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Abstract—A crucial part during the generation of nonlinear
dynamic models is the determination of an appropriate model
order. Five automated order determination strategies are com-
pared. One model-based and four model-free approaches are
investigated. We evaluated the performances of all methods with
four artificial test processes and two noise levels. In an external
dynamics approach, local model networks are trained with the
determined (lagged) inputs and outputs that are found through
the automated order determination strategies. An independent
noise-free data set reveals the simulation quality of the estimated
models. Most of the filter methods are unreliable since their
performance varies strongly. Most robust is the wrapper method,
which achieves good results in general. We show that in some
cases even the model yielded through the incorporation of prior-
knowledge is outperformed by some of the models resulting from
the presented order determination methods.

I. INTRODUCTION

For most modern techniques dealing with control related
topics, e.g. model predictive control, high quality models
are mandatory. In this paper we only consider experimental
modeling (system identification), where the generation of the
models heavily relies on measured data. The derivation of
physical models as an alternative is often too complicated
or at least too time consuming. Besides the measured data,
choosing an appropriate dynamic model order is an important
necessity for the generation of well-performing models. Often
the determination of the dynamic order is done based on
expert knowledge or a trial-and-error approach. Since accuracy
demands as well as the complexity of the systems under
investigation are more and more increasing, the traditional
order determination methods reach their limits. Especially
the increasing number of potential inputs (plus their delayed
versions) requires more sophisticated, systematic investigation
schemes to fulfill the accuracy demands. This paper compares
several methods to automatically determine the dynamic order,
that are potentially able to deal with the increased accuracy
demands and the increasing system complexities.

As we are going to model nonlinear dynamic systems, the
most frequently applied way for this purpose according to
[1] is pursued. It is called external dynamics approach and
is visualized in Fig. 1. Two parts can be distinguished: The
external filter bank and the nonlinear static approximator. In
this paper the filters are considered as simple time delays q−1

and for the nonlinear static approximator local model networks

(LMN) are used. The order of the nonlinear dynamic model
is determined by the number of delay blocks contained in
the external filter bank. In this respect, order determination is
equivalent to finding the most relevant inputs for the nonlinear
static approximator and input selection methods can be applied
to tackle this problem. In the following the inputs for the
nonlinear static approximator are named net inputs, since they
are the inputs to a LMN. It should be clear from now on,
that both physical delayed inputs and delayed outputs are
contained in the net inputs. Besides the model-based method
presented here, there are several other possibilities, e.g. [2] and
[3]. However, the used approach here offers special properties
explained in detail in Sec. II-A. The aim of all methods
that will be compared, is to find a necessary minimum of
these net inputs, specifying the order of the nonlinear model.
Reducing the number of net inputs to a necessary minimum
yields several advantages, e.g. a higher density of data in
the input space, fewer required parameters for the estimated
model and an increased interpretability through a more concise
description.

The methods for determination of the model order can
generally be divided into two main groups: The model-based
and the model-free methods. Model-based schemes can further
be divided into wrapper and embedded methods according to
[4]. Wrappers use a training algorithm as a black box and wrap
the dynamic order determination around it. The evaluation
criterion is directly related to the achieved model performance.
In [5] the Akaike information criterion (AIC) is proposed,
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Fig. 1. External dynamics approach: nonlinear static approximator and
external filter bank



but the root-mean squared error (RMSE) on the training or
a validation data set can also be used. Embedded methods
utilize model- or training-algorithm-specific properties to find
good net input subsets, but do not have to rely on the achieved
model performance. Model-free schemes are also called filter
methods [4] and are often based on correlation, similarity or
distance measures between the input and output variables [6].

Here we are going to compare four model-free and one
model-based methods for dynamic order determination pur-
poses. The following four mode-free approaches are con-
sidered: The Lipschitz Quotient, the False Nearest Neighbor
(FNN), The Gamma Test and the Delta Test [7], [8], [9], [10].
A brief overview is given in Sect. II-B. For a more detailed
summarization and thorough discussion of these approaches
readers are referred to [11]. The model-based approach is
proposed in [12] and is a mixture of a wrapper and an
embedded method. It is able to exploit one special property
of LMNs, i.e. the distinction between two types of (net)
input variables: (i) scheduling or operating-point variables and
(ii) local model or submodel variables. In a fuzzy system
context type (i) variables describe the rule premise space and
type (ii) variables describe the rule consequents space [1]. Note
that both types of variables can be dynamic in nature but typ-
ically scheduling or operating variables are chosen statically
or with very simple dynamics. This allows for much easier
modeling and strongly weakens the curse of dimensionality
[13]. Clearly, for these more advanced strategies a model-free
approach is not sufficient.

