turn, on close inspection the trajectory appears jagged due to
small additive noise. Raw trajectories, if left unsmoothed, are
often incorrectly mapped.

The data must be smoothed to improve accuracy. To smooth
the data, we use a simple Gaussian filter with a width of «.

This straightforward approach to smoothing has a profound
effect, not only serving to eliminate faulty trajectories that
would lead to erroneous classification, but also supports
greater accuracy in the data mapping process, as the derivative
is less noisy (Fig.reffig:smoothing).

C. Mapping Vehicle Motions to Strings

Data mapping is the process of converting motion vectors
into strings of characters which may be efficiently matched by
regular expression patterns.

In the ideal case, the vehicle moves exactly one unit per
frame in one of the prescribed directions. In this case, we can
simply generate as output one character per frame, and the
mapping conforms precisely to the actual motion. However,
this is usually not the case. Subpixel movement is often
significant, so an object may move less than a unit between
frames. Conversely it may move multiple units. We accumulate
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Fig. 5. Symbolic mapping as trajectory updates.

sub-unit movement until it can be mapped into a single unit
vector.

Figure 5 (left) shows a smoothed trajectory as a series of
dots. Superimposed on this, is the trajectory as it would be
approximated by a sequence of symbols. In this case, motion
from the first three frames is approximated by horizontal
movement (symbol a), followed by the next three frames
approximated by symbol b. Figure 5 (middle) shows the next
sub-unit movement. At this point, there are two choices:
keep accumulating movements, or map the movement to a
symbol. The decision depends on the amount of error that
would result from such a mapping. We take the derivative at
the current point and compare this slope against the slopes
of eight (or 24) possible symbols that could be generated.
If the slope is between the slopes of two symbols, they
become the candidates for the next mapping. In the figure,
the candidates for the next mapping are b and ¢, shown in
gray. We pick whichever minimizes the error (i.e., Euclidean
distance) between the approximated trajectory and the actual
movement. In this case, error is minimized by not generating
a new symbol, and we continue to accumulate movement each
frame.

Figure 5 (right) shows what happens after two more posi-
tions have been accumulated. Now symbol ¢ can be mapped
because it is the candidate that minimizes error. The strings
representing other trajectory-based motion signatures for ve-
hicles such as start and stop and those for humans (i.e., those



associated with walking, running, etc.) can be determined
similarly.

D. Mapping Articulated Motions to Strings

Articulated motions are associated with human activities
like digging, waving, boxing, clapping, etc. We use the
directional histograms of pixel intensities in the frames of
a target video to map them into a regular expression. The
directional histograms help in capturing the periodic motion in
the articulated activities like clapping, gesturing, digging etc.
Examples articulated motions is shown in Fig. 10 (c). Here,
the directional histogram for the x-axis in the lower part of
the video is periodic. Similarly, for the hand waving video in
Fig. 10 (d), the horizontal directional histogram for the upper
part of the video is periodic in nature.

1) Representing Articulated Activities with Directional His-
tograms: Directional histograms are computed separately for
the x and y axes for a 2-dimensional image. The average of
the i (Intesity) values on each pixel along the x and y axis
describes a histogram along that axis. Our tracking framework
identifies the region of interest from the trajectories of humans
or vehicles. Histogram differences are then calculated frame-
by-frame from the video sequence. A running average of the
histogram differences that decays with time (e.g.,150 frames)
is accumulated in bins. The first bin represents the difference
between consecutive frames and the second bin represents the
difference of histograms that are 2 frames apart and so on.
A low value in the n'" bin would mean the frames that are
n bins apart are similar and suggest that the motion repeats
every n frames.

2) Mapping the histogram data into strings: For articulated
activities, directional histograms are fitted with Gaussians
whose standard deviations are quantized into 10 levels and
then mapped to characters. We fit a linear composition of
a mixture of Gaussians with the horizontal and vertical his-
tograms as data as shown in Fig. 6. A Gaussian function
is given by f(x) = ae—(#=1)?/2¢" for some constants a, b,
and c. Here, the periodicity information can be approximately
mapped to the value 2¢2. So, we get the corresponding period
of motion as P; = 2¢;2. Thus we can derive strings of the
form P1P2P3...Pn.

