
The Graph Matching Optimization Methodology for
Thin Object Recognition in Pick and Place Tasks

Pierre Willaume∗†‡§, Pierre Parrend∗†§, Etienne Gancel‡
and Aline Deruyver∗§

∗ICube Laboratory, Université de Strasbourg, France
4 Rue Blaise Pascal, 67081 Strasbourg, France
†ECAM Strasbourg-Europe, Schiltigheim, France

2 Rue de Madrid, 67300 Schiltigheim
‡Hager Group, Obernai, France

132 Boulevard de l’Europe, 67215 Obernai
§Complex System Digital Campus (UNESCO Unitwin) http://unitwin-cs.org

pierre.willaume@etu.unistra.fr

Abstract—Bin-picking emerges as a major interest in the
industry. The aim is to replace current ‘pick and place’ systems,
where one must place mechanical components in dedicated
distribution devices such as bowl feeders for picking them up
with a robot arm. A large number of image processing methods
are available for recognizing these components. For instance,
the stereovision approach provides fine results by comparing
several images of the objects taken from different angles. How-
ever, when several types of components are available or for
thin components, the identification remains a delicate task. We
propose the Graph Matching Optimization methodology, which
uses graph comparison with evolutionary algorithms between
stereoscopic images and a model, in order to identify thin pieces
in a constrained time frame. First, we extract characteristic
component information by binarization and skeletonization of the
images. Then, we retrieve the position of the objects in a 3 three-
dimensional space through an evolutionary algorithm derived
from Harmony Search Optimisation (HSO). Lastly, we extract
and validate optimal parameter ranges for which the devised
algorithm shows a high efficiency for representative component
positions of randomly arranged thin objects.

I. INTRODUCTION

A topic of research for many years, ‘pick and place’ still
generates a great interest especially in the industrialization
domain [1]. It should enable robot arms to grasp one or several
randomly placed objects and put them at a desired location.
Many machines exist for simplifying the process, but currently
no method permits to grasp any kind of components placed
randomly in a given environment in three dimensions, ie. to
support actual bin-picking. For example, bowl feeder requires
a different device for each kind of objects, which makes
the process expensive when assembling several components.
Another method consists in taking the objects on a conveyor
belt, but this system is cumbersome because the objects need
to be preset on the conveyor. One of the current methods
for recognizing and locating objects randomly arranged on
top of each other is comparing the image of one or several
cameras with a model of the object. The principal difficulty
is the pick part because the system need to recognize and
locate the pattern of the objects thanks to input images in

Fig. 1. Randomly placed objects

order to calculate the position in the space of the object
(output). This system saves space, is cheaper and is adaptable
to various object types. However, it requires a costly image
pre-processing in order to recover the exact three dimensional
position of the objects which can be hidden by others. As
shown in figure 1, the aim is to recognize and locate a part of
the desired object in order to pick it up. However, the objects
can be entangled and do not necessarily stands out on the
picture.

The purpose of this paper is to propose an algorithm for
detecting randomly arranged thin objects and to optimize the
time using an evolutionary algorithm. First, binarization of
the image is performed on two stereoscopic images in order
to highlight the target objects. Second, in order to highlight
the curve of the components, a thinning algorithm is applied
to the binary image. Third, the search of junction points
and extremum point by graph theory is applied. Finally, an
evolutionary algorithm of the Harmony Search family is de-
fined for optimizing point matching between both images, and
evaluated. This method allows to retrieve randomly arranged
objects without a greedy pretreatment. Calibrated cameras
allow to identify the position in the 3D space of the desired
object and to calculate the length of the object.



This paper is organized as follows: Section II details the
existing state-of-the-art of ‘pick and place’ methodologies.
Section III presents Evolutionary Algorithms and introduces
the Harmony Search algorithm family. Section IV presents
the Graph Matching Optimization methodology. Section V
describes experimental setup and results. Section VI discusses
the advantages and the limitations of the proposed method.
Section VII concludes this work.

