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Abstract—This work presents an intention-based assistive con-
troller for allowing a robot to follow a human while moving in
the front. This task is particularly challenging in indoor envi-
ronments, as there are situations that are undecidable, namely
in junctions. We propose a novel local kinodynamic planner
which concurrently detects discrete routes and continuous motion
paths, providing path equivalence classes. Furthermore, we detail
an intention recognition algorithm to make the robot take the
user-intended turn. Our scheme is experimentally tested in a
T-Junction set-up using human subjects, and the results are
discussed.

I. INTRODUCTION

As robots become more cognitivelly advanced, their opera-
tion in human populated spaces becomes more socialy accept-
able and their relation to humans more intertwined. Human-
following is an important task in human-robot interaction,
emerging in situations where the human must be followed
by the robot in the workspace in order to assist him/her with
certain tasks. Such scenarios can be seen in hospital assistance
robots [1], telepresence robots [2] and companion robots [3],
to name some. The major research volume conisders only the
case in which the human always walks in the front of the
robot. In general however, three cases can be discerned [4];
behind the leader, side-by-side and, in front of the leader.

In the first case (’behind the leader’), the problem can be
simplified since the human intention is known a posteriori
by inspection of his/her trajectory. Cast as a control-theoretic
problem, only the human-robot relative position needs to be
known, and by retracing the human path the robot can be
made to stay behind the user. In contrast, the latter two cases
present an increasing difficulty. Specifically, in the ’side-by-
side’ scenario, the robot has to also monitor the user orienta-
tion while in the ’following from the front’ case, estimation of
the user’s intention must be incorporated into the control loop.
The difficulty is also exacerbated be the fact that undecidable
situations enter the spotlight, which require explicit user input
to avoid deadlocks.

In this paper, an intention recognition algorithm is presented
which enables the user to walk in an indoor environment while
having a robot follow him/her from the front. The algorithm
also employs a novel dynamic window local planner which

constructs path equivalence classes, expressing kinodynami-
cally feasible discrete decisions for motion. In turn, each class
represents a continuous bundle of obstacle-free feasible motion
alternatives. This allows the identification of different routes in
junctions, and provides safe locomotion by avoiding collisions.
The purpose of this control scheme is to allow an active
mobility assistance robot (Fig.1) to oversee the patient, walk
along with him/her and provide assistance either on demand
or autonomously.

Fig. 1. The MOBOT assistance robot (www.mobot-project.eu).
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where xR, yR are the robot coordinates in the world frame,
and θR its orientation. The control inputs are the linear and
angular velocities denoted by vR, ωR respectively, obeying
the bounding constraints |vR| ≤ vRmax, |ωR| ≤ ωRmax.
Furthermore, the dynamic extension of the model is consid-
ered by augmenting the equations with the linear (αv) and



angular (αω) accelerations. Bounding constraints also apply,
viz. |αv| ≤ avmax, |αω| ≤ αωmax.

II. RELATED WORK

The problem of front-following is scarcely met in the liter-
ature, with only three research papers discussing the subject.
In all three, the free-space following problem is considered
that is, following the human in a workspace which has no
obstacles. The authors in [5] use a Laser Range Finder (LRF)
in order to scan the upper body of the user (torso), which is a
more robust target for scanning than the legs. The user pose
is estimated by using a particle filter with a constant velocity
model. The controller uses the human and robot poses in order
to infer a virtual target in the general direction of the user
velocity and track it. In [4] an image/depth sensor is used
(Microsoft Kinect) in order to track the human position with
respect to the robot. Consequently, the nonholonomic human
model [6] is deployed to estimate the user’s orientation. An
Unscented Kalman Filter is also used to provide a smoother
estimation of the human linear/angular velocities and orien-
tation. The goal of the controller is to align the pose of the
human and the robot while, in the same time, putting it in
front of the human.

Lastly, data fusion from a wearable IMU sensor and an
LRF is used in [7], in order to estimate the user linear/angular
velocities and pose. The authors exponentially stabilize the
human-robot pose error using an inverse kinematics controller.
The setup is experimentally validated is various paths.

