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Abstract—Chronic respiratory diseases, such as asthma, are
very common around the world and have been shown to have
a significant effect on the quality of life of patients. A crucial
component for the effective management of asthma is the
adherence of patients to their medication prescription, which
can be separated into two distinct and equally important com-
ponents, i) the adherence of patients to the time schedule for
the use of their inhaled medication and ii) their competence in
using the inhaler correctly and effectively. Aiming in this direc-
tion the current paper investigates three different algorithmic
approaches not only for the detection of Metered Dose Inhaler
actuations but for the understanding of the overall inhaler
technique of patients. More specifically, Short Time Fourier
Transform is used as the basis for the extraction of features
that are then used for the classification of 4 events (inhaler
actuation, patient inhalation, patient exhalation, background
noise) using three distinct algorithmic approaches (Support
Vector Machines, Random Forests and AdaBoost). The final
experimental results demonstrate that Adaboost outperforms
the alternative approaches leading to accuracies above 96%.

Index Terms—Asthma, medication adherence, pMDI correct
usage, time-frequency analysis, classification.

1. Introduction

Asthma is a chronic disease of the airways that affects
more than 235 million people worldwide [1] including a
continuously increasing number of children [2]. In the region
of Europe more than 30 million adults suffer from asthma
[3] creating a number of difficulties in the quality of life of
patients and their families and affecting the overall efficiency
of the healthcare system as a whole [4]. The fact that asthma
is present in a such a diverse and global scale [5] reveals
the importance for new and innovative approaches that can
help patients irrespective of their cultural and educational
background to manage their asthma and avoid dangerous
exacerbation events [6].

One of the most important components for the effec-
tive management of asthma is the adherence of patients to
their medication prescription both in terms of following the
schedule that is proposed by the responsible doctor, and
using the inhaler device correctly and effectively. Reduced
adherence of inhaled medication has been already associated
with asthma attack incidents and patient hospitalizations [7],
indicating that the effective monitoring of the medication
adherence can facilitate the management of these respiratory
diseases.

Recent studies of inhaler based monitoring devices have
revealed the significance of such solutions for the effective
management of respiratory diseases and outlined some im-
portant common characteristics and disadvantages of current
approaches [8], [9], [10], [11]. The majority of devices pre-
sented are based on electromechanical sensing capabilities,
ranging from simple push buttons attached on the top of the
inhaler’s canister through integrated counters [12] to force
sensing elements attached on the back of the inhaler’s plastic
casing. The second most prevalent sensing approach adopted
by electronic inhaler devices is the use of microphones [13]
[14], the measurements of which are locally processed and
used to indicate inhaler actuations. Nevertheless, only few
devices have demonstrated functionalities for the assessment
of inhaler technique and especially the timing of inhaler
actuation in regards to the inhale and exhale events.

The objective of this work is to evaluate three different
algorithmic approaches in this direction and in order to
identify and evaluate the proper use of pressurized Metered
Dose Inhalers (pMDI) by patients and in real life conditions.
More specifically the correct usage of a pMDI is defined
according to clinical expert suggestions by the following
steps [15]: a)Remove the cap b)Breathe out, away from your
inhaler c)Bring the inhaler to your mouth. Place it in your
mouth between your teeth and close you mouth around it.
d)Start to breathe in slowly. Press the top of you inhaler
once and keep breathing in slowly until you have taken
a full breath. e)Remove the inhaler from your mouth, and
hold your breath for about 10 seconds, then breathe out.



Towards this direction, a first step of analysis is to achieve
to differentiate individual sounds. The individual sounds
we process are breathe in , breathe out , pMDI inhaler
actuations, and background/environmental sounds. In the
future, we intend to utilize more sophisticated procedures
in order to classify the whole process of pMDI inhaling
as correct or incorrect, using audio processing as well as
pattern classification schemes. The rest of the paper is
outlined as follows: Section 2 presents the methods for data
acquisition and processing of the audio samples. Section 3
presents the audio feature extraction. Section 4, describes the
adopted classification approaches. In Section 5, we present
the results . Finally, Section 6 concludes this paper.

2. Materials and Methods

2.1. Data Acquisition and Construction of Datasets

We recorded a set of sounds in indoor and outdoor
environments that were classified into inhaler actuations,
breathe in, breathe out, and noise referring to environmental
sounds. 5 healthy people participated in the experiments and
recording was performed with the use of a recording device
composed of a wireless Bluetooth microphone attached to
the pMDI and a Smartphone. The dataset that was produced
was comprised of 280 samples per sound class. Thus, totally
1120 sound samples were available. Each sound sample was
of 0.5 seconds duration, with 4 kHz sampling rate and 4-bit
depth.