II. IMAGE PROCESSING IN BIN-PICKING

Bin-picking is a method of choice for recovering disorga-
nized objects [1] and continues to be the subject of significant
research breakthroughs, for efficient storing of information
[2] or for better discrimination of the component form using
structure descriptors [3]. Different scientific fields such as
vision, control technologies, information reduction [4] are
required to support this process. The performance of the
algorithms is usually calculated according to different criteria
such as the setup time, which corresponds to the time to build
the model, or the detection time, for actual location of the
objects, according to the structure of the target components.
The identification of an object having a particular structure
requires a comparison model. Such a model can be represented
by a CAD file, by an image, or by a set of descriptors or
characteristics.

A. Detecting objects using key points

The Scale-Invariant Feature Transform (SIFT) method sup-
ports the extraction of objects in images [5] and can be
leveraged for real-time location of these objects. It then looks
for key points in the component images, and compare them
with the different key points of the reference model to find
similarities [6], as shown on figure 2. The key points are
thus gathered using clustering in order to find the objects.
Alternative solutions use derivation of this method such as
Speeded Up Robust Features (SURF) [7] or PCA-SIFT [8] to
improve computation time and the algorithm capability to find
object with distortions. They allow to retrieve common graphic
features that stand out, such as marking. The advantage of
this approach is the flexibility to find hidden objects, but
unfortunately it does not find thin objects because the key
points do not stand out.

B. Detecting objects using feature extraction

Feature extraction enables to classify objects based on learnt
characteristics of the images Kumar [9]. The process starts
by converting the pixels into greyscale and then transforming
the image into binary image. Edge detection is performed
in order to highlight the objects shape. In order to preserve
high value pixels, a double thresholding is performed. Edge
tracking is also performed with hysteresis and followed by
filling the dilated image. A blob analysis ends the algorithm,
which allows to retrieve the components with a high contrast.
However, and as in SIFT, the system is not suitable for the
detection of thin objects because the threshold would not stand
out the object to take.

Fig. 2. Sift Algorithm

C. Detecting objects using geometric models

Reference models are typically available in industrial envi-
ronments as 3D CAO models. Such models are thus logically
a standard reference for ‘pick and place’ tasks [10]. The 3D
model of the object is generated for several orientations in
order to retrieve the position of the object in the scene. The
generated positions are classified according to the character-
istics of the dominant visible faces of the object. This data
is classified into an interpretation tree in order to optimize
the search time, for instance using relationships between the
neighbours. It is then compared to a set of CAD-model tem-
plates for retrieving the matching shapes and performing object
identification. Recognition of the orientation and position of
a 3D part is done using one [11] or several cameras, and a
set of CAD files used for generating a hierarchical model of
the object structure. These methods prove their efficiency in a
large number of applications and are still used by companies.
The advantage of the system is to have an easy setup which
only requires a CAD file and a calibrated camera. However,
the generation of the view of the CAD file in the preprocessing
step is time-consuming because the system has to save a set
of possible positions of the model.

Efficiency can be greatly improved by not using full images
of CAD files as reference models, but abstracted models.
Graph representation of object structure enable efficient pro-
cessing, storage, and pre-treatment of the component image.
We therefore propose to apply the graph matching approach
to bin-picking for introducing a radical breakthrough in the
performance of the object recognition process.

III. EVOLUTIONARY ALGORITHMS

A. Principles

Evolutionary algorithms [12] aim at creating an autonomous
intelligence and to adapt its behaviour according to the circum-
stances [13]. It is inspired by natural selection, first exposed
by Darwin [14]. These algorithms use metaphorical concepts
inspired by natural evolution. It describes an environment
where individuals:

1) Evolve
2) Survive
3) Reproduce

This metaphor implies an environment (ie. problem) where
individuals (ie. candidate solutions) evolve until they build a
satisfactory solution. A fitness threshold represents candidate’s
adaptation to the environment.

Evolutionary Algorithms [15] have been used successfully
in different domains like system optimization or machine



learning. Their global advantage is that there is a simple
conceptualization of the evolutionary process by the equation:

x[t+ 1] = s(v(x[t])) (1)

where x[t] is the population at time t, v is the random variation
operator and s is the selection operator. It is interesting to
mix different algorithms in order to improve the quality of
solutions. The limitations are the lack of guarantee of finding
the optimum solution, the expensive computing cost and the
usual need for an expensive setting.

All types of Evolutionary Algorithms [16] entail several
specific phases:

• Step 1: Randomly Initialize the Population
• Step 2: Evaluate all individuals from the population
• Step 3: Choose the best individuals from population to

generate the next generation
• Step 4: Check termination criteria. Either the program

stops or it continues to the step 2.

