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Abstract— The modern electronic systems have become very 

complex with a high number of potential factors that may affect 

the systems’ behavior. Sