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Abstract—Integration of renewable energy sources (solar, wind,
hydro, etc.) in microgrid presents a great challenge to ensure
power network stability and reliability due to their intermittent
nature. Grid-level battery energy storage system (BESS) has been
recognized as one of the promising solutions to meet this challenge
as well as to participate in power system economic operation. In
this paper, near optimal operation/allocation of BESS has been
investigated with the consideration of lifetime characteristics.
The problem is formulated as a single objective optimization
to maximize the total system revenue by considering the lifetime
characteristics of lead-acid batteries. Adaptive dynamic program-
ming (ADP) is investigated to solve optimal control policy for
time-dependent and finite-horizon BESS problems. A classical
dynamic programming approach has also been studied to validate
the proposed approach. Simulation results discuss the impact of
battery lifetime characteristics on the total system revenue. The
results show that the ADP can optimize the system operation
under different scenarios to maximize the total system revenue.

Index Terms—Near optimal control, battery energy stor-
age system (BESS), microgrid, adaptive dynamic programming
(ADP), operation optimization, state of charge (SOC), lifetime
characteristics.

I. INTRODUCTION

Participation of renewable energy sources (RESs) in mi-

crogrid is increasing day by day as an environmentally and

economically beneficial solution for the future. For this rea-

son, the power grid network experiences great challenges

in transmission and distribution to meet load demand with

unpredictable seasonal or daily deviations [1]. Battery en-

ergy storage system (BESS) is received as an underpinning

technology to overcome these challenges [2]. Therefore, in

recent years, the problem of finding optimal control policies

for BESS is becoming increasingly important. Most of the time

these sequential decision problems are modeled as stochastic

dynamic programs, however, when state space become large,

conventional techniques like backward dynamic programming,

policy iteration, value iteration, etc. become computation-

ally intractable [3]. This situation is often summarized by

the phrase “curse of dimensionality” [4]. Adaptive dynamic

programming (ADP) is a technique to solve these problems

approximately very close to the optimal point using signifi-

cantly fewer computational resources. In this paper, the ADP

is investigated to solve economic optimization problem for a

grid-connected microgrid system with the full consideration

of the lifetime characteristics of lead-acid batteries.

An optimal energy management problem for energy stor-

age with wind power generation is investigated under risk

consideration and transaction costs of trading energy with

the power grid in [5]. However, the effect of battery lifetime

characteristics on the system revenue has not been addressed

in [5]. In [6], a multi-objective operation optimization method

is studied for standalone microgrid where a heuristic method

non-dominated sorting genetic algorithm has been investi-

gated. In [7], a method for sizing energy storage devices

in microgrids is presented. The authors have studied matrix

real-coded genetic algorithm to find the optimal capacities of

energy storage with an objective function formulated to min-

imize the operation costs of the targeted microgrid. However,

the effect of power fluctuation of renewable energy and the

impact of lifetime characteristics of battery on the system

revenue have not been considered. In [8], The authors have

been reported that the effective cumulative lifetime of the lead-

acid battery is associated with its operating state of charge

(SOC) values. Optimal sizing and economic analysis of the

BESS have discussed in different existing literature [9], [10],

[11]. However, the optimal allocation of BESS considering

lifetime characteristics has not been studied in those works.

The finite-horizon energy storage problem is investigated and

a rule-based dispatch solution is obtained in [12], yet the effect

of electricity prices and the uncertainty in wind energy have

not been taken into account. In [13], the storage sizing problem

is studied by using deterministic price and variability in the

wind energy supply. The role of BESS to reduce the total

cost of the system without considering the impact of battery

lifetime characteristics is discussed in [14]. A real-time BESS

management algorithm for peak demand shaving in small

energy communities with grid-connected photovoltaic system

is proposed in [15]. In [16], a particle swarm optimization

technique is investigated for the optimal operation of energy

storage system in microgrid where controllable loads have



used as load demand.