B. Harmony Search

Harmony Search (HS) [17] is a heuristic algorithm inspired
by music whose aim is to find the best solution among value
generated by an improvisation-like process. In the analogy,
a solution is expressed as a harmony, and the value as the
note played by the musicians. Its advantages are to be quick,
easy to implement and with a fast convergence to quickly find
a solution. These advantages are important in the industrial
world. The results obtained by the Harmony search algorithm
[18] applied to various optimisation problems makes it in any
case a serious candidate for obtaining robust and efficient
solutions. The algorithm 1 presents the structure of Harmony
Search and is separated in five phases which are:

• Step 1: Formulate the problem and set the parameters
• Step 2: Randomly initialize the population
• Step 3: Generate a new solution
• Step 4: Generate the next generation
• Step 5: Check Stopping Criterion
1) Step 1: Formulate the problem and set the parameters:

The Harmony Search algorithm [19] begins with problem for-
mulation. It allows to define parameters such as the elements
of satisfaction (fitness function) and time execution. To execute
the algorithm, one has to set following parameters:

• Harmony Memory Size (HMS[1-X]) : Number of solu-
tions handled simultaneously in the algorithm

• Harmony Memory Considering Rate (HMCR[0-1]) : Rate
at which the algorithm picks one value randomly from the
Harmony Memory

• Pitch Adjusting Rate (PAR[0-1]) : Rate at which the al-
gorithm tweaks the value originally picked from memory

2) Step 2: Randomly initialize the population: It consists
on randomly generated solutions. The number of solutions
generated depends on the Harmony Memory Size (HMS). An
example of six solutions is presented on Table I where each
solution is scored and saved in the Harmony Memory HM.

TABLE I
RANDOMLY INITIALIZE THE POPULATION

Number HM Score

1 Solution 1 10
2 Solution 2 2
3 Solution 3 53
4 Solution 4 21
5 Solution 5 77
6 Solution 6 73

TABLE II
GENERATE A NEW SOLUTION

Solution Score

S{X1,...Xij} 17

TABLE III
GENERATE THE NEXT GENERATION

Number HM Score

1 Solution 1 10
2 Solution 2 2
3 Solution 3 53
4 Solution 4 21
5 Solution 5 77
6 Solution 6 73

5 Solution 5 17

3) Step 3: Generate a new solution: In this part, and
as shown on table II, a new solution is improvised. Each
elements of the solution Xij can be improved either randomly
or thanks to the Harmony Memory (HM). A random value
is generated and is compared with the parameter Harmony
Memory Considering Rate (HMCR: 0 ≤ HMCR ≤ 1) in
order to determine whether the value is selected randomly or
among the elements of the Harmony Memory (HM). If the
value is selected among the Harmony Memory (HM), another
random value is compared with the parameter named Pitch
Adjusting Rate (PAR: 0 ≤ PAR ≤ 1) in order to determine
whether the value is mutated by selecting a value close (called
neighbour) to that selected. The final result is a set of values
which corresponds to a new solution.

4) Step 4: Generate the next generation: If the solution is
better than the worst solution among the population, replace
the element by the new one. As shown in table III, the fifth
element in the Harmony Memory (HM) has the worst score
with 77. This component is replaced by the new one which
has a score inferior of 17.

5) Step 5: Check Stopping Criterion: Represented as
stop alg() on the algorithm 1, if one of the stopping criteria is
matched (number of iterations, solution found), the algorithm
returns the best solution among the element stored in the
Harmony Memory. Otherwise the algorithm goes back to the
third step.