2.2. Signal processing approach

The objective of the described approach is to classify
correctly those sound samples. 3 problems were considered
for analysis. The first problem was of 2-class nature: we
aimed to distinguish only inhaler actuations from noise.
The second was of 3-class nature: we placed into a new
bin 280 mixed sound samples from breathe in and breathe
out and attempted to distinguish from inhaler actuations and
noise simultaneously. In the third problem, we utilized all
the dataset and performed classification of 4-class nature:
inhaler actuations vs. breathe in vs. breathe out vs. noise.
In the following paragraphs we mention technical details of
the whole process, which is comprised of feature extraction
and pattern classification.

As a first step of processing, STFT was applied for
feature extraction of the recorded sounds. Each sound sam-
ple consists of 2000 samples and the length of the sliding
window is 128 samples with a sliding step of 32 samples
The resulting spectrogram consists of 59 columns contain-
ing an estimate of the short-term, time-localized frequency
content consisting of 257 frequency components. In order
to derive the frequency vector we reduce the dimensionality
of the spectrogram removing the time domain. Finally, the
subsampled frequency vector produces the feature vector
consisting of 40 features in order to be used as input for
the classification problem.

Figure 1. Short time fourier transform of the audio samples

Following feature extraction, pattern classification was
performed in order to differentiate the sound samples into
the 4 aforementioned types. 3 classifiers were tested: support
vector machines, random forests, and AdaBoost . We did
not follow the approach of a single testing and training test;
instead, we utilized 10-fold cross validation for evaluation
of the classifiers, which we take as a most robust approach.
Classification accuracy is defined as the percent of the
samples that were finally classified correctly.

3. Audio Features Extraction

The acoustic sensor (source node), records a real time
audio sound and transmits to the BNC (e.g., smartphone)
the recorded samples. At the BNC, the features are extracted
from the encoded audio samples, which are then used for the
audio classification problem. Specifically , the audio signal
is recorded by the microphone, digitized, and divided into
segments of N = fs/2 samples that correspond to 0.5 sec
of audio, e.g., x = [x1, . . . , xN ]

T , where xi ∈ R.
Existing acoustic approaches [13] suggest the use of

time-frequency analysis from pMDI audio recordings to
automatically detect pMDI actuations. Thus we derive the
audio features from the spectrogram of the audio samples
that is generated by applying a short time Fourier Transform
(STFT). To be more specific, the processed audio frames are
separated to overlapping parts (so as to reduce artifacts at the
boundary) with each part Fourier transformed.The complex
result is added to a matrix, which records magnitude and
phase for each point in time and frequency. This can be
expressed as:



STFT{x[n]}(m,ω) =
N∑

n=0

x[n]w[n−m]e−jωn (1)

where x[n] is the signal, w[n] the window and N the
number of samples.The magnitude squared of the STFT
yields the spectrogram:

spectrogram{x[n]}(m,ω) ≡ |STFT{x[n]}(m,ω)|2 (2)

Thus the audio features fi are derived by adding the
frequency magnitude for every time windows for each
frequency component resulting in a subsampled one di-
mensional vector containing a summation of all frequency
components at a given time index i.

4. Feature Classification for Medication Ad-
herence

Pattern classification in machine learning is described
as the following problem [16]. There is available a set of
entities, where each entity is described by an attribute vector
and a special attribute called the class. While the attributes
of the attribute vector can be either discrete or continuous,
the class attribute is discrete. Pattern classification is the
issue of estimating a function f that maps the attributes
vector to the class attribute. Such a function is referred to as
a classification model. A classification model is useful for
the reason that it explains in what way the attributes vector
distinguishes a set of entities into diverse classes. However,
its most widespread objective is predictive. It can be applied
to differentiate into classes new entities, which have known
attributes but unknown classes. Pattern classification is the
most frequently seen problem in supervised learning.

