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Abstract—The problem of identifying nonlinear dynamic sys-
tems with one or more inputs and one output (SISO/MISO) is
considered. The properties of orthonormal basis functions (OBF)
as inputs for a nonlinear approximator are compared to the
common ARX structure which possesses both, delayed input and
output values, entering the nonlinearity. The disadvantage of
optimizing the pole in the OBF context is overcompensated by
the advantages which arise especially in the nonlinear MISO
case. The key idea of this paper is the optimization of the
OBF pole while fixing the nonlinear model structure, here
called Fixed Structure Optimization (FSO). In the SISO case
the computational effort can be decreased dramatically. For
the MISO case, the increasing complexity of the pole search is
tackled with a staggered optimization approach. The reliability
is underlined by demonstrating the low correlation between the
OBF poles for uncorrelated inputs. The combination of the
proposed repeated fixed structure optimization (FSO) with a
staggered optimization for the multivariate extension yields many
benefits compared to conventional optimization procedures.

I. INTRODUCTION

A orthonormal basis function approach is utilized in this
contribution, whereby the responses of the orthonormal filters
are used as inputs to the nonlinear approximator. It has been
shown in the linear case in [1] that the order of filter chain
can be significantly lower than the required order of the
corresponding FIR or ARX filter chain. The major drawback
of this approach is the nonlinear nonconvex optimization
problem, which has to be solved to obtain an estimate for the
filter chain pole. An thorough analysis of this problem for the
linear case can be found in [2]. Our contribution is focused
on that problem for the nonlinear case, we investigate on a
common pole search and propose a novel method called fixed
structure optimization (FSO)

While most of the dynamic model structures methods such
as NARX, nonlinear output error (NOE) depend on output
feedback, we propose orthonormal basis functions (NOBF) to
avoid model feeddback. For a general overview of existing
system identification methods, the reader is referred to [3]
and [4].

The paper is structured as follows: First, the advantages
and disadvantages of the ARX and OBF structure are com-
pared. While both approaches have often complementary but
similarly important properties in the case of one input and
one output (SISO), this changes for the multiple input case

(MISO). By dealing with multiple inputs, several additional
disadvantageous arise for the ARX structure. This motivates
the focus on OBF whose only main drawback is the required
pole determination/optimization.

In the following section, the pole optimization problem is
thoroughly discussed. By fixing the nonlinear model structure
during the optimization, we obtain a huge computational
benefit in contrast to a conventional optimization. With a
nonlinear example process, the superiority of the repeated
fixed structure optimization (FSO) is outlined.

Usually real world processes have multiple inputs (MISO).
While the NARX structure is not well suited for the MISO
case, the NOBF approach can be extended to the MISO
case easily. But for each input an individual pole has to
be optimized. A grid based search fails, if the number of
inputs and/or the resolution is high. For the linear case, the
correlation between the poles is calculated. We show that for
uncorrelated input signals, the loss function does not depend
on the interaction between the poles. For the nonlinear case,
this does no longer hold, but the resulting correlation be
expected to be small. This justifies the introduction of the
staggered optimization approach inside the repeated FSO.

In the last part an example is given, which demonstrates the
applicability of the two novel methods.

II. A GENERAL COMPARISON OF OBF AND ARX MODEL
STRUCTURES

Dynamic model structures can generally be divided in two
different categories: With and without output feedback. One
representative of a linear dynamic model structure with output
feedback is the well known AutoRegressive with eXogenous
input (ARX) structure. The dynamic behavior depends on the
delayed inputs and outputs of the system. When the sum of
orthonormal basis functions (OBF) in contrast are used for the
representation of the system, no output feedback is necessary
to approximate the actual process output. The dynamics is
represented by filtering the input. The general structure of
an NARX and NOBF model is depicted in Fig. 1. Here the
Laguerre filter chain is taken as a representative for OBFs.
The original input is filtered by the n Laguerre filters [1]
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Fig. 1. NOBF (top) and NARX (bottom) models.

In contrast to (N)ARX, a Laguerre filter chain restricts the
properties of the estimated dynamic system. The user implies,
that the process is non.- or only weakly oscillatory (the pole
of Laguerre Filter has just a real part). For an oscillatory
process, Kautz Filter (with conjugate-complex poles) can be
used [5]. Additionally, the process is assumed to be stable.
This constrains the Laguerre pole to pL ∈ [0 . . . 1]. The very
theoretic case of pL < 0 will be omitted here.