Algorithm 1 Standard Harmony Search algorithm
Require: HMS ∈ N+, population Size

HMCR ∈ [0,1), Rate for choosing HM value
PAR ∈ [0,1), Rate for choosing neighbour value

Ensure: s ∈ S, S set of possible solutions
#INITIALIZATION#
HM ← {s0, s1, ..., sHMS−1}
for stop alg() 6= True do

#CREATE A NEW ELEMENT#
snew = IMPROVISATION(HM)
sworst ← si ∈ HM |f(si) < f(sj)∀sj ∈ HM, sj 6= si
#MEMORY UPDATE#
if f(snew) < f(sworst) then

REMOVE sworst from HM
REMOVE sworst to HM

end if
end for
s← si ∈ HM |f(si) > f(sj)∀sj ∈ HM, sj 6= si
return s

C. Variants of the Method

Different way for choosing parameter (HMS, HMCR,
PAR...) values has been proposed. Moreover, some meth-
ods have been proposed [20] [21] [22] for improving the
results. An overview [23] of the proposed algorithms has
been realised. A very important proposition has been done
by Mahdavi [24] which propose to include a dynamic Pitch
Adjusting Rate (PAR) by the equations:

PAR(gen) = PARmin+
(PARmax− PARmin)

NI
∗ gn

(2)
bw(gn) = bwmax.e

(c∗gn) (3)

c =
ln(Bwmin

Bwmax )

NI
(4)

Where :
• PARmin/PARmax are the minimum and maximum

Pitch Adjusting Rate (PAR)
• NI is the number of solutions
• gn is the number of generation
• Bwmin/Bwmax are the minimum and maximum band-

width
This method allows to find the optimum solution more

quickly because the parameter PAR dynamically varies ac-
cording to the number of iterations. Wang and Juang have
proposed [25] another solution which replaces and updates
the parameters PAR and bw (distance bandwidth) according
to the maximal and the minimal values in HM . The equations
are:

triali + [max(HM i)− triali]× ran[0, 1) (5)

triali − [triali −min(HM i)]× ran[0, 1) (6)

Where:
• ran[0, 1) ⇐ random number ∈ [0, 1)
• min(HM i) ⇐ lowest values of the ith variable in

Harmony Memory (HM)
• max(HM i) ⇐ highest values of the ith variable in

Harmony Memory (HM)
• trial ⇐ selected pitch from Harmony Memory (HM)
Thanks to this method, the search of solution is faster

because the parameters bw and PAR are increasing and
decreasing according to the worst and the best candidates of
the population.

IV. THE GRAPH MATCHING OPTIMIZATION
METHODOLOGY

This paper proposes an approach based on 3D graph match-
ing using a Harmony Search algorithm in order to find an
object from a set of randomly placed overlapping mechanical
pieces. Graphs are extracted from the skeletons of objects
in the stereo images of the scene and matched with the
characteristic graph of the object model. They are used to
recover the position of the object in 3 dimensions. The block
diagram shown in figure 3 presents the different steps for
recovering the object. The first step is the binarization of the
image to highlight the desired object. The second step is the
application of the thinning algorithm to retrieve the curves
of the skeleton of the binarized images. The third step is the
graph extraction in order to retrieve the end points and the
junction points to match between stereo images. The search of
an object is applied in the step four thanks to the evolutionary
algorithm in order to reduce the duration of graph matching.
This method will provide an optimal solution for the search
of objects without matching all nodes. Calibrated cameras are
taken into account [26]. This section is organized as followed:
Part 1 presents the binarization of the image. Part 2 details
the thinning algorithm. Part 3 describes the graph extraction
method. Part 4 explains the objects retrieval method by using
Harmony Search algorithm.

A. Binarization

Binarization (bi-level or two-level) is the process for con-
verting a pixel image into a binary image, ie. an image with
only two possible values (colours) for each pixel. The two
colors used are typically the white and the black. The aim
is to highlight the objects and to remove the background of
the scene. The pixel can be stored in a single bit which is 0
or 1. Algorithm 2 presents the process of binarization. The
color of all pixels of the image are compared with a model.
A color is represented and is encoded by a system called
RGB corresponding to the three primary colors which are Red,
Green and Blue. The values are usually between 0 and 255. If
the RGB present in the pixel is outside the range transmitted
by the model, then the pixel is set to 0. Otherwise, the pixel
is set at 1. As shown in figure 5, the binarization of the figure
4 with a threshold set between 100 and 255 brings out the
desired object by setting all these pixels in black and all the
background in white.