III. DYNAMIC WINDOW ARC-LINE PLANNER

The core problem of the front-following behaviour lies with
the handling of undecidable situations. A primary example
is a crossroads (Fig.2 left). In this scenario, as the robot
moves in front of the user, when it arrives at the crossroads it
detects completely disjoint and distinct routes . This presents
an undecidable situation for the robot, which must be resolved
by the human. This intention resolution must be performed
in a timely manner, as the robot risks invalidating feasible
routes. Another example is a T-Junction (Fig.2 right). In this
case the risk of collision is exacerbated by the fact that, in the
time needed to resolve the user intention when the “left” and
“right” routes are detected, the robot might be in a “limbo”
state, moving further into the junction and either making the
routes infeasible or, worse, hitting the wall.

These two examples reveal a crucial condition; the available
routes depend on the environment geometry as well as the
robot velocity. As such, the planer must take the robot dy-
namics into account. For example, in the crossroads the robot
might be moving too fast to make the “left/right” turns, and
the only feasible direction would be the “front” route.

In contrast, when moving inside a corridor the available
paths vary continuously and the planner must select the best
one, using a scoring function. The identification of undecidable
situations is the first key step for the ”front-following” be-
haviour. This undecidability must, consequently, be resolved.
Thus user-intent identification is the second key step.

Fig. 2. Example of an undecidable areas; a crossroads (left) and a T-Junction
(right).

Intuitivelly, an undecidable area is characterized by the
availability of more than one different ”routes”. These routes
can be described using the notion of path homotopy. Two
paths, starting and ending from the same points, are called
path homotopic if one can be deformed to the other in a
continuous manner, while not colliding with any obstacles
[8]. This standard definition seems to be rather restrictive
for local path planning because firstly, an ending/goal point
is not given and secondly, the path is allowed to deform
in any wild fashion hence resulting in paths which might
not satisfy the robot’s differential motion equations. If we
relax the definition and allow the two paths to have different
ending points, while simultanesouly we impose constraints
on the path characteristics e.g. bounds on the curvature, a
more general path equivalence can be considered [9]. In this
work a new simple way to produce path equivalence classes
is presented. This can be performed on-line using a modified
dynamic window approach (DWA). The advantage of the
proposed planner is that it produces geometrically concise
classes (denoted as ”path clusters” in the following), and that it
allows the construction of simple metrics which convey useful
information e.g. span, path mean and median etc.

The Dynamic Window Approach (DWA) [10] is a pop-
ular kinodynamic local planner. It searches in the input
space (v, ω) for collision-free paths. Given a velocity tuple
(vR, ωR) of the robot, paths are sampled from the window
[vR ±∆Tαvmax, ωR ±∆Tαωmax], i.e. the dynamic window
(Fig.3) , and simulated forward in time. Then the optimal one
is selected. The DWA essentially produces arcs.

For the front-following task, arcs are a rather unsuitable
candidate as we want to check for distinct ”openings” in the
workspace, not just for obstacle-free paths. We thus propose
to test arc-line paths instead, that is, arcs that are connected to
a straight line at their end. This simple modification is a more
intuitive solution for finding available directions of motions
than arcs, in indoor environments.



Fig. 3. Depiction of the Dynamic Window

A. Path Calculation

Consider the attainable curvatures for the current velocity
tuple (vR, ωR) in the dynamic window. Denote,

vmax = vR + ∆Tαvmax

vmin = vR −∆Tαvmax

ωmax = ωR + ∆Tαωmax

ωmin = ωR −∆Tαωmax

(2)

the maximum (minimum) velocities in the dynamic win-
dow.Then, the maximum and minimum curvatures are,

κmax =

{
ωmax/vmin , ωmax ≥ 0

ωmax/vmax , ωmax < 0

κmin =

{
ωmin/vmin , ωmin ≤ 0

ωmin/vmax , ωmin > 0

(3)

Now consider that all generated paths reach a distance R
from the robot, i.e. they intersect a circle of radius R. This
implies that all their terminal points lie on this circle (Fig.4).

Fig. 4. Calculation of an arc (right) and arc-line (left) path.