A classification algorithm or classifier is a systematic ap-
proach of constructing classification models from data. Each
classifier applies a learning technique, aiming to identify the
model that fits to the data best (in particular, to identify the
dependencies between the attributes vector and the class).
The resulted model must be able to fit to the data optimally,
but also to predict entities with unknown classes as well.
Thus, it is required to dispose generalization properties. A
classification problem is comprised by the following steps.
Initially, a training dataset is given, where entities have
known classes, and a classification algorithm is applied to
produce a classification model. Then, the generated model
is applied to a testing dataset, where entities have unknown
classes, in order to predict their classes. In some cases,
there exists no testing dataset, but only training. In such
a case, a classification model is evaluated with k-fold cross
validation: the training dataset is split into k parts (usually
10), each of the parts sequentially forms the testing set and
all the others form the training set, finally the k results are
combined.

In the next few paragraphs, we describe 3 well-known,
sophisticated, and relatively recently invented classification
algorithms: support vector machines, random forests, and

AdaBoost. We will be referring to the vector of attributes
of entity i as xi (assuming cardinality p) and to its class
value ci (taking integer values from 1 to K). Thus, K is the
number of classes.

4.1. Support vector machines

Support vector machines [17] are a well known and
sophisticated method for supervised learning. In describing
SVMs, we will first assume that the number of classes is
equal to two (K=2); that is ci = ±1. At the end, we will
generalize to more distinct class values. Furthermore, let us
assume that all entities in the training dataset are linearly
separable in the space of their attributes (p-dimensional).
This fact denotes that there exists a separating hyper plane
and consequently a vector of weights w and number b that
satisfy the following conditions: b+wxi ≥ 1 if ci = 1, and
b+wxi ≤ −1 if ci = −1. Equivalently, ci(b+wxi) ≥ 1 for
every entity of the dataset. In that simple situation of linearly
separable entities, SVMs effort to satisfy the aforementioned
condition while minimizing the quantity 1

2 ‖w‖
2. This is

a curve quadratic programming problem, that is solved
approximately. If the separating hyper plane is recognized,
its boundaries are referred to as support vectors and the
solution can be represented simply by a linear combination
of those. Unfortunately, in real life situations the entities
of a dataset are rarely linearly separable. In such a case,
there are two ways to deal with the issue, that can be used
simultaneously. The first one is that one can leave a margin
ξ for misclassified entities. In quadratic programming form
this equals to adding a slack variable in the constraint
equation: ci (b+ wxi) ≥ 1− ξ and minimizing the quantity
1
2 ‖w‖

2
+ Cξ, where C is a trade-off constant. The second

one is to attempt to separate the entities linearly in another
space of higher dimensionality. For that purpose, a kernel
function is used that transforms the inner product of any two
entities to the new space. Common kernel functions are:

• The polynomial of degree q:

K (xi, xj) = (xixj + 1)
q (3)

• The RBF with parameter q:

K (xi, xj) = e−q‖xi−xj‖2 (4)

• The sigmoid of order q:

K (xi, xj) = tanh(κx1x2 − δ)q (5)

For multi-class problems (K ≥ 2), there are 2 ways to deal
with. One way is the one versus all approach. Here, we
create K SVM classifiers, and for each classifier, we are
attempting to distinguish one particular class from all the
rest. To determine the optimal class to pick, we assign the
class for which the observation produces the highest distance
from the separating hyper plane, therefore lying farthest
away from all other classes. An alternative approach is
known as the one versus one approach. We create a classifier
for all possible pairs of output classes. We then classify our



observation with every one of these classifiers and tally up
the totals for every winning class. Finally, we pick the class
that has the most votes.

4.2. Random Forests

Random forests [18] are the most widespread paradigm
for the concept of classification bagging. Bagging (bootstrap
aggregating) is a machine learning ensemble meta-algorithm
designed to improve the stability and accuracy of machine
learning algorithms. It is based on the idea of combining
classifications of randomly generated training sets. In the
case of random forests, the individual classifiers used in
parallel are small classification trees and they are applied
to different bootstrap samples of the training dataset. The
number of trees is selected to be 500 or 1000 usually. More
specifically, random forests grow a lot of classification trees.
To classify a new entity with an attributes vector, put the
attributes vector down each of the trees in the forest. Each
tree gives a classification, and we say the tree ”votes” for
that class. The forest chooses the classification having the
most votes (over all the trees in the forest). Each tree is
growing as follows:

• If the number of entities in the training dataset is n,
sample n entities at random but with replacement.
This sample will be the training set for growing the
tree.

• If the cardinality of xi is p, a number of
√
p at-

tributes is selected at random for each node of the
tree, and the best split on these is used to split the
node.

• Each tree is grown to the largest extent possible.
There is no pruning.