Fig. 3. Diagram of the different steps to find the objects

Algorithm 2 Binarization of the image
Require: Image and Color min and Color max

#ITERATE THROUGH THE PIXELS#
for int x=0 to x=Image.weight do

for int y=0 to x=Image.height do
#COMPARE WITH THE THRESHOLD#
if Color min <Image.Pixel.color(x,y) > Color max

then
#ASSIGN NEW VALUE#
Image.Pixel.color(x,y) = white

else
Image.Pixel.color(x,y) = black

end if
end for

end for

B. Skeletonization

The algorithm of skeletonization [27] aims at representing
the structural shape of a plane region by reducing the pattern
to a set of curves named skeleton which are centred on the
original shape. Topologies properties kept from the original
shape are an advantage. Applying the thinning algorithm
permits to let thin objects stand out as shown on figure
6. Performance improvement can be achieved by deleting
all the points of the image edge with the exception of the
skeleton points [28]. The iterations are divided in subiteration
to preserve the connectivity of the skeleton. This part which
is the foundation of the work is the most important because a
poor skeletonization does not allow to find the links between
different parts of the right image and the left image.

C. Graph transform: Extraction of the reference points

In image processing, a graph is a tool to represent an image
by a component assembly with a set of relationships [29].
Graph are defined by a two-tuple G=(V,E) where:

• V (nodes) → finite set of vertices V = {v1, v2, v3...vn}
(n=Card(V))

Fig. 4. Input image

Fig. 5. Binarized image
(Color min: 100 and
Color max: 255)

Fig. 6. Thinned image

• E → set of Edges E = {e1, e2, e3...em} (m=Card(E))
In our case, the graph represents the information of the set of
shapes of the skeleton image where:

• Nodes → endpoints and connection points of each part
of the skeleton

• Edges → link between the nodes

Fig. 7. Graph transform
of left image: A and B are
selected for object retrieval

Fig. 8. Graph transform of right image: 8 and
10 are selected for object retrieval

The figures 7 and 8 show the nodes (endpoints, connection
points). The recovery of the points is performed thanks to an
algorithm that goes through each pixel and compares all pixel
and neighbour with a model. The mapping will return whether
or not the pixel belongs to a connection point, an endpoint or
standard points in the image. This step allows to retrieve the
nodes of the skeleton in order to do the graph matching and
to search for an object in the next section.

D. Harmony Search for object retrieval

The extraction step of the object is applied by retrieving the
known characteristics of the object. A link between nodes on
the right and left image allows to calculate the 3D coordinates
of the object and to allow the robot to pick the object. Harmony
Search algorithm is applied to calculate the function fitness in
order to find the object by matching nodes and by computing
the distance between them. The fitness function is calculated
according to decision variables which are:

• the equations of the euclidian distance in 2D and 3D :

3DS =
√

(Xi−Xj)2 + (Y i− Y j)2 + (Zi− Zj)2

(7)
2DS =

√
(Xi−Xj)2 + (Y i− Y j)2 (8)

• the percentage of pixels of 3DS belonging to the setted
binarized part

The algorithm 3 presents the different steps to follow to
find the object. The algorithm needs the data input of HMS,
HMCR, PAR and the distances of the different nodes



to match. The initialization is established according to the
parameter HMS. For each iteration, a number of nodes is
selected for the left and right image. A random matching of the
node is performed in order to process the distance in two and
three dimension. The figures 7 and 8 shows a random selection
of the nodes to match (A and B for the left image and 8 and
10 for the right image). If the points between the right image
and the left image does not match, then a penalty is added to
the fitness function. It is defined according to the presence of
the object between the nodes and according to the difference
between experimental and theoretical distance in two and three
dimensions. After the initialization and while the stop criteria
are not met, a new solution is created. The selection of the
nodes depends on the HMCR and PAR parameters. For each
node to match between both images, either both nodes are
selected randomly or by selecting two nodes matched of the
population HM . The PAR variable permits to interchange
nodes already match in HM by those selected. All the nodes
matched between the right image and the left create a new
solution. If the new solution is better than the worst in the
Harmony Memory (HM ), then the worst object proposition
is replaced by the new one. The stop criterion corresponds
either to an object found according to the fitness function or
to no object found in the required time.