II. MODEL ORDER DETERMINATION METHODS

In contrast to a static model, a dynamic discrete-time NARX
model depends on time delayed inputs and outputs. In this
paper the focus lies on Single-Input Single-Output (SISO)
systems. So let’s assume some nonlinear dynamic function:

y(k) = f(ϕ(k)) , (1)

ϕ(k) = [y(k − n1), y(k − n2), . . . , y(k − nno), . . .

u(k −m1), u(k −m2), . . . , u(k −mni)] .
(2)

Here y(k) denotes the physical output and u(k) is the physical
input of the nonlinear process at time instant k. The symbols
nno and mni represent the possible maximum number of
delays and therefore order for output and input respectively.
The vector ϕ contains all delayed inputs and outputs or net
inputs, respectively. An extension to Multiple-Input Multiple-
Output (MIMO) systems is straightforward.

Order determination not only means the selection of ni
and no but also the selection of the net inputs. In the
following some aspects are discussed, that are related to all
order determination methods presented in this paper. With
an increasing number of possible net inputs d, the number
of potential subsets increases to 2d − 1. Due to the high
computational costs, it is prohibitive to test all possible net
input subsets. Therefore a lot of suboptimal search strategies
have been developed, that try to find a reasonably good subset
even if the best subset is not found [4]. The search procedure

has a higher level strategy compared to the subset evaluation
(Fig. 2).
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Fig. 2. Schematic representation of the linkage between search strategy and
subset evaluation

Besides the argument of being feasible, the suboptimal
search strategies are less prone to overfitting, especially when
dealing with small sample sizes as mentioned in [6].

For all investigations in this paper, we used a backward
elimination (also known as sequential pruning), that is slightly
adjusted in order to ensure physically more reasonable results.

Backward elimination (BE) starts with all possible net
inputs and prunes one of them in each iteration. The pruned
net input is the one, that improves some evaluation criterion
the most or decreases it the least. Usually the selection of the
net input to be pruned considers all entities left in ϕ. Through
our slight adjustment, the BE is restricted in the choice of net
inputs that can be pruned. It is only allowed to choose the least
or most delayed version of each physical quantity contained
in ϕ. For example, if the minimum delay for a specific input
is u(k − 1) and the maximum delay is u(k − 4), the pruning
of u(k− 2) and u(k− 3) is prohibited. In that way we assure
consecutive delays for each physical quantity contained in
ϕ at any time. Of course each physical input or output is
treated independently, such that there might be other minimum
and/or maximum delays for each physical quantity. It results
in less flexibility, but therefore should favor physically more
reasonable results and less possibilities to overfit. We will call
this search strategy consecutive BE.

A. Wrapper Method

For the model-based dynamic order determination local
model networks (LMNs) [14] are used. As already mentioned
in Sect. I, LMNs possess the possibility to distinguish be-
tween operating-point variables and variables describing the
behavior of the local models. If local linear models are used,
this distinction allows to divide all (net) inputs into linearly
and nonlinearly influencing variables [14], [15]. In a fuzzy
interpretation the rule premise space (IF part) is spanned by the
nonlinearly influencing variables, the rule consequents space
(THEN part) is spanned by the linearly influencing variables.
The variables contained in the rule premises are denoted by
z, all variables in the rule consequents are denoted by x.
Therefore the variables in z define an operating point (or
region) for which a (local) linear model is valid. The division
of the z-input space in several regions/operating points is
called partitioning. Net inputs ϕ can now be assigned to the x-
and/or z-input space. The output of the LMN can be calculated
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as sum of M local models ŷi, weighted with their validity
function Φi:

ŷ =

M∑
i=1

ŷi(x)Φi(z) with (3)

x ⊆ ϕ and z ⊆ ϕ .
For the generation of LMNs the hierarchical local model tree
(HILOMOT) algorithm [16] is used. It is able to cope with
the separation between the x- and z-input space. Additionally,
it is able to partition the z-input space in an axes-oblique
way, which makes this modeling approach very suitable for
high-dimensional input spaces. All local models are chosen
to be of affine type in this paper. The validity functions are
generated by sigmoid splitting functions that are linked in a
hierarchical, multiplicative way, see [16] for more details. The
procedure of the HILOMOT algorithm can be explained with
the help of Fig. 3. It is an incremental algorithm constructing
a tree of local affine models. Starting with a global affine
model, in each iteration an additional local affine model is
generated. The local model with the worst local error measure
(gray areas in Fig. 3) is split into two submodels, such that
the spatial resolution is adjusted in an adaptive way. The
linear parameters of the new submodels are estimated locally
by a weighted least squares method. This is computationally
extremely cheap and introduces a regularization effect which
increases the robustness against overfitting, as stated in [1].
The axes-oblique partitioning is achieved by optimizing the
current split direction and position in each iteration. Only
the new split is optimized, all already existing splits are kept
unchanged. The initial split direction for the optimization is
either one of the orthogonal splits or the direction of the parent
split (dotted lines in Fig. 3).

Figure 4 illustrates the procedure for the model order
determination. A search strategy determines which of the net
inputs contained in ϕ should be used as variables in the x-
and z-input space. Then HILOMOT is used to train the LMN
and its performance is evaluated by the model’s simulation
error on validation data. Note that the model complexity is
determined with the help of a corrected version of Akaike’s
information criterion (AICc) [17] and not on the validation
data. Therefore the validation data is only used once for
each net input subset (and not several times for the model
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Fig. 4. Flow chart of the LMN based order determination method

complexity determination). The used search strategy is the
consecutive BE as explained in Sect. II. Because of the
possibility to assign each net input contained in ϕ to any of
the two input spaces x and z, different selection strategies can
be defined. The so-called linked x-z selection arises, if the net
inputs in x and z are linked (x = z). In fact, such a selection
strategy does not exploit the separability of the x- and z-input
space and therefore can be pursued using any model structure.
The separated x-z selection exploits the separability-property
fully, i.e. arbitrary subsets of the net inputs can be assigned to
the x-input space independently from the net inputs assigned
to the z-input space. And of course selections can be defined,
where only one of the two input spaces is investigated while
the inputs in the other input space are held fixed (x selection
and z selection).

B. Filter Methods

While the wrapper methods depend on a (nonlinear) model
of the process, filter methods are model-free. Without any
model structure, only geometrical properties of the evaluated
data set are available. The reviewed filter methods are based
on the relationship between distances in the output to distances
in the input space. To illustrate the differences, the methods
are visualized in the Distance Space [11]. For this illustration,
the Hammerstein system shown in Fig. 5 is used.

f(u) =
atan(5u)

tan(5)
G(q) =

0.1

1 � 0.9q�1

u(k) y(k)

Fig. 5. Structure of Hammerstein system

The process is excited by an amplitude modulated pseudo
random binary signal (APRBS) [1] to cover the whole input
space. The resulting input and output signal is shown in Fig. 6.

1) Lipschitz Quotient: For a Lipschitz bounded function the
following expression holds:

L ≥

∣∣∣y(ϕ
i
)− y(ϕ

j
)
∣∣∣∣∣∣ϕ

i
− ϕ

j

∣∣∣ = qi,j . (4)

Because of (4) the value of qi,j lies between zero and L. So the
largest values of qi,j are close to L. The value L represents
the maximum derivative of the sampled function. With this
information an index is defined based on the p largest qi,j ,



0 100 200 300 400 500
-1

-0.5

0

0.5

1

u(k)

y(k)

k

u
(k

)/
y
(k

)

Fig. 6. Input and output signal of the nonlinear process with N = 500
samples

which is an estimation of the bounding value L. With p ≈
0.01N and n being the number of inputs contained in ϕ.

q(ϕ) =
√
n

(
p∏

l=1

qi,j(l)

) 1
p

(5)

High values for q(ϕ) are unusual, so this indicates a
derivative which violates the bounding value L. These huge
q(ϕ) only occur at small changes in ϕ while the corresponding
output y shows a relatively big discrepancy. This leads to the
assumption that an important input of the system is missing.

Figure 7a and 8a demonstrate the Lipschitz Quotient in
the Distance Space. The Lipschitz Quotient is represented
by the points, which form the biggest slopes in conjunction
with the origin of the coordinate system. For a subset with a
missing input, the Lipschitz quotient q(ϕ) is very big (Fig. 7a),
compared to the correct input space (Fig. 8a).

2) False Nearest Neighbor: This approach classifies data
point-pairs in true or false nearest neighbors (TNN/ FNN).
The classification is done by the distance d(ϕ

i
) of an input

data point to its nearest neighbor and the corresponding output
distance d(y(ϕ

i
)). The classification threshold R is chosen by

the user and depends on the investigated problem.

d(ϕ
i
)

d(y(ϕ
i
))
≤ R (6)

If the expression in (6) is true the neighbors are true neighbors,
otherwise they are false. The explanation is similar to the Lips-
chitz Quotient: If a reaction of the output has no corresponding
action in the input, the fraction of the distances (in (6)) is much
bigger than R. So this point-pair is a false nearest neighbor.

The classification of FNN is demonstrated in the Distance
Space in Fig. 7b and Fig. 8b. The wrong subset contains many
false nearest neighbors (red circles in Fig. 7b) while the correct
subset in Fig. 8b has only true nearest neighbors (green dots).
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Fig. 7. Distance Space for an incorrect input space with a missing input. The
subset consists only of the input y(k − 1).
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Fig. 8. Distance Space for the correct input space. The subset consist the
necessary inputs u(k − 1) and y(k − 1).

3) Gamma Test: The Gamma Test uses the k-nearest-
neighbors (kNN) in the input space to estimate the variance
of the process, with 1 < k < p and p ≈ 10. For each k the
averaged squared distance between ϕ

i
and its k-th NN ϕ

i,kNN
is calculated:

δ(k) =
1

N

N∑
i=1

(
ϕ
i
− ϕ

i,kNN

)2
. (7)

For each distance between ϕ
i

and ϕ
i,kNN

, the squared output
distance is calculated and averaged to get γ(k) (note that
y(ϕ

i,kNN
) and y(ϕ

i
) are not necessarily kNN in the output

space, although ϕ
i

and ϕ
i,kNN

are kNN in the input space).

γ(k) =
1

2 ·N
N∑
i=1

(
y(ϕ

i
)− y(ϕ

i,kNN
)
)2

(8)



The values of γ and δ are used to fit a regression line (On
the one hand, the vertical intercept of this line represents
the variance of the process, on the other hand, the intercept
can be interpreted as the squared distance of the 0th Nearest
Neighbor, which is a good measure for the variance.).

While in this paper it is not the task to determine the
variance of the process, the Gamma Test can be used to
evaluate the subset. This is possible, because too small subsets
act like the true subset with high variance (see Fig. 7 and
Fig. 8). The scaled regression line, obtained by the δ and γ
values are visualized in Fig. 7c and Fig. 8c. The estimated
variance for the correct subset is close to zero (Fig. 8c),
while the variance for the wrong subset is significantly higher
(Fig. 7c).

4) Delta Test: The Delta Test (a simplification of the
Gamma Test [9]) uses in contrast to the Gamma Test just
the first-Nearest-Neighbor (NN) for this approach. Similar to
FNN the distance in the output, is calculated by the nearest
neighbor in the input space. In contrast to FNN the aggregated
distance of the output is used to evaluate the chosen subset.
Note that δ is the same value like γ(1) out of the Gamma Test
(8):

δ =
1

2 ·N
N∑
i=1

(
y(ϕ

i
)− y(ϕ

i,NN
)
)2

. (9)

Similar to the Gamma Test, the estimated variance of the
Delta Test is much smaller for the correct subset (Fig. 8c),
compared to the wrong subset (Fig. 7c).