A. Linear Models

If the model ŷ is linear, the general NARX and NOBF
structure simplifies to:

ŷARX(k) =b1u(k − 1) + b2u(k − 2) + . . . + bmu(k −m)

− a1y(k − 1)− a2y(k − 2)− . . .− amy(k −m)
(2)

ŷOBF(k) =b1uL,1(k) + b2uL,2(k) + . . . + bnuL,n(k) (3)

After selecting the model order n, the parameters ai, bi can
be estimated using least squares. One drawback of the OBFs
is the determination of the pole in (1). Proposals to determine
pL will be given in Sect. III and Sect. V.

In the linear case, there are different advantages and draw-
backs for ARX and OBF.

1) ARX:
+ easy to estimate
+ possible link between parameters and first principles
- suboptimal for multiple inputs (MISO/MIMO), because

a common denominator polynomial is required

- ARX optimizes the equation (one-step prediction) error.
Usually the simulation error is the true objective and the
equation error is just used as a proxy to keep the model
linear in its parameters.

- Parameter estimation for ARX is biased for white output
disturbances favoring high frequencies

- Typically very sensitive to the correct choice of model
order m

2) OBF:
+ easy to estimate
+ optimizes simulation error (output error) which is the true

objective in nearly every case
+ easily extendible to MISO systems
+ insensitive to the filter order n
o For badly chosen pole pL the model order n has to be

chosen very large.
- no link between parameters and first principles
- pole/poles of the OBF have to be determined

A more detailed comparison of OBF and ARX properties can
be found in [2].

B. Nonlinear Models

In the nonlinear case, all of the above considerations hold
as well. Additionally, some new aspects need to be taken into
account and some of the properties above have to be weighted
very differently.
• In the nonlinear case, where the dynamic of the process

varies strongly over the input range, it is hard to deter-
mine the best pole for an NOBF.

• The above point is one reason why NARX is much more
widely used than NOBF. The dynamics of a NARX model
is determined by the estimated parameters. So NARX has
the potential to fit the dynamics in every operating point.

• NARX models can tend to run into stability problems.
While in the linear case, model stability can at least be
readily checked by calculating the poles, this is not so
easy in the nonlinear case. Although significant research
results are available for local model networks[6]. This
issue is a constant concern in industry and calls for better
solutions.

• Most nonlinear structures with output feedback (ARX,
OE, ) approximate the one-step prediction surface. There-
fore, they interpolate transfer functions. In contrast, all
nonlinear orthonormal basis function approaches (NFIR,
NOBF) interpolate signals. Interpolating transfer func-
tions can lead to very strange effects for models of order
higher than 1. This is due to the fact that interpolating
polynomials can yield unexpected roots and thus dynam-
ics [4].

• The advantages of linear regression structures like ARX
and OBF in the linear world are lost or at least diminish in
the nonlinear world. Only for certain model architectures
(like local model networks or Gaussian process models)
that heavily rely on least squares, big benefits can be
drawn from ARX or OBF. Generally, i.e., for nonlinearly



0 0.2 0.4 0.6 0.8 1
0

0.5

1

n = 7

n = 1

pole pL

N
R

M
SE

(t
es

t
da

ta
)

Fig. 2. Normalized root mean squared error (NRMSE) of the training data
for different choices of the Laguerre pole.

parameterized approximators, the computational advan-
tages compared to OE structures fade.

In summary, ARX and OBF approaches have their own,
often opposite, advantages and drawbacks. In the linear case
the overall assessment depends on the circumstances. Both
approaches are realistic for applications.

In contrast, NARX possesses many disadvantages especially
in the MISO case. In comparison, NOBF retains their benefits
from the SISO case.

III. POLE OPTIMIZATION - SISO

In comparison to ARX/NARX, the OBF/NOBF structure
has an additional hyperparameter (the pole pL of the Laguerre
filter chain). There is no closed formula, to determine pL, even
in the linear case. Thus a fast and robust pole optimization is
required.

In the following, linear and nonlinear second order pro-
cesses shall be considered.

A. Linear Case

In the linear case (poles at p = [0.8, 0.9]), the normalized
root mean squared error (NRMSE) for different OBF models
is shown in Fig. 2 for different model orders n = 1, 2, . . . , 7
and poles between 0 and 1. It is obvious, that the optimum
pole is sensitive to the filter order. For increasing values of n,
the NRMSE becomes more insensitive w.r.t. pL.