V. EXPERIMENT

The experimentation has been realised with an Intel(R)
Core(TM) i7-5700HQ, CPU 2.70GHz. The OpenCV library
has been used to calibrate both webcams of 640x480 pixels.
Several cases were studied for the search of objects. The use of
the 3D position of the points to compute the distance between
the nodes also allows the determination of the coordinates
to provide to the robot so that it can grasp the object. The
figure 9 and the figure 10 show the representation of the
solution of Harmony Search. The detected object allows to
retrieve the information of location and tilt in 3D space to
give to the robot in order to take the object. The figure 9
shows the search of several thin objects, separated from each
other on the same plane. The segment corresponds to the
segments between both nodes. The text corresponds to the
fitness function retrieved by the algorithm. This value is set
according to the kind of skeleton and its environment needs
to be under a threshold in order to be identified as an object.
The figure 10 represents the search of a piece in context of
cluttering and overlapping. In spite of the brightness of the
pieces which tangle the ones on the others, the components
are properly recovered. This image shows the advantage of
the method to find objects that are not fixed in a same three
dimensional space as could be bin-picking. The figure 11
represents the time needed by the algorithm to retrieve the
object according to the number of nodes. The proposed method
has been compare with a standard algorithm where each node
is selected randomly. The higher the number of nodes, the
longer the processing time. A minimum of 8 nodes was
considered to avoid easy search test cases so that the object is
not found in the initialization part. The algorithm was applied

Algorithm 3 Harmony Search algorithm for object retrieval
Require: HMS ∈ N+, population Size
HMCR ∈ [0,1), Rate for choosing HM value
PAR ∈ [0,1), Rate for choosing neighbour value
V (G1), V (G2) ← Set of nodes of the graph G1 and G2
corresponding to the left and the right images

Ensure: s← {V0, d1, ..., dn} ∈ S, S set of possible solutions
and n is a node belonging to an image
node v[m] ∈ V (G1), w[m] ∈ V (G2), where m is the
number of nodes to match between stereoscopic images
#INITIALIZATION#
for i = 0 to HMS do

v[m]← random nodes ∈ V (G1)
w[m]← random nodes ∈ V (G2)
HM [i]←M [v[m], w[m]], Population HM where M is
the set of nodes

end for
#IMPROVISATION#
while stop alg() 6= True do

snew ← M [v[m], w[m]], Population HM where M is
the set of nodes
xi ←M [v[0], w[0]], Set of two nodes v and w
for i = 0 to m do

if random[0, 1) ≤ HMCR then
xi ← Random M [v[i], w[i]] from HM
if random[0, 1) ≤ PAR then

#Inversion of a node compared to a previous#
tempon← v[i− 1]
v[i− 1]← v[i]
v[i]← tempon
xi ←M [v[i], w[i]]

end if
else
v[i]← random node ∈ V (G1)
w[i]← random node ∈ V (G2)
xi ←M [v[i], w[i]]

end if
end for
snew ← X{0, 1..., i}
sworst ← si ∈ HM |f(si) < f(sj)∀sj ∈ HM, sj 6= si
#MEMORY UPDATE#
if f(snew) < f(sworst) then

REMOVE sworst from HM
REMOVE sworst to HM

end if
end while
s← si ∈ HM |f(si) > f(sj)∀sj ∈ HM, sj 6= si



100 times for each parameter change in order to recover a
consistent average. An iteration takes about 1 millisecond. The
pretreatment part (binarization, skeletonization) is not taken
into account in the calculation time to avoid disrupting the
time processing of harmony search part. The treatment time
depends on several factors, in particular the parametrization
of the search algorithm. In this case, the HMS parameter
has been set to 20, HMCR has been set at 0.7 and PAR
at 0.3. As shown in figure 12, the HMS parameter plays an
important role in the search of objects. Figure 12 represents
the number of iterations as a function of the HMS parameter
and the number of nodes present in the image. In our case,
HMS has to be set in the range of 20 to 70. If the number is
lower, the number of iterations increases dramatically and the
algorithm behaves randomly. The figure also shows that after
the value 70, the curve of the number of iteration increases ever
more. As demonstrated with the time curve (figure 11), the
number of nodes impacts on the required number of iterations.
HMCR and PAR settings play also an important role in
improvisation of the search of the object. As shows the figure
13, the parameter HMCR need to be set between 0.5 and
0.8 and PAR between 0.1 and 0.3 to be in the optimal search
configuration. The test has been applied in order to retrieve a
component of two nodes in an image of 14 nodes. The HMS
parameters has been set to 20.