E. Defining Patterns of Motion

The general form of a turn expression consists of three parts:
a straight segment before the turn, a curved segment during
the turn and a second straight segment indicating the turn has
stopped. By varying the maximum/minimum lengths of these
parts we can define what should be considered a turn. Our
method does make some general assumptions about scale but
scale need not be accurate beyond an order of magnitude.
After a turn or other motion has been positively identified,
the corresponding characters are consumed. Consider the case
of the northbound left turn; the vehicle moves from east to
north, traveling the intervening northeast direction. The string
matching such a motion must begin with a, end with ¢, and
may contain only a, b, and ¢ as intervening characters; thus
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Fig. 6. Running average of Mean Squared Difference of Directional His-
tograms, fitted with Gaussians for Handwaving action.

the corresponding pattern is /alabc]Tc/. The general form of
the left-turn expression is as follows:

a*{{a,b,c}' U{a,b,c}' 1 U {a,b,c} 2 U...U{a,b,c}"}e!

(D
This expression classifies left turns that begin facing due east.
A similar expression is used for each of the other 7 (or 23)
directions. Right-turn patterns are simply the reverse of left-
turn patterns. U-turn expression are similar except the starting
and ending directions are 180 degrees apart, and there are
a combination of more symbols in the middle. The general
expression has four parameters s, [, u and f that can be tuned
based on data by the analyst.

e s, f: minimum length of the start and finish of the turn
o [, u: lower and upper limit for the middle of the turn

Figure 7 shows how an actual turn is encoded. In this analysis,
we assume that s=1, which means the start of the turn can be
just one symbol; f=3, which means that the finish of the turn
must be a string of at least three symbols that are 90 degrees
from the start. The middle of the turn is any combination of
the three symbols in between and including the start and finish
symbol, with a minimum lower length of / = 10 and maximum
upper length of u = 60. The figure shows a trajectory of a left
turn from due east to north, so the start symbol is a, the middle
portion is a combination of 35 a’s, b’s, and ¢’s, and the finish
is a string of ¢’s. The general form of a K-turn expression is
as follows:

{{aS*b}pS*q{aS*b}}* )

where, p and ¢ are characters 180 degrees apart and a and b
are mutually opposite characters skewed by 2 to 3 characters
and X is the alphabet. The symbol generation rate can be
used to check activities like start, stop, walking, running.
For articulated activities we can derive regular expressions as
well, e.g., the regular expression derived for waving is of the
form {{c} U {b}*}* A detailed discussion on the way these
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Fig. 7. This graph shows the tracking data from an actual turn and the string
to which it is mapped.

regular expressions are derived is presented in section III-D
and further illustrated in section IV.

Algorithm 1 Levenshtein Distance Computation
1: 2+ 0;
2: LD <+ String.Length(); > Livenshtein Distance
3: MAPTOSTATES(); > Map characters of Input String to
the states of Automaton

4: if FinalStateReached = AcceptingState then

5: String Accepted = TRUE;

6: else

7: while CurrentState # AcceptingState do

8: 141+ 1;

9: BACKTRACK(?); > Backtracks i steps through
the automaton

10: LD <« LD —i;

11: DFS(2); > Performs Depth First Search upto a
depth of i

12: end while

13: end if

FE. Confidence Measure and Approximate String Matching

Standard pattern matching algorithms for regular expres-
sions provide hard matching. To obtain soft matching, we use
an approximate matching algorithm. This algorithm provides
a confidence measure for a string approximately matching
a regular expression based on how closely it matches the
expression. It computes the confidence measure using the
Levenshtein distance between a string and a regular expres-
sion. The Levenshtein distance LD is well knowned distance
measure to calculate the distance between a string s and a
regular expression R. It is given by mingyesryLD(s', s)
where L(R) is the regular language associated with R and
LD is the standard Levenshtein distance between two strings,
and s and s’ have the same length. We have designed an
algorithm for computing the Levenshtein distance LD between
a regular expression R and a string s; the algorithm is based
on repeated depth-first graph search and with time complexity
O(k?) where k represents length of the string s. This quadratic
complexity can be attributed to the fact that for a string of
length k, the while loop in line 7 can iterate over k states
and for each sate the BACKTRACK() in line 9 can iterate
for at most k states. Given the Levenshtein distance LD, the

Fig. 8. Detection of Right turn, U-turn and K-turn by our Algorithm.

equation for computing the confidence measure of a string s
matching a regular expression R is given as:

length(s) — LD
length(s)

The above method is illustrated in Algorithm Listing 1 in
which outputs the Levenshtein distance between the given
string and the regular expression. A DFS (Depth First Search)
up to a depth of 7« means that at each iteration, we traverse
only the nodes of the automaton that lie within a depth of @
from the starting node and the DFS stops when the accepting
state is reached, which means the input string is identified as
an activity.