Let XOY be a frame aligned with the robot at O. To
calculate the arc paths, consider the right side in Fig.4. The
robot traces an arc OA of curvature κ, and assumes a heading

∆Θ. Since OB and AB are tangential segments of the same
circle, it follows that OB = AB and thus the triangle 4OAB
is isosceles. Summing up the triangle’s angles we get,

φ = ∆Θ/2 (4)

Taking the arc perpendicular at A, we find the centre K of
the circle it is part of. It is clear that its radius is 1/κ and the
subtended angle from K by the arc is ∆Θ. Since OA is the
chord of the arc, its central angle is given by,

∆Θ = 2 arcsinκR/2 (5)

and using (4),

φ = arcsinκR/2 (6)

For the calculation of the arc-line (AL) paths (Fig.4 left),
we attach a tangent straight segment at the endpoint of each
arc (point C), which is parallel to the y-axis. By inspection
of the figure, we see that AL paths satisfy ∆Θ = π/2. Using
(4) we see that all AL paths comply to φ = π/4, hence they
terminate on the 45 deg line, passing from O. The relation
between the curvature κ and the angle φ in AL paths, can be
calculated noting,

|OD| = R cosφ = |OC| cosπ/4

|OC| = 2
sinπ/4

κ

⇒ R cosφ =
1

κ
(7)

and thus,

κ =
1

R cosφ
⇐⇒ φ = arccos

1

κR
(8)

B. Clustering

The path bundle is produced by sampling the circle with a
fixed angular interval ∆φ, giving a chord R∆φ of 0.1m. The
min and max of φ are,

φmin(max) = arccos
1

κmin(max)R
(9)

Two LRFs are mounted on the robot; the first facing
backwards toward the human and the second facing forwards.
The latter is used to build a robot-centred rolling costmap
which is used to produce a 2D occupancy grid. This way,
each cell in the grid is assigned a cost (for more details see
http://wiki.ros.org/costmap 2d). The edges of each cell are set
to a length of 0.1m.

The planner constructs each path by sampling each arc
according to a fixed resolution (0.1m in our experiments).
Concurrently each generated sample is tested for collision with
obstacles in the costmap. In the case that the sample collides,
only the path up to that point is preserved (Fig.5). Each path
is attributed with the minimum cost among the cells it crosses.
If the path collides with an obstacle, the cost is a predefined
constant.

Clustering of the path bundle is performed by firstly discard-
ing all colliding paths. Following, we define two parameters



Fig. 5. Path bundle for a T-Junction. Obstacles in the costamp can be seen
in cyan. Yellow are the laser points while the AL paths are white. The frame
of the Robot is seen as thick red and green lines. Here, the radius is set to
R = 4m.

which denote the cluster separation Csep and the minimum
span Wspan of a cluster. Two paths Pi, Pj(i > j), belong to
the same cluster if i − j ≤ Csep. By checking this condition
for all successive paths, we produce cluster Ck,l, l > k, where
Pk is the first path of the cluster and Pl the last. By using
(8),(6), each path can be associated with its curvature κ and
angle φ. The cluster span Wk,l is the chord length of the angle
φl − φk ≡ ∆φk,l, and given by,

Wk,l = 2R sin
∆φk,l

2
(10)

A minimum cluster span Wspan = 0.2m is imposed to avoid
noise clusters. Smaller clusters are discarded. Each cluster is
”represented” by an ”optimal” path PC , which has the lowest
cost among the paths of that cluster. If there are sub-clusters
within the cluster with equal minimum scores, we take the last
one and evaluate the mean angle φC of the (sub)cluster angle.
Using (8)(6) we get its corresponding curvature κC , called the
cluster curvature.

C. Multiple Levels

As we can see from Fig.6, the planner produces two clusters
as it approaches the T-Junction. In that moment, the robot
has to “signal” the user that it has detected an undecidable
area and is reading his/her intention. However, the question
arises as to what to do until the intention is resolved. It is
evident that the robot must, in parallel, scan its immediate
area ahead and create feasible motion clusters for that short
period of time. To accompany this, we define two scanning
circles, called levels, with different radii Rfar and Rnear (set
to 4m and 2m resp. in our study). The near level is seen
in Fig.6, comprising a single cluster (in red). Until the robot
resolves the user intention, it switches from the far level to
the near level for motion commands. Simultaneously, it enters
into the “intention estimation” mode and tries to discern in
which far cluster the user is heading to. Upon resolution, it
discards the near level and uses again the far level for motion.

Fig. 6. Far and Near clusters for a T-Junction.

IV. INTENTION ESTIMATION

In the context of the front-following task, intention esti-
mation is referring to the selection of the user-intended far
cluster, in the presence of undecidability. To this end, consider
a reference frame rigidly attached the rear LRF, facing the
human (Fig.7), and let (xH , yH) be his/her position. Define
the human angle φH as,

φH =

{
0 , |yH | < ε

Kφsgn(yH)(|yH | − ε) , |yH | ≥ ε
(11)

where ε is a deadband and Kφ an appropriate constant.

Fig. 7. Human position in the Laser frame.

Using (11), the user essentially selects an angle on the circle
of the far level. Now consider that there are N far clusters,
Ci, (i = 1 . . . N), with respective cluster angles φCi. During
the intention estimation, the robot assigns scores Si to the
clusters, and increases them by picking the one closest to
φH based on their angle. The selected cluster has its score
incremented, by adding a vote as follows,

V =


1 ,|φCi| < α

1 + 2(|φH | − α)/(β − α) ,β > |φCi| ≥ α
3 ,|φCi| ≥ β

(12)

where α, β are angle constants. The voting mechanism in
(12) assigns a lower vote to clusters that are “ahead” than



clusters that are “on the side”. This has been selected because,
if the user wants to promote side clusters, he/she will have
to step away from his/her normal walking direction, in order
to increase yH . Such a motion is improbable to have been
performed by chance and it is most likely a deliberate user
action. Hence, when the robot detects it, the “confidence” is
high and the selected cluster is quickly promoted.

After each iteration, the robot selects the top two scoring
clusters and compares their scores. If the top score is 50%
bigger than the second one, the algorithm terminates and
outputs the top cluster. A second condition is that the clusters
must have at least a predefined number of votes (currently 10).
If these conditions aren’t satisfied after a timeout e.g. 3sec, it
picks the top cluster and exits.

V. CONTROLLER

Using the curvature κC of the selected cluster, a geometric
path is presented to the robot, which is safe by design, as
all paths comprising a cluster are non-colliding. The robot re-
ceives a motion command consisting of the velocities (vR, ωR)
described in (1). The user controls directly the linear velocity
of the robot using the following velocity function,

vR =


0 , xH > x0

k1(xH − x0) , x2 ≤ xH ≤ x0
vwalk , x1 ≤ xH ≤ x2
vRmax − k2xH , 0 ≤ xH ≤ x1

(13)

Equation (15) describes a piece-wise profile of the robot’s
linear velocity, consisting of three regions on the x-axis; the
approach region, the walking region and the collision region,
delineated by constants x0, x1 and x2. In the walking region
the robot moves with a constant linear velocity, i.e. the walking
velocity vwalk. In this region the human and the robot move in
sync. In the case that the user moves very close to the robot,
the collision region is activated, making the robot accellerate
up to the maximum velocity vRmax. On the other hand, if the
user lags behind, he/she enters the approach region, making
the robot decceleate down to a halt. This velocity controller
is based on [11]. The control of the angular velocity ωR is
performed by combining the linear velocity and the curvature
of the cluster viz.,

ωR = κCvR (14)

Thus the robot selects the available path on which to move,
while the human controls the linear velocity for traversing it.

VI. EXPERIMENTS

The intention-based front-following controller described in
the previous, has been implemented in ROS and ran from
a laptop mounted on a Pioneer P3-DX robot. Two Hokuyo
UBG-04LX-F01 laser range finders, one facing forwards and
one backwards towards the user’s legs, were also fixed on the
robot frame. The aim of the experiments was to assess the
users walking pattern with and without the robot following
them from the front. The assistive controller is compared to

a teleoperation-like approach utilizing a kinematic controller
presented in [11] by the authors. In that work, comparison was
made between the kinematic approach and the human baseline
gait with no robotic assistive behaviour. A major finding was
that the users tend to “drive” the robot to the paths they would
take when walking normally.

For the baseline experiments, seven healthy subjects were
asked to walk normally from an initial predefined position,
take a left turn at the junction and stop at a designated position.
Each subject performed two runs, thus in total 14 baseline
paths were collected. Following, eight subjects performed 2×
8 = 16 runs using the kinematic controller and 2 × 8 = 16
runs with the intention-based assistive controller. The traces
of the human and the robot are shown in Figs.8 and (9).

Fig. 8. Human traces. Kinematic(Red), Assistive(Green) and Baseline(Black)
trials. The users started from the right and progressed to the left and down.

Fig. 9. Robot traces. Kinematic(Red) and Assistive(Green) trials.

In order to perform an analysis of the various paths, the
plane was divided into a 48 × 26 grid of square cells, each
with 20cm edge. If we count the number of paths crossing
each cell, we can create a 2D histogram for each experiment.
In total we have five histograms presented in Figs.(10,11,12,13
and 14) given by,



HB(i, j) : Baseline paths
HUK(UA)(i, j) : User paths kinematic (assistive)
HRK(RA)(i, j) : Robot paths kinematic (assistive)

(15)

Fig. 10. Histogram of the Human baseline paths.

Fig. 11. Histogram of the Human kinematic paths.

Fig. 12. Histogram of the Human assistive paths.

By dividing each cell count with the total number of paths,
we get the probability of a cell being traversed by a path, viz,

T∗(i, j) = H∗(i, j)/20 (16)

Fig. 13. Histogram of the Robot kinematic paths.

Fig. 14. Histogram of the Robot assistive paths.

TABLE I
HELLINGER DISTANCE OF HUMAN-ROBOT DISTRIBUTIONS

H(PUK , PB) H(PUA, PB) H(PRK , PB) H(PRA, PB)

0.618 0.494 0.294 0.393

A large probability means that the cell is traversed by a
large number of paths. A different group of distributions can be
produced by dividing each cell with the sum of its respective
histogram, i.e.

P∗(i, j) = H∗(i, j)/
∑
i,j

H∗(i, j) (17)

These are probability density functions which encode the
probability of a user/robot being on a specific cell. To compare
the three groups, we resort to the Hellinger distance which is
a measure of statistical distance between two distributions P,
Q given by,

H(p, q) =
1√
2

∑
k

(
√
pk −

√
qk)2 (18)

The Hellinger distance ranges from zero to one, with zero
being identical distributions and one completely disjoint. The
distances between the Human-Baseline and Robot-Baseline
distributions are presented in Table I.



TABLE II
CELL COUNT OF THE DISTRIBUTIONS.

PUK PUA PRK PRA PB

count(cells) 178 134 129 93 90

rel.diff. to PB(%) 97.7 48.8 43.3 3.33 0

We see that the paths in the Human assistive case are
almost 25% closer to the paths in the Human Baseline case
than the ones in the kinematic case. This implies that when
humans use the assistive controller, they deviate less from their
natural gait. A second observation regards the robot paths. The
robot kinematic distribution has the smallest distance. This
reconfirms the finding in [11], where the user actually tend
to “drive” the robot the their own optimal path. The distance
of the robot assistive paths can be attributed to the automated
motion generation of the planner, leading to paths which do
no adhere to some native optimality condition found in human
locomotion.

Complementary to the Hellinger distance, we measure the
dispersion of the distributions using the active cell count by
counting the number of cells traced by the paths. Taking the
relative differences between the counts of the distributions and
the baseline, we can quantify the “ease” of using the kinematic
and assistive modes. If the difference is high, the users tend
to walk around trying to “drive” the robot.

From Table II we see that the count for the human kinematic
paths is double the one in the assistive case. This shows
that the intention-based controller measurably “offloads” the
cognitive burden of transferring the human intention to the
robot by providing collision avoidance, local planning and
intent recognition. Even so, the count in the human assistive
case is almost 50% higher than the baseline. An explanation
for this is that in order to show the human intention to the
robot, the human must (unnaturally) deviate from his path and
signal a turn. This apparently increases the dispersion of the
distribution. Interestingly, the robot paths in the assistive case
have a smaller dispersion than in the baseline case. This also
can be associated with the consistency of the generated paths
by the planner.

VII. CONCLUSIONS

This paper describes an intention-based assistive controller
for the front-following task for a mobility assistance robot.
The controller uses a novel kinodynamic planner which con-
currently calculates discrete routes of motion as well as
obstacle-free geometric paths. This allows the user to operate
indoors in an obstacle laden space. Experimental result reveal
that, in comparison with a direct kinematic controller, the
assistive controller enables the user to walk with a more
naturally gait. It is also shown that the intention-recognition
algorithm successfully estimates the human intent and reduces
the cognitive load of the task.
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