III. PROCESSES

To test the model-based and model-free dynamic order
determination methods explained in Sect. II, four synthetic
processes are used. These are taken from [1] and incorporate a
Hammerstein system, a Wiener system, a nonlinear differential
equation and a dynamic nonlinearity, that is not separable
into static and dynamic blocks. They cover different types of
nonlinear behavior, such that strengths and weaknesses of the
methods should be revealed. The sampling time for all systems
is assumed to be T0 = 1 s. The nonlinear difference equations
are given below together with the recommended intervals of
the input signals.

• Hammerstein system (HS):

y(k) =0.01876 arctan[u(k − 1)] + · · ·
0.01746 arctan[u(k − 2)] + · · ·
1.7826y(k − 1)− 0.8187y(k − 2) . (10)

Input interval u ∈ [−3, 3].
• Wiener system (WS):

y(k) = arctan[0.01867u(k − 1) + · · ·
0.01746u(k − 2) + 1.7826 tan(y(k − 1))− · · ·
0.8187 tan(y(k − 2))] . (11)

Input interval u ∈ [−3, 3].

• nonlinear differential equation (NDE):

y(k) =− 0.07289[u(k − 1)− 0.2y2(k − 1)] + · · ·
0.09394[u(k − 2)− 0.2y2(k − 2)] + · · ·
1.68364y(k − 1)− 0.70469y(k − 2) . (12)

Input interval u ∈ [−1, 1].
• Dynamic nonlinearity (DN):

y(k) =0.133u(k − 1)− 0.0667u(k − 2) + · · ·
1.5y(k − 1)− 0.7y(k − 2) + · · ·
u(k)[0.1y(k − 1)− 0.2y(k − 2)] . (13)

Input interval u ∈ [−1.5, 0.5].

The input ranges are chosen such that a sufficiently strong
nonlinear behavior is created.

We created two data sets, one for the order determination
and one for the evaluation of the achieved model performances
(test data). An APRBS with 2560 samples serves as input
for all processes. The simulated process outputs are disturbed
by white Gaussian noise with with two different signal-to-
noise ratios, which are 50 dB (low noise) and 30 dB (moderate
noise). The test data is not disturbed by any noise. Input signals
for the creation of the data sets are shown in Figs. 9 and 10.
Note that in Fig. 9 only the first half of the order determination
data set is shown, such that the characteristics of the signal can
be recognized more easily. Here the input signals are scaled
between zero and one, but for the generation of the process
outputs the input intervals mentioned above were used.
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Fig. 9. First half of the order determination data set
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Fig. 10. Test input signal



IV. RESULTS

All order determination methods are compared according
to their performance on training and test data. Therefore
LMNs with the net inputs chosen by the corresponding order
determination strategy are trained. In addition the computation
time required to obtain the results is compared. Furthermore
we show the chosen net inputs selected by the different
methods for two of the four test processes. First in Sect. IV-A
and Sect. IV-B the selection of a specific net input subset for
the model-based and the model-free methods are explained.
Then in Sect. IV-C the results of all methods are compared.

A. Wrapper Results

To generate results that are comparable to the filter methods,
the separability of LMNs is not exploited here. This means,
that we used a linked x-z selection as described in Sect. II-A.
The model-based order determination, yields a curve of the
evaluation criterion values over the number of net inputs.
Here, we split the whole APRBS data set meant for the order
determination into two halves. The first half (Fig. 9) serves as
training data, that is exclusively used to determine all model
parameters and to select an appropriate model complexity (i.e.
the number of local models). The second half of the data set is
used for the calculation of the evaluation criterion during the
HILOMOT wrapper approach. It is named validation data set
in the following, but only used for performance comparisons
of different net input subsets, not for the determination of
any model complexity. The RMSE value on this validation
data quantifies the quality of a specific net input subset,
and therefore guides the consecutive BE. For an automatic
net input subset selection the one standard error (SE) rule
according to [18] has been used. Therefore the SE is calculated
for the model with the lowest RMSE value (RMSEmin) on
validation data. Then the simplest model fulfilling the equation

RMSEi ≤ RMSEmin + SE (14)

is chosen. Here simplest refers to the model with the least
number of net inputs. RMSEi denotes the achieved model
performance using net input subset i. Because all curves of the
RMSE values on validation data are similar for the investigated
processes, only the progression of DN is shown in Fig. 11. The
chosen number of net inputs is highlighted with a circle and
the delayed inputs and outputs are mentioned directly above
it. Typically, the evaluation criterion changes not significantly
as long as the number of net inputs is not too low. The one
SE rule helps in finding the necessary minimum of net inputs
that should be used for the model generation.

B. Filter-Based Results

In contrast to the wrapper method, the evaluation criterion
of the filter methods is no error value. Therefor the above-
mentioned SE-rule cannot applied here. Rather the subset with
the best rating is selected.

Figure 12 highlights the progression of the Delta Test
approach for DN. By applying a backward elimination, the
figure needs to be read from the right side and ends at the
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Fig. 11. RMSE on validation data vs. number of net inputs for the DN process

smallest subset on the left. Initially, the evaluation criterion is
small due to the fact, that all necessary inputs are included. By
repeatedly removing the worst input, the evaluation criterion
changes only slightly until an important input is excluded.
The large almost constant part of the curve makes it difficult
to determine the best subset, since all evaluation criteria are
comparable.
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Fig. 12. Delta Test value vs. number of net inputs for the DN process and a
logarithmic SNR of 50 dB

This progression of the evaluation criterion in Fig. 12 is
typical for all filter methods and is almost independent of the
chosen system. So the determination of the best subset with
filter methods is a difficult task in general.

C. Comparison - Wrapper vs. Filter

In Fig. 13 the required computation time for the different
methods is illustrated. Since the wrapper method is based
on a nonlinear model training, the computational effort is
considerably higher compared to all filter methods.

For a LMN the computational complexity depends on the
number of estimated local models. For a low noise level,
the dataset contains more information compared to a strongly
disturbed dataset. Thus a training with less noise yields more
complex models represented by more local models. In contrast
to the wrapper method, the computational time for the filter
methods are similar for both noise levels.

Fig. 13 illustrates a comparison between the computation
time of the wrapper and the filter approaches. It represents



the low noise and thus worst-case scenario for the wrapper
method.

The complexity of both methods can be analyzed by fo-
cusing on the evaluation of a single subset, because the BE
procedure is identical for both approaches:

HILOMOT complexity: O
(
2MSn2N

)
(15)

Filter method complexity: O
(
N2
)
. (16)

The complexity of the HILOMOT algorithm roughly depends
on the number of samples N , the number of local models
M , the number of net inputs n and the number of nonlinear
split optimization iterations S. The complexity assessment
considers the nested least squares estimation of the local affine
models within the nonlinear split optimization.

The distance calculation of the filter methods depends only
on the number of samples. It is quadratic because point-to-
point distances are required. By increasing N , the discrepancy
between wrapper and filter complexity decreases.

In order to compare the performance of the wrapper and the
filter methods, the chosen subsets are used to train local model
networks. The simulation RMSE on test data is visualized in
Fig. 14 for a high noise level and Fig. 15 for a low noise
level on the training data. For comparison reasons also the
true subset, denoted as prior knowledge, was used to train a
nonlinear model. The resulting test error is depicted together
with the wrapper and filter methods.

Most of the filter methods are unreliable since their perfor-
mances varies strongly. For example the Delta Test performs
well for the DN but significantly worse on all remaining
systems in the low noise case. The worse performance of
the FNN approach is due to its sensitivity with respect to
user-chosen threshold. Fine tuning would allow significant
improvements. Surprisingly, the Lipschitz approach performs
best many times. Note that the Gamma Test chooses a subset
which led to an unstable model for WS, thus the error is not
visualized in Fig. 14.

By comparing the two different noise levels in Fig. 15 and
Fig. 14 the overall simulation test error increases with higher
disturbances. While the Lipschitz approach performs best three
times in the low noise case, the wrapper method is best three
times for a higher noise level.
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Fig. 13. Comparison of the required computation time of all order determi-
nation methods in seconds for logarithmic SNR of 50 dB
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Fig. 14. Comparison of achieved model qualities on test data in case of a
logarithmic SNR of 50 dB

It is noticeable, that the true subset often does not perform
best. This is most likely because the best performing subsets
contain more inputs than the true process (see Table I and
Table II). So a more complex model with additional inputs is
able to describe the process better, than to the true subset.
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Fig. 15. Comparison of achieved model qualities on test data in case of a
logarithmic SNR of 30 dB

While the overall performance varies strongly for different
systems, only the (NDE) and the (WS) results for the low noise
case will be considered in the following. For most approaches
these two systems are the best and worst case.