CM = 3)

IV. FROM STRINGS TO REGULAR EXPRESSIONS

While in many cases, the regular expressions representing
activities are simple enough to be provided manually, we
can also use offline automata learning algorithms for learning
regular patterns from positive and negative examples of strings
encoding motion characteristics.

A. Learning the regular expressions by classification of strings

Once we have formed the strings representing positive and
negative examples, we use a learning algorithm to infer a
finite state automaton representing the regular language that
accepts strings belonging to the language. For this, we use the
RPNI (Regular Positive Negative Inference) offline learning
algorithm [4] to learn the finite state automaton. This is
implemented using the libalf (Automata Learning Framework)
library, which is open-source, modular and comprehensive.
Once, we input the strings belonging to the positive and
negative classes, the library function calls upon the learning
algorithm to infer an automaton that accepts all the positive
examples and none of the negative ones. Next, the automaton
is converted to a regular expression using the JFLAP library
available online. The input strings representing motion signa-
tures can be matched against the regular expressions to detect
trajectory-based or articulated activities.

V. EXPERIMENTAL RESULTS

Fig 9 shows the ROC curves for the different activities
recognized by our activity recognizing module. We use multi-
ple binary classifiers (simple softmax classifiers) concurrently,
each producing a probability per activity. By comparing these
probabilities, we find the most likely activity. The digging ex-
amples are obtained from YouTube while the other articulated
activity examples are from the KTH dataset [8]. Examples in



False Correct Total

Positives | Detections | Expected
Left turn 8 4 5
Right Turn | 2 7 8
U-Turn 2 2 2
K-turn 1 1 1
Walking 4 16 21
Starting 0 5 6
Stopping 1 3 4
Running 0 1 1

TABLE I

DETECTION RATES USING THE STRING MATCHING APPROACH (WITHOUT
LEARNING), FOR VIRAT DATASET.
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Fig. 9. ROC curves for different activities.

these datasets are segmented to contain one activity each. For
all these activities, the best alogrithms such as [29] produce a
detection rate of 95.83% while the approach in [30] produces a
detection rate of 94%.[31] report their best result to be 92.1%
at 4.6 fps (frames per second). Our framework outperforms
these approaches by producing correct detection rates of 96%.
On a 29.97 fps video, our algorithm is able to process frames at
86 fps on an Intel Centrino machine, that is nearly three times
real time. Table I shows the results of using our framework
for trajectory based activity examples obtained from the Virat
Public Dataset [7] where the “Total Expected” column is based
on ground truth. On the other hand, the Automata Learning
Framework was able to correctly detect 67 out of 94 test
samples at 21 false positives for both trajectory and articulated
activities. We did not include u-turns and k-turns, because of
lack of examples. For the set of articulated activites, we did
statistical significance test on our results for the samples and
accepted them with a p-value of 0.03 . We evaluated them

(a) Boxing (b) Clapping (c) Digging

(d) Waving (e) Running

(g) Walking

(f) Jogging

Fig. 10. Screen shots of different activities detected by our algorithm.

on separate and equal number of samples from each class,
where applicable, as there are no separate test examples. So,
The learning framework shows promising results for turns and
is expected to perform better in cases where we have a larger
training set. Fig. 8 shows screenshots of some trajectory-based
turn detection examples. The first image is right turn where the
vehicle is travelling south-east and makes a turn towards south-
west. The second image shows a trajectory of a car travelling
north and then making a u turn and go the opposite direction
and the final image is a car that makes a K-turn to go the
opposite direction. Fig. 10 shows the results from the activity
classification module.

VI. CONCLUSION

This paper presents a rich symbolic framework based on
regular expressions for recognizing diverse types of activities
in surveillance videos. Though simple, the framework not
only provides fast algorithms for activity recognition but is
also flexible enough to admit both generative and learning-
based approaches. We plan to integrate our framework with
reasoning engines to provide inference capabilities at a higher
level of abstraction. We also plan to compare to incoporate
the Probabilistic Finite State Automata (PFA) [32] and make
comparisions with the current approach as PFAs can be learnt
from a set of strings using Expectation-Maximization.
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