To find an approach that can provide optimal decision

and control to address real-life problems with nonlinearities

has been one of the hot and difficult topics in the control

engineering field [17]. In recent years, ADP is considered as a

powerful tool for solving optimal control of nonlinear systems

and attracts a lot of researcher’s attention [18]. The ADP has

shown promising performances on various applications in the

power system community. In [19], [20], [21], [22], the ADP

has been implemented as an intelligent controller. In [23]-

[24], The ADP has been studied for power system stability

control analysis. In [25], an ADP based technique has been

studied for analysing the economic operation of BESS that

has formulated as an optimization problem. In [26], the ADP

has been investigated for the optimal control and allocation

problem of a multidimensional energy storage system.

Motivated by the above mentioned references, we have

investigated ADP for the optimal operation of BESS with

the presence of wind energy, load demand and power grid.

The impact of battery lifetime characteristics are also con-

sidered. The contribution of this paper is threefold, (a) the

near optimal operation/allocation problem of BESS for grid-

connected microgrid system is addressed considering battery

lifetime characteristics, (b) the proposed ADP algorithm is

evaluated for stochastic datasets and compared with traditional

dynamic programming (DP), (c) real-time price data is used

with different battery SOC to investigate the effect of lead-acid

battery lifetime characteristics on the total system revenue.

The rest of this paper is organized as follows. The problem

formulation is presented in Section II. Section III presents

both DP and ADP approaches. Simulation setup and results

analysis are carried out in Section IV. Finally, the conclusions

are drawn in Section V.

II. PROBLEM FORMULATION

A. Grid-Connected Microgrid Model and Revenue Calcula-
tion

The optimal energy storage operation and allocation prob-

lem for grid-connected microgrid system are formulated as a

Markov decision process (MDP). The problem of allocating

energy to a single grid-level storage device is considered over

a finite horizon of time as τ = {0, Δt, 2Δt,..., T −Δt, T −1},

where Δt = 1 is the time step and T = 25. The benchmark

problem is illustrated in Figure 1.

In the model, the microgrid is designed with an energy

storage device that is connected with a wind farm and load

demand as well as the main power grid. The actions are

representing the flow of electricity that may flow directly from

the wind farm to the storage device or it may be used to satisfy

the load demand. Energy from storage may be sold to the grid

at any given time and electricity from the grid may be bought

to replenish the energy in storage or to satisfy the demand

[26].

The following is a list of parameters used throughout the

paper to characterize the storage device as,

• Bc: The energy capacity of the storage device, in MWh.
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Fig. 1. The power system model diagram for grid-connected microgrid, where
the solid lines represent the transferred energy among components.

• φc: The charging efficiency of the device.

• φd: The discharging efficiency of the device.

• ψc: The maximum charging rates of the device, in

MWh/Δt.
• ψd: The maximum discharging rates of the device, in

MWh/Δt.

The state variable of the system at any time instance t can

be written as,

St = (Bt,Wt, Pt, Dt). (1)

• Bt: The amount of energy in the storage device, in

MWh.

• Wt: The net amount of wind energy available, in MWh.

• Pt: The price of electricity in the power market, in

$/MWh.

• Dt: The aggregate energy demand, in MWh.

To be abbreviated, let Et= (Wt,Pt,Dt) and St = (Bt,Et),

where Et is the vector which contains exogenous information

and Et is independent of Bt. Next if the exogenous informa-

tion, et+1, to be the change in Et as,

Et+1 = Et + et+1. (2)

where, between time t and t + 1, et+1 = (wt+1,pt+1,dt+1);

The exogenous information et+1 is independent of St and at.

• wt+1: The change in the renewable energy.

• pt+1: The change in the grid electricity price.

• dt+1: The change in the load demand.

At any point of time t, the decision problem is that, while

anticipating the future value of storage, the energy from the

following three sources must need to be combined in order to

fully satisfy the demand:

• The energy currently in storage, constrained by ψc, ψd,

and Bt is represented by a decision abdt .