For estimating pL of a linear model several estimation
procedures exist (see [7], [8]). An adaptive pole optimization
approach is proposed in [9]. This paper focuses on the pole
optimization for nonlinear models.

B. Conventional Nonlinear Pole Search

For nonlinear models, the order n affects the number of
inputs/ dimensions of the nonlinear approximator directly. To
escape the curse of dimensionality, n has to be chosen small.
As can be seen from Fig. 2 low orders yield sharp optima
and therefore require an quite accurate pole search for a high
model quality.

For the nonlinear approximation, the well known Local
Linear Model Tree (LOLIMOT) [10] is used to partition
the input space with orthogonal splits subsequently in half.

NL1 G(q) NL2
u(k) y(k)

Fig. 3. Structure of a nonlinear Wiener-Hammerstein system.
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Fig. 4. NRMSE of the training data for different choices of the Laguerre
pole.

For each separated area, an individual local model (LM) is
estimated. To avoid overfitting, the number of local models is
determined with the Bayesian information criterion (BIC). The
BIC was chosen over the Akakike information criterion (AIC)
[11] because its penalty term is bigger and thus simpler models
are selected. This is reasonable due to the computational
demand and significant dynamic errors due to still suboptimal
pole choices.

As a demonstration example, a Wiener-Hammerstein pro-
cess is considered, see Fig. 3. The nonlinearities are formed by
an inverse tangent function and the dynamic system G(z) is a
process of second order. The system is excited by an amplitude
modulated pseudo random binary signal (APRBS) [4], to
cover the whole input space with data. With the resulting
input/output signals, the system is identified using Laguerre
filter chains with n = 2. A nonlinear model is identified for
different poles pL ∈ [0, . . . , 1] of the Laguerre filter chain.
Figure 4 demonstrates the resulting error on training data.
Obviously the global maximum is close to pL = 0.86. For
each pole, a separate local model network was trained with
LOLIMOT.

While the training of each local model network was ter-
minated after the BIC increased two times. The local model
network with the lowest BIC was chosen. Since the conver-
gence curve of the BIC depends on the data distribution,
poles which are close together can create networks with a
different number of local models. So the loss function in Fig. 4
has a non-continuous behavior, which makes it unsuitable for
gradient-based optimization techniques. Evolution- or global
approaches (e.g. Simulated Annealing, swarm-based optimiza-
tions, etc.) may find the true optimum. The main shortcomings
of theses approaches are in this context:

1) Many evaluations of the loss functions, to circumvent
to get stuck at local optima. This leads to a high
computational demand.
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Fig. 5. Flow chart of the repeated fixed structure optimization (FSO)

2) Each evaluation of the loss function requires the time
consuming training of a nonlinear model.

C. Fixed Structure Optimization in the Nonlinear Case
To accelerate the optimization procedure in Sect.III-B, the

training of the nonlinear model can be approximated following
the flow chart in Fig. 5. The FSO algorithm alternates between
two steps:

1) Create a model structure (e.g. by LOLIMOT) depending
on an initial pole.

2) Find the optimal pole pL for the fixed structure from 1).
Update the pole and repeat these two steps, until pL
converges.

This algorithm is independent of the choice of the nonlinear
approximator.

The precondition, to apply the FSO is a pole indepedent
gain of the Laguerre Filters. Otherwise the limits of the data
distribution in the input space would change with the pole. It
is obvious, that the gain of the filter outputs depend on the
chosen pole pL:

lim
z→1

(z − 1)

√
1− p2

L

z − pL

(
1− pLz

z − pL

)i−1
z

z − 1
=

√
1− p2

L

1− pL
(4)

The pole independent gain can be achieved, by normalizing
the transfer functions from Eq. 1.

K =
pL√

1− p2
L

(5)

ŨL,i(z) = KGL,i(z) · U(z) (6)

⇒ lim
z→1

(z − 1)KGL,i(z)
z

z − 1
= 1 (7)

Now the gain of each transfer function KGL,i(z) is inde-
pendent of pL.
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Fig. 6. Loss functions for different FSO and a linear model. The nonlinearity
of the process is formed by inverse tangent functions.
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IV. EXAMPLES FOR SISO SYSTEMS

For the presented Hammerstein-Wiener system, the optimal
pole shall be found using the repeated FSO. Without any
knowledge about the process, the initial pole is set to pL = 0.2
to demonstrate a bad initial condition. With the chosen order
of the filter chain n = 2 a nonlinear model is trained using
LOLIMOT. While keeping this partitioning fixed, the loss
function can be evaluated for several poles pL requiring just
several least squares estimations to update the local model
parameters. The result is the loss function shown in Fig. 6.
In the first step, the optimal pole is pL = 0.86. With this
pole, the structure of the nonlinear model is updated by a new
LOLIMOT training. The corresponding loss function in Fig.
6 demonstrates the convergence of the pole. After reaching
the user given accuracy ∆pL ≤ 0.01 the repeated FSO is
terminated in the global optimum.