The forest error rate (accuracy) depends on two things:
(a) the correlation between any two trees in the forest.
Increasing the correlation increases the forest error rate. (b)
the strength of each individual tree in the forest. Increasing
the strength of the individual trees decreases the forest error
rate. An advantage of random forests is that they do not
need k-fold cross validation. Instead, the out-of-bag (OOB)
error estimate can be computed. More specifically, each
tree is built using a different bootstrap sample from the
original data. About one-third of the cases are left out of
the bootstrap sample and not used in the construction of
each tree. Put every entity left out in the construction of
each tree down the tree to get a classification. In this way,
a test set is obtained for each entity in about one-third of
the trees. The OOB error is estimated in that test set.

4.3. AdaBoost

AdaBoost [19] is the most widely used classification
boosting algorithm. Boosting answers to the following ques-
tion: Can a set of weak learners create a single strong
learner? A weak learner is defined to be a classifier that
is slightly correlated with true classification (for exam-
ple, it can label entities better than random guessing). In

(a)

Figure 2. Classification accuracy for the three problems

contrast, a strong learner is a classifier that is arbitrarily
well-correlated with the true classification. As it is in the
case of random forests, in AdaBoost the weak learners are
simple classification trees. More specifically, the AdaBoost
algorithm is an iterative process that attempts to combine a
set of weak classifiers. Starting with the unweighted training
dataset, the AdaBoost builds a classifier, for example a
classification tree, that produces class labels for the entities.
Then, if an entity is misclassified, the weight of that entity
is increased (boosted). Another classifier is then built with
the new weights, which are no longer equal. Once more,
the misclassified entities have their weights boosted and the
process is repeated. Typically, one may build 500 or 1000
classifiers this way. A score is assigned to each one classifier,
and the final classifier is defined as the linear combination
of the classifiers from each stage. Specifically, let T be a
weak multi-class classifier (classification tree).

• Initialize the weights for all the entities as wi =
1
n .

• Repeat the following for, say, 500 or 1000 times,
indexed by j:

– Fit a classification tree T j (x) to the training
data using weights wi.

– Compute the error :

errj =

∑n
i=1 wiI(ci 6= T j(xi))∑n

i=1 wi
(6)

– Compute the coefficient :

aj = log

(
1− errj

errj

)
+ log (K − 1) (7)

– Update the weights :

wi = wie
ajI(ci 6=T j(xi)) (8)

– Renormalize the weights.

• Output C(x) = argmaxk
∑

j a
jI
(
T j (x) = k

)
.



5. Results

The classification results achieved are presented in figure
2. One can observe that in all 3 considered problems we
achieve classification accuracy of 90% and over. However,
in all cases minus one (support vector machines in the
4-class problem) the accuracy is more than 96%. More
specifically, considering the 2-class problem, support vector
machines, random forests, and AdaBoost produce accuracies
of 98.75%, 99.29%, and 98.75%. Considering the 3-class
problem, the same classifiers produce accuracies of 98.10%,
99.29%, and 98.81%, respectively. Considering the (most
difficult) 4-class problem, they are accurate at the 91.61%,
96.96%, and 97.59% of the instances, respectively. Random
forests seem to overcome the other 2 classifiers, except from
the 4-class problem where AdaBoost is preferable.

6. Conclusion and future work

Wireless monitoring of pMDI inhaler medication adher-
ence from acoustic sounds facilitates the early diagnosis
and management of chronic inflammatory diseases of the
airways, such as asthma, but introduces challenges related
to accurate classification of the audio signals. To this end, we
attempt to implement a method that categorizes as correct
or incorrect the usage of a pMDI inhaler, according to
medical experts suggestions, utilizing techniques from the
domains of audio signal processing and machine learning.
As an initial step towards that direction, we achieved to
classify four different types of sounds , including breath in
, breath out , inhaler actuations and noise , with accuracies of
more than 96%, using state-of-the-art classification methods,
along with feature extraction from audio signals . 3 classifi-
cation problems were taken into account, a 2-class, a 3-class,
and a 4-class, and in almost all cases the three classifiers
, support vector machines, random forests and AdaBoost,
performed adequately well. The presented schemes will
be implemented on Smartphones that will be running the
Android operating system. In the future, we intend to utilize
more sophisticated procedures in order to classify the whole
process of pMDI inhaling as correct or incorrect, using audio
processing as well as pattern classification schemes.
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