In NARX configuration, the model quality is very sensitive
with respect to the chosen inputs. A wrong model order and/or
dead time could lead to bad model accuracy and even unstable
models. For the proposed artificial nonlinear systems, it is
possible to compare the chosen delays with the delays of the
system difference equation. In Table I and Table II the correct
net inputs are marked with a green cell color. The chosen
delays of the approaches are denoted with different symbols.
The poor performance of the FNN approach and the Delta test
may be caused by the selection of delayed outputs only for
both systems. Without any delayed input, the process can not
be simulated by the model.

For the NDE system, the Lipschitz Quotient and Gamma
Test select additional inputs besides the correct net inputs.
The gained model complexity schieved through the Lipschitz
Quotient and Gamma Test selection causes also a good rep-
resentation of the nonlinear process. Thus the simulation test
error is similar to the true subset.



TABLE I
CHOSEN NET INPUTS BY THE HILOMOT WRAPPER (♥), LIPSCHITZ (L),

FNN (/), GAMMA TEST (Γ) AND THE DELTA TEST (∆) FOR THE NDE
SYSTEM

k k − 1 k − 2 k − 3 k − 4 k − 5

u Γ
♥ L

Γ
♥ L

Γ
♥ ♥

y
L /
Γ ∆

♥ L /
Γ ∆

♥ L
Γ

♥ L
Γ

L
Γ

TABLE II
CHOSEN NET INPUTS BY THE HILOMOT WRAPPER (♥), LIPSCHITZ (L),
FNN (/), GAMMA TEST (Γ) AND THE DELTA TEST (∆) FOR THE WIENER

SYSTEM

k k − 1 k − 2 k − 3 k − 4 k − 5

u L Γ ♥ L Γ Γ

y
♥ L /

∆
♥ L /
∆ Γ

L Γ L Γ L Γ

Modeling the WS is a more challenging task. The wrapper
method determines the correct subset with just a missing input
delay. Similarly to the NDE system, the Lipschitz Quotient and
Gamma Test determine a too complex model order. While the
subset determined with the the Lipschitz Quotient performs
best, the Gamma Test identifies a subset, which lead to an
unstable model. This shows, that additional net inputs can
harm or improve the model performance.

Most of the proposed filter methods are unreliable for
an automatic model order determination. Only the Lipschitz
quotient identifies acceptable subsets in low noise scenarios.
For a realistic SNR of 30 dB the wrapper method outperforms
the filter methods in most cases.

V. CONCLUSION AND OUTLOOK

Model order determination is an important task in non-
linear system identification, because wrong model order can
influence the quality of the estimated model significantly. In
this paper one model-based and four model-free approaches
for model order determination were compared based on the
achieved model qualities on four artificial test processes
with two noise levels. By using a backward elimination the
initial subsets were pruned until only one lagged net input
remained and then the most appropriate subset was selected
for modeling. Most of the filter methods are unreliable since
their performance varies strongly. Most robust is the wrapper
method which achieves good results in general.

One big disadvantage of the filter methods is the possibility
of determination of unstable subsets, although the process is
stable. This undesirable behavior is significantly less likely
unlikely for the wrapper method.

A surprising result is the worse performance of the true
subset compared to more complex subsets. The gained model
quality of the too complex subsets is confusing and needs a

thorough investigation in future work. Obviously, the addi-
tional net inputs were beneficial for the modeling task.

The subspaces x and z are linked in the presented wrapper
method. Individual input spaces (x 6= z) can achieve improved
results. The HS, NDE and DN can be separated in linear and
nonlinear parts. For DN the inputs u(k − 1) and u(k − 2)
are linear while the inputs u(k), y(k − 1) and y(k − 2) are
nonlinear. So a separation

x = [u(k), u(k − 1), u(k − 2), y(k − 1), y(k − 2)] (17)
z = [u(k), y(k − 1), y(k − 2)] (18)

would be promising. By applying a separated x− z selection,
the local models are functions of x while the input space
partitioning is a function of z. In future work, this will be
investigated.
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