With lacking knowledge about the process a linear model
can be used to estimate the dominant pole. For the example
in Fig. 6 the loss function of the linear model shows a similar
behavior to the loss functions obtained with the FSO.

However, a Hammerstein-Wiener process with a non-
monotonic nonlinearity NL2(u) = u2, the linear model is
not able to represent the process behavior (see Fig. 7). So the
initialization of pL using a linear model might not be a good
choice in general.



Since the true loss function in Fig. 4 is not smooth, the
approximative loss functions in Fig. 6 are better suited for an
gradient-based optimization. Beside this, the evaluation of the
approximative loss function is significant faster than the true
loss function.

To compare the computational effort of the repeated FSO,
to a conventional pole search (CPS), the optimization is done
with a grid-based search. With the pole resolution ∆pL,
the number of FSO repetitions R, the model training time
(MT) and the time for all local models estimation (LS), the
computational time tc(·), the overall computational time can
be summarized:

tc(CPS) =
1

∆pL
· tc(MT) (8)

tc(repeated FSO) = R · tc(MT) +
R

∆pL
· tc(LS) (9)

The computational effort for the model training is typically
much larger than the least squares estimation of the weights.
For a LOLIMOT training, the ratio tc(MT)/tc(LS)typically
is around 10100. For less efficient model structures it can be
orders of magnitude larger. Here in Fig. 6 we need 2 repetitions
of the FSO (R = 2) for a resolution of ∆pL = 0.01. By
assuming, that the average time for a model training is 100
times bigger than for the least squares estimation, the relative
time saving can be calculated to

tc(CPS)

tc(repeated FSO)
=

1
∆pL
· tc(MT )

R
∆pL
· tc(LS) + R · tc(MT )

(10)

i.e., for this example, the computational effort of a conven-
tional pole search is 25 times higher than for the repeated FSO.
The computation time of one model training depends strongly
on the chosen nonlinear model structure and the number of
samples N . So the benefit of the repeated FSO is even bigger,
if the model training is very time consuming.

V. POLE OPTIMIZATION - MISO

The computational disadvantages, which arise due to the
pole optimization in the SISO case, are extended, by increasing
the number of dynamic inputs. The computational effort of
the grid-based method would increase exponentially with the
number of inputs.

To allow many inputs in practice, this problem requires a
new method to determine the poles p

L
of each Laguerre filter

chain. Basically, the repeated FSO can be used to speed up
the optimization procedure. But the curse of dimensionality
will remain, if a grid-based search is conducted for all poles
simultaneously.

A. Loss Function for a Linear MISO System

It can be shown that the poles are slightly correlated even in
the linear case. This is analyzed for a system with 2 inputs and
1 output. Each input ui passes through a Laguerre filter chain
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Fig. 8. Contour lines of the true loss function. The arrows show the paths of
staggered optimizations.

with its individual pole pL,i generating its output contribution
ŷi.

ŷ(k, pL,1, pL,1) = ŷ1(k, pL,1) + ŷ2(k, pL,1) (11)

MSE =
1

N

N∑
k=1

(y(k)− ŷ(k, pL,1, pL,1))
2 (12)

MSE =
1

N

N∑
k=1

[
y2(k) + ŷ2

1(k, pL,1) + ŷ2
2(k, pL,1)

−2y(k)ŷ1(k, pL,1)− 2y(k)ŷ2(k, pL,1)

+2 ŷ1(k, pL,1)ŷ2(k, pL,1)︸ ︷︷ ︸
interaction between poles

 . (13)

The mean squared error (MSE), which should be minimized
with respect to the poles pL,1 and pL,2 depends on the outputs
ŷ

1
, ŷ

2
and y. In the case of 2 inputs, only one summand of the

loss function contains an interaction between the two poles. By
dropping the arguments k and pL,i, the MSE can be rewritten
as:

MSE =
1

N

(
yT y + ŷT

1
ŷ

1
+ ŷT

2
ŷ

2

− 2yT ŷ
1
− 2yT ŷ

2
+ 2ŷT

1
ŷ

2

)
(14)

The value of ŷT
1
ŷ

2
depends on the chosen poles, the estimated

parameters and of course on the choice of the input signals.
It can be shown that the outputs of linear transfer functions
are uncorrelated by applying uncorrelated inputs. So the pole
optimization for each pole can be done separately.