Fig. 9. Search of objects
separated the ones from the
others. Blue: Segment be-
tween the nodes. Red: Fit-
ness function of the object.

Fig. 10. Search of objects placed randomly
with overlapping. Blue: Segment between the
nodes. Red: Fitness function of the object.

Fig. 11. Comparison of time algorithm between standard and HSO algorithm
according to the number of nodes for objects with 2 nodes

Fig. 12. Performance according to the number of nodes and the HMS
parameter

Fig. 13. Harmony Search performance according to the PAR and HMCR
parameters

VI. DISCUSSION

The experimental part proves the efficiency of the proposed
method to find thin components placed in a cluttered set.
Binarization allows to stand out the objects in the scene.
The thinning algorithm allows to retrieve the curve of each
component. The graphs allow to retrieve the junction and
extrema points. The Harmony Search allows to retrieve the
object matching a reference object model. Parameterization
plays an important role in optimizing the search for the
object. HMS setting should not be too low because research
is then very close to a random search. A population too
high makes the algorithm less efficient because the system
takes time to optimize its search. The efficiency has been
demonstrated by the capability to the method to find the object
in a time cut off by at least 40% wrt. the process without
HSO. The second advantage is the efficiency in setting up
the system which is lightweight because only distance needs
to be calibrated. The difficulty depends on the number on
nodes on the object. The matching duration depends on the
number of nodes. However, the actual search duration can be
considered as acceptable for operational use for bin-picking in
a production line. The method proves its efficiency in finding



thin objects with little nodes. In a future work, an evaluation of
the performance on different situation will be studied. The next
step of improvement is to adapt the algorithm for any kind of
objects and to perform tests with objects with many nodes. The
system can be adapted by comparing the shape of the skeleton
as well as the shapes of the object using a polygonal approach,
which defines the curves between the different nodes of the
graph. Comparing the graphs would then allow to compute the
fitness function between the model and the images collected
by the cameras.

VII. CONCLUSION AND PERSPECTIVES

This paper proposes a method to recognize thin objects
randomly disposed in a 3D space in a constrained time frame
by using stereo images and an evolutionary algorithm. First
a set of filters is applied to each two-dimensional images
in order to retrieve the location of the object on the scene.
This simplification allows to calculates the size of the objects
based on their location in 3D space. For each object on the
image, a skeleton is built and Harmony search algorithm is
applied to match the junction points and the extremum points.
Points are randomly matched in two and three dimensions.
The three dimensions enable the graph matching between
nodes and the use of Harmony Search algorithm significantly
improves its performance. The process has been tested with
different objects placed close to each other, with cluttering and
overlapping. All objects have been found. The algorithm works
with different kinds of noises like brightness and luminosity.
The system is quickly initialized because the parameters of
the objects are known by the operator. The perspectives of our
work is to adapt the system by analysing the edges objects by
using a polygonal approximation.

ACKNOWLEDGMENT

We thank Icube laboratory for assistance with methodology
and for comments that greatly improved the manuscript. This
research was supported by Hager enterprise. We thank our
colleagues who provided a great expertise and a huge insight
that greatly assisted the research. We would also like to show
our gratitude to the Ecam-Strasbourg Europe for sharing their
pearls of wisdom with us during the course of this research.

REFERENCES

[1] D. Buchholz, Bin-Picking: New Approaches for a Classical Problem.
Cham: Springer International Publishing, 2016, ch. Bin-Picking—5
Decades of Research, pp. 3–12.

[2] ——, “Depth map based pose estimation,” in Bin-Picking. Springer,
2016, pp. 39–56.

[3] C. M. Mateo, P. Gil, and F. Torres, “Visual perception for the 3d recog-
nition of geometric pieces in robotic manipulation,” The International
Journal of Advanced Manufacturing Technology, vol. 83, no. 9, pp.
1999–2013, 2016.

[4] P. J. Sanz, A. P. Del Pobil, J. M. Inesta, and G. Recatala, “Vision-
guided grasping of unknown objects for service robots,” in Robotics and
Automation, 1998. Proceedings. 1998 IEEE International Conference
on, vol. 4. IEEE, 1998, pp. 3018–3025.

[5] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Computer vision, 1999. The proceedings of the seventh IEEE interna-
tional conference on, vol. 2. Ieee, 1999, pp. 1150–1157.

[6] P. Piccinini, A. Prati, and R. Cucchiara, “Real-time object detection and
localization with sift-based clustering,” Image and Vision Computing,
vol. 30, no. 8, pp. 573–587, 2012.

[7] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Computer vision–ECCV 2006. Springer, 2006, pp. 404–
417.

[8] Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive representation for
local image descriptors,” in Computer Vision and Pattern Recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, vol. 2. IEEE, 2004, pp. II–506.

[9] R. Kumar, S. Kumar, S. Lal, and P. Chand, “Object detection and
recognition for a pick and place robot,” in Computer Science and
Engineering (APWC on CSE), 2014 Asia-Pacific World Congress on.
IEEE, 2014, pp. 1–7.

[10] K. Ikeuchi, “Generating an interpretation tree from a cad model for
3d-object recognition in bin-picking tasks,” International Journal of
Computer Vision, vol. 1, no. 2, pp. 145–165, 1987.

[11] M. Ulrich, C. Wiedemann, and C. Steger, “Combining scale-space and
similarity-based aspect graphs for fast 3d object recognition,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 34,
no. 10, pp. 1902–1914, 2012.

[12] P. J. Angeline, “A historical perspective on the evolution of executable
structures,” Fundamenta Informaticae, vol. 35, no. 1-4, pp. 179–195,
1998.

[13] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and
particle swarm optimization,” in International Conference on Evolution-
ary Programming. Springer, 1998, pp. 611–616.

[14] C. Darwin, The origin of species. Lulu. com, 1872.
[15] N. M. Al-salami, “Evolutionary algorithm definition,” American J. of

Engineering and Applied Sciences, vol. 2, no. 4, pp. 789–795, 2009.
[16] F. Streichert, “Introduction to evolutionary algorithms,” paper to be

presented Apr, vol. 4, 2002.
[17] Z. W. Geem, J. H. Kim, and G. Loganathan, “A new heuristic optimiza-

tion algorithm: harmony search,” Simulation, vol. 76, no. 2, pp. 60–68,
2001.

[18] Z. W. Geem, “Research commentary: Survival of the fittest algorithm or
the novelest algorithm?” International Journal of Applied Metaheuristic
Computing (IJAMC), vol. 1, no. 4, pp. 75–79, 2010.

[19] ——, “State-of-the-art in the structure of harmony search algorithm,” in
Recent Advances In Harmony Search Algorithm. Springer, 2010, pp.
1–10.

[20] M. G. Omran and M. Mahdavi, “Global-best harmony search,” Applied
mathematics and computation, vol. 198, no. 2, pp. 643–656, 2008.

[21] N. Taherinejad, “Highly reliable harmony search algorithm,” in Circuit
Theory and Design, 2009. ECCTD 2009. European Conference on.
IEEE, 2009, pp. 818–822.

[22] A. R. Yildiz and F. Öztürk, “Hybrid taguchi-harmony search approach
for shape optimization,” in Recent Advances In Harmony Search Algo-
rithm. Springer, 2010, pp. 89–98.

[23] O. Moh’d Alia and R. Mandava, “The variants of the harmony search
algorithm: an overview,” Artificial Intelligence Review, vol. 36, no. 1,
pp. 49–68, 2011.

[24] M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved harmony
search algorithm for solving optimization problems,” Applied mathemat-
ics and computation, vol. 188, no. 2, pp. 1567–1579, 2007.

[25] C.-M. Wang and Y.-F. Huang, “Self-adaptive harmony search algorithm
for optimization,” Expert Systems with Applications, vol. 37, no. 4, pp.
2826–2837, 2010.

[26] Z. Zhang, “A flexible new technique for camera calibration,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22,
no. 11, pp. 1330–1334, 2000.

[27] R. C. Gonzales and R. E. Woods, “Digital image processing. 2002,”
New Jersey: Prentice Hall, vol. 6, p. 681, 2002.

[28] T. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital
patterns,” Communications of the ACM, vol. 27, no. 3, pp. 236–239,
1984.

[29] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of
graph matching in pattern recognition,” International journal of pattern
recognition and artificial intelligence, vol. 18, no. 03, pp. 265–298,
2004.