• The available wind energy, constrained by Et is repre-

sented by a decision awd
t .

• The energy from the grid, at a grid price of Pt is

represented by a decision agdt .



Additional allocation decisions are abgt , the amount of

storage energy to sell to the grid at price Pt; awb
t , amount

of wind energy to transfer to the energy storage; and agbt ,

the amount of energy to buy from the grid and store. These

allocation decisions are summarized by the six-dimensional,

nonnegative decision vector as,

at = (awd
t , agdt , abdt , awb

t , agbt , abgt )
τ ≥ 0, at ∈ χt (3)

where, t ∈ τ , χt represents feasible action space.

And the constraints are as follows:

awd
t + φdabdt + agdt = Dt. (4)

abdt + abgt ≤ Bt. (5)

awb
t + agbt ≤ Bc −Bt, (6)

awb
t + awd

t ≤ Wt. (7)

awb
t + agbt ≤ ψc. (8)

abdt + abgt ≤ ψd. (9)

The equation (4) is for fully satisfying the demand; (5) and

(6) are storage capacity constraints; (7) represents that the

maximum amount of energy used from wind is bounded by

Wt; and finally, (8) and (9) constrain the decisions to within

the storage transfer rates.

Let η=(0, 0, -1, φc, φc, -φd) be a vector containing the flow

coefficients for a decision at with respect to the storage device.

Then, the transition function can be written as,

Bt+1 = Bt + atη
T . (10)

The contribution function R(St, at) is the revenue of the

system from being in the state St and making the decision at
at time t as,

R(St, at) = Pt(Dt + φdabgt − agbt − agdt ). (11)

B. Energy Storage Life Loss Cost

The life loss level of batteries can be measured by using

the effective cumulative Ah throughput as [6],

Lloss =
Ac

Atotal
. (12)

where, Lloss is the life loss of batteries that depends on both

state variable (St) and decision vector (at), Ac is the effective

cumulative Ah throughput in a certain period of time. Atotal

is the total cumulative Ah throughput in life cycle. A lead-

acid battery size of QAh will deliver 390Q effective Ah over

its lifetime [8].

Based on the manufacturers’ data, it is recommended that,

the battery should operate within a certain range of state of

charge (SOC) as,

SOCmin ≤ SOC ≤ SOCmax (13)

where, SOCmin is the SOC lower limit and SOCmax is the

SOC upper limit.

The operational strategy of the system for controlling energy

storage life loss cost is illustrated in Figure 2. According to

Figure 2, if battery SOC is less than the SOCmin then energy

is brought from the power grid to fulfill the demand as well as

to charge the battery with subject to equations (4) to (9). Again

if battery SOC is greater than the set-up SOC (SOCstp) then

the energy transferred from the battery to demand and to grid

subject to equations (4) to (9).
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Fig. 2. Schematic diagram of the energy storage system operation strategy.

The effective cumulative Ah throughput Ac depends on the

operating SOC and the actual Ah throughput A
′
c. It can be

expressed as,

Ac = λsocA
′
c. (14)

where λsoc is the effective weighting factor. In this paper

SOCminis set to 0.5 and when SOC is greater than 0.5, the

effective weighting factor is approximately linear with SOC,

which can be expressed as,

λsoc = m ∗ SOC + n. (15)

In the equation, m and n are the two empirical parameters

and their values can be determined from Figure 3.

The actual Ah throughput A
′
c is the sum of total energy

discharge from the battery at any given time ’t’ as,

A
′
c = abdt + abgt (16)

Figure 3 shows the relation between the operating SOC
values and the effective cumulative lifetime for lead-acid

battery. For instance, when battery SOC is 0.5, removing 1
Ah from the battery is equivalent to removing 1.3 Ah from

the total cumulative lifetime. However, when battery SOC is

0.5, removing 1 Ah from the battery will result in only 0.55
Ah being removed from the total cumulative lifetime. This

relation shows that the lead-acid batteries should be operated

at high SOC to increase their lifetime.