In the real world, the preconditions of totally uncorrelated
inputs can not be fulfilled. By violating this precondition
slightly, the separated optimization will lead to wrong results
with small errors. As mentioned above, in the linear case,
the error is insensitive to pL for an adequate choice of n.
If the quality of the determined pole is not sufficient, the
resulting poles are good initial values for a possible subsequent
nonlinear optimization.
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B. Loss Function for a Nonlinear MISO System

Usually all poles are optimized simultaneously. Then the
only alternatives are

1) local (gradient-based) search which runs into problems
with the wiggly loss function and multiple local optima

2) global grid-based search which fully underlies the curse
of dimensionality

For nearly uncorrelated inputs it is observed, that the inter-
action between the Laguerre poles are small. With this infor-
mation, a staggered optimization1 can be used to overcome it.
The idea behind staggered optimization is to only optimize
one pole, while all remaining ones are kept fixed. After
convergence of the 1-dimensional optimization, it continues
with the next pole. This is illustrated by Fig. 8, which shows
the influence of the poles on the NRMSE of the training data.

The main directions of the contour lines are orthogonal to
the pole-axes. This reveals the weak correlation between the
poles. A staggered optimization will find the global optimum
within 1 or 2 iterations.

The previously introduced repeated FSO can be extended
to the multivariate case. The optimization block in Fig. 5 has
to be replaced by the block in Fig. 9.

VI. EXAMPLE FOR A MISO SYSTEM

As an example the nonlinear process is considered as the
superposition of two Wiener-Hammerstein systems as shown
in Fig. 10. The true loss function is depicted in Fig. 8.

Similar to the SISO example, the initial poles for repeated
FSO are set to pL = [0.2 0.2]. Figure 11 demonstrates the loss
function for the fixed nonlinear model structure. By optimizing
the pole successively in pL,1-direction, and pL,2-direction, the
result is close to the global optimum after the first iteration.

By updating the nonlinear model structure with p
L

=
[0.85 0.82], the loss function in Fig. 12 is obtained. The

1In [12] it is mentioned, that the staggered optimization is a synonym for:
successive variation of the variables, relaxation, parallel axis search, univariate
or uni-variant search, one-variable-at-a-time method, axial iteration technique,
cyclic coordinate ascent method, alternating variable search

NL1,1 G1(z) NL1,2
u1(k)

+
y(k)

NL2,1 G2(z) NL2,2
u1(k)

Fig. 10. Block diagram of Wiener Hammerstein system with two inputs.
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The arrows show the paths of staggered optimizations.

optimization terminates after reaching the chosen accuracy
∆pL ≤ 0.01 at p

L
= [0.88 0.82].

Due to the smoother loss function in Fig. 11 the staggered
optimization is much more robust w.r.t. finding the global
optimum than in the original loss function case shown in
Fig. 8.

VII. CONCLUSION AND OUTLOOK

In this paper we introduced the repeated fixed structure
optimization (FSO). This innovative method fixes the structure
of the nonlinear approximators and optimizes the pole with
this structure. By repeating the FSO, we exemplified the
fast convergence for one input. This method is completely
independent of the nonlinear approximator.

Because of the low correlation between the poles, the
optimization inside the FSO can be replaced by a staggered
optimization. With this approach the complexity of the op-
timization scales roughly only linearly with the number of
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inputs. For an example system with two inputs the poles
converged after three iteration FSO.

With the two proposed methods, the computational effort
decreases dramatically especially for the MISO case.

In the future, the repeated FSO can be accelerated further
by the following two procedures:

1) Premature termination:
In early phases of the pole optimization the model
training can be carried out very roughly (e.g. few local
models or early stopping) because the model dynamics
is only very approximate.

2) Adaptive pole resolution:
Starting from a coarse discretization, the pole resolution
can be increased in latter iterations of the staggered FSO
search.
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