Fig. 3. Relationship between effective weighting factor and the SOC of lead-
acid battery.

Finally, the life loss cost Cbl for a certain duration can be

written as,

Cbl = LlossIinit−bat. (17)

where, Iinit−bat is the initial investment cost of batteries which

is assumed as $30, 000.

C. Objective Function

In this paper, the main objective is to maximize the total

profit over time with the consideration of battery life loss cost.

Both equation (11) and (17) are used to obtain the net revenue

of the system at time t as,

Rnet(St, at) = max
at∈χt

[R(St, at)− Cbl]. (18)

The goal is to maximize the total system revenue as well

as to minimize the battery life loss cost. The optimal control

policy of ADP is used to select an action that will maximize

the system revenue and minimize battery life loss cost. The

total system revenue function over a finite horizon of time can

be expressed as,

V = max
at∈χt

T−1∑

t=0

Rnet(St, at) (19)

The life loss cost depends on the SOC level of the battery.

To minimize the battery life loss cost, the SOC of the battery

needs to set up as high as possible.

III. PROPOSED ADP APPROACH

A. Dynamic Programming Approach

In terms of revenue, the optimal solution of stochastic

problems can be obtained for problems that have denumerable

and relatively small state (St), decision (χt) and outcome

spaces (Wt). In these case, Bellman’s optimality equation can

be expressed as,

V ∗
t (St) = max

at∈χt

[Rnet(St, at) +

|St|∑

s′=1

Pt(s
′ |St, at)V

∗
t+Δt(s

′
)],

(20)

where, Pt(s
′ |St, at) is the conditional transition probability of

going from state St to state s
′

for the decision at, and where

V ∗
T+Δt = 0. After solving (20), the model can be simulated

as a MDP by following the optimal policy, π∗, that is defined

by the optimal value functions (V ∗
t )tετ .

The MDP can be simulated for a given sample path ω by

solving the decision as,

(21)

Xπ
t (St(ω)) = arg max

at∈χt

[Rnet(St(ω), at)

+

|St(ω)|∑

s′=1

Pt(s
′ |St(ω), at)υ],

where, υ = V ∗
t+Δt(s

′ |St(ω), at) and St+1(ω) =
SM (St(ω), X

π
t (St(ω)),Wt+1(ω)).

For stochastic transition from St to s
′
, a statistical estimate

of the value of the optimal policy can be calculated as,

V =
1

K

K∑

k=1

∑

tετ

Rnet(St(ω
k), Xπ

t (St(ω
k))). (22)

where, K = 256 different sample paths, {ω1, ...., ωK}.

The effective cumulative Ah throughput in a certain pe-

riod of time Ac is simulated for K different sample paths,

{ω1, ...., ωK} and then a statistical estimate of battery life loss

is obtained as,

L̄loss =
1
K

∑K
k=1

∑
tετ Ac(ω

k)

Atotal
. (23)

Then, the battery life loss cost is calculated using equation

(17).

B. Proposed Adaptive Dynamic Programming Approach

The revenue that is obtained at time t can be expressed as

Bellman’s optimality equation by using the available informa-

tion of contribution/ revenue function in section II as,

V ∗
t (St) = max

at∈χt

[Rnet(St, at) + E(V ∗
t+1(St+1)|St)]. (24)

where St+1 depends on both states (St) and at. Moreover, the

boundary conditions are R∗
T (ST ) = 0 and t ≤ T .

It is often troublesome to deal with an expectation operator

due to the high dimension of the state space. Here, post-

decision formulation of Bellman’s equation is used to over-

come this problem as,

V ∗
t (St) = max

at∈χt

[Rnet(St, at) + V a
t (S

a
t )]. (25)

where, the expectation operator E(V ∗
t+1(St+1|St) is replaced

by the post-decision value function V a
t (S

a
t ). The post-decision

state Sa
t is the state instantly after the current decision at is

made, but before the arrival of any new information [3].

For calculating battery life loss, the actual Ah throughput

A
′
c is obtained from the status of the state variable Bt

in equation 1 for each period of time. During simulation,

battery SOC is kept in a certain range and the effective



weighting factor is determined from Fig. Then the battery life

is calculated as,

Lloss =
1
I

∑I
i=1

∑
tετ Ac

Atotal
. (26)

where, i is the number of iterations and I is the maximum

number of iterations. Then equation (17) is used to get the

battery life loss cost.

In this paper, ADP is presented as a version of approximate

value iteration (AVI). The main advantage of ADP is the rate

of convergence [27]. By taking advantage of AVI, ADP can

solve optimal benchmark problems within a relatively small

number of iterations.

IV. SIMULATION SETUP AND RESULTS ANALYSIS

A. Simulation Setup

In this section, the numerical simulation results are shown

for maximizing net system revenue. The optimal benchmark

problem is presented for stochastic time-dependent problems

for single energy storage system in the presence of exogenous

information such as wind, prices, and demand. The objective

function is validated for several stochastic benchmark prob-

lems to test the sensitivity of the ADP algorithm to the BESS

parameters in the allocation of storage energy. The system is

also tested by setting different battery SOC level to analyze

how battery SOC affects the net system revenue. The system

is also validated for real-time market price. The lead acid

battery parameters are presented in Table I.

TABLE I
BATTERY PARAMETERS

Battery Lead-Acid
Type 2V/1000 Ah

Capacity 30 MWh
Cycle Life 1000 @ 50% DOD

Charging and Discharging Efficiencies (φc and φd) 80%

Charging and Discharging Rates (ψc and ψd) 8 MWh/Δt

The other major parameters like maximum and minimum

values of wind energy, load demand, and grid price are

summarized in Table II.

TABLE II
THE SYSTEM PARAMETERS

Name Wind Energy Load Demand Grid Price
(MWh) (MWh) ($/MWh)

Maximum value 7 7 70
Minimum value 1 1 30

The stochastic load demand is assumed as that in [28],

Dt+1 = min{max{Dt +ΦD
t+1, Dmin}, Dmax} (27)

where, ΦD
t+1 is pseudonormally N(0, 22) discretized over

{0,±1,±2}, in order to model the seasonality that often

remains in observed energy demand. And, the load demand

Dt is assumed as,

Dt = �3− 4sin(2π(t+ 1)/T )� (28)

where, �.� represents the floor function.

The first-order Markov chain is investigated to model the

stochastic wind power supply and wW
t i.i.d random variables

that can be either uniformly or pseudonormally distributed as,

Wt+1 = min{max{Wt + wt+1,Wmin},Wmax} (29)

For the grid price process Pt, three types of stochastic

processes are tested, they are 1st-order Markov chain, 1st-

order Markov chain plus jump, and sinusoidal. Similar to

wind process, pPt random variables can be either uniformly

or pseudonormally distributed as,

Pt+1 = min{max{Pt + pt+1, Pmin}, Pmax} (30)

Simulation results are presented in following subsections.

All the simulations are conducted in MATLAB 2014a envi-

ronment.

B. Stochastic Experiment Study

The complex stochastic benchmark problems for validating

the system are presented in Table III. In Table III, for wind

energy and grid price, two different probability distribution

functions are used where U and N functions are defined

as uniform and pseudonormal distribution respectively. These

two probability distribution functions are acted as a noise

to make the system stochastic [26]. For all test problems,

SOCstp is kept the same as 0.5. The statistical estimate

of dynamic programming is treated as optimal value of the

system and compared with the proposed ADP. The percentage

of optimality of the proposed algorithm is calculated as,

% of optimality =
V 1000

V
× 100% (31)

where, the objective value given by the algorithm after 1000

iterations, V 1000, is compared to the statistically estimated

optimal value given by DP, V in equation (22).

TABLE III
STOCHASTIC TEST PROBLEMS

No. W.E. Price Process pPt
1 U(−1, 1) 1stMC + Jump N(0, 5.02)
2 U(−1, 1) 1stMC + Jump N(0, 1.02)
3 N(0, 1.02) 1stMC + Jump N(0, 5.02)
4 N(0, 3.02) 1stMC + Jump N(0, 2.52)
5 N(0, 0.52) 1st−MC N(0, 1.02)
6 N(0, 1.02) 1st−MC N(0, 1.02)
7 N(0, 0.52) 1st−MC N(0, 5.02)
8 U(−1, 1) Sinusoidal N(0, 25.02)
9 N(0, 0.52) Sinusoidal N(0, 25.02)
10 N(0, 1.02) Sinusoidal N(0, 25.02)

The stochastic benchmark problems in Table III are used

to compare our results with DP. The results are shown in

Table IV. For example, in test problem 4 from Table III,

the pseudonormal probability distribution is used for both

stochastic wind energy and grid price. According to Table

IV, the net total system revenue for problem 4 is found as

$ 3793.37 where the optimal value is obtained from DP as $

3855.44 and then the percentage of optimality is calculated as

98.39 % which is very promising. The other results are also



showed that the ADP can obtain at least 98% of optimality

for the stochastic case study that proves that the ADP can

be a powerful tool of solving optimal policies for stochastic

environments.
TABLE IV

RESULTS FOR STOCHASTIC TEST PROBLEMS.

No. R Cbl Rnet Optimal Value % of opt
($) ($) ($) ($) (%)

1 4191.16 277.67 3913.49 3973.49 98.49 %
2 4188.36 302.78 3885.58 3916.52 99.21 %
3 3987.98 377.49 3610.49 3624.63 99.61 %
4 4192.31 398.94 3793.37 3855.44 98.39 %
5 4211.03 412.29 3798.74 3804.83 99.84 %
6 4038.44 321.68 3716.76 3761.52 98.81 %
7 4169.87 372.29 3797.58 3832.07 99.10 %
8 4218.64 414.06 3804.58 3842.23 99.02 %
9 4029.72 318.53 3711.19 3731.34 99.46 %

10 4174.53 376.34 3798.19 3814.21 99.58 %

C. Stochastic Experiment Study with Different Battery SOC
Setup

The stochastic test problem No. 4 of Table III is used

for more analysis to see the effect of Battery SOC on

the total system revenue. The results are presented in Table

V. The experiment is conducted for four different SOCstp

where the SOCstp is varied form 0.55 to 0.63. According

to the Table V, the higher and lower system revenues are

obtained at 0.55 and 0.63 respectively. The other results show

that higher SOCstp of the battery may cause lower revenue

of the system. However, the life loss cost of the battery

decreases with the increase of battery SOC. As battery life

loss cost is proportional to battery lifetime, sacrificing a small

amount of revenue may increase battery lifetime as well as

the consistency of the system.
In this experiment study, the performance of the proposed

ADP approach is also validated for different SOCstp and the

results show that the solution of ADP is very close to the

optimal solution of DP. The percentage of optimality results

are presented in Table V.

TABLE V
PERCENTAGE OF OPTIMALITY FOR STOCHASTIC PROBLEM 4 WITH

DIFFERENT SOCstp .

No. SOCstp R Cbl Rnet OV % of opt.
($) ($) ($) ($) (%)

1 0.55 4058.12 316.92 3741.20 3793.55 98.62%
2 0.58 3971.08 265.31 3705.77 3736.79 99.17%
3 0.60 3906.57 237.48 3669.09 3695.69 99.28%
4 0.63 3806.40 202.73 3603.67 3645.96 98.84%

D. Experiment Study with Real-time pricing
For further analysis, real-time market price is used where

the wind energy output is obtained using 1st order Markov

chain. For real-time market price, the price data of April 1,

2016 is used [29]. The wind energy output, load demand and

grid price are presented in Figure 4. The wind energy output

signal is obtained using the stochastic test problem 6. Like

Table V, battery SOC analysis is also conducted with this

setup. The results are summarized in Table VI.
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Fig. 4. Available wind energy, load demand and grid price for April 1, 2016.

TABLE VI
RESULTS OF THE TOTAL REVENUE CALCULATION FOR REAL-TIME

PRICING.

No. SOCstp R Cbl Rnet

($) ($) ($)
1 0.55 2249.81 234.03 2015.78
2 0.60 2198.20 218.62 1979.58
3 0.63 2163.11 210.23 1952.88
4 0.65 2138.67 204.95 1933.72

In Table VI, the results are obtained for four different

SOCstp where the values are 0.55, 0.60, 0.63 and 0.65
respectively. According to the results, it is clear that the system

revenue has an inversely proportional relationship with battery

SOC. Higher SOCstp of the battery can provide batteries a

better condition to effectively reduce the battery life loss as

well as increase the battery lifetime. The system operation

profile for problem no. 2 of Table VI is presented in Figure 5

where SOCstp is set to 0.6. The three different colors green,

blue, and red represent the amount of energy transferring from

battery to grid, battery to load demand and grid to battery

respectively. The wind energy is dedicated to fulfill the load

demand and after fulfilling the demand, the rest of the energy

goes to charge the battery if needed. The grid energy is also

available to supply the energy to the system when needed.

The SOC status of the battery is shown in Figure 6. From

Figure 6, it is clear that whenever battery SOC goes below

the SOCmin level, the control policy of ADP charge the

battery from the grid up to the operator defined SOCstp level.

In general case, the system has the tendency to discharge
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Fig. 5. System operation profile under the operation strategy of No.2 from
Table VI.
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Fig. 6. Battery SOC changing over time under the operation strategy of No.2
from Table VI.

the battery at its maximum discharging rate to maximize the

system revenue. However, when battery SOC is reached at

equal or lower state of SOCstp, the system is stopped selling

energy to the grid to keep the battery SOC close to SOCmin

to maintain the healthy operation of battery. In some critical

situations like time period 14, the load demand, the available

wind energy and the battery SOC were 4 MWh, 1 MWh and

0.53 respectively. In this situation, the control policy has no

way to fulfill the demand without compromising the healthy

operation of BESS. In this case, the system has transferred

energy from the BESS to fulfill the load demand and stopped

selling energy to the grid. When the system has more than

enough energy after fulfilling the demand, that storage energy

is used to sell to the grid to get the revenue. However, if

the storage does not have enough energy to get charged from

the wind energy, the system buys that energy from the grid to

keep battery SOC above the defined level as well as to reduce

battery life loss cost.

V. CONCLUSION

In this paper, near optimal operation of energy storage

system is discussed with the presence of wind energy, load

demand and power grid by considering lifetime characteristics.

The problem is formulated as a MDP, and the near optimal

policy is simulated by proposed ADP. To verify the perfor-

mance of the proposed algorithm, DP is used to statistically

estimate the optimal value of the total system revenue and

compared with the proposed ADP approach. The proposed

ADP approach successfully approximated the solution that

was very close to the optimal solution of DP. Simulation

studies have been carried out for three cases: ten different

stochastic test problems were investigated and validated with

DP, one stochastic test problem is used by varying battery

SOCstp to see the effect of battery SOC on the total system

revenue and for further analysis real-time pricing is also used.

The simulation results show that ADP is a powerful tool

for the power system optimization problem that can provide

sequential optimal decision and control to address optimal

operation of BESS.

In future work, the proposed ADP can be compared with

the other existing approaches to investigate the performance

of the algorithm for power system optimization problems. An-

other interesting direction is to investigate the proposed ADP

approach for different real-time BESSs for the comparative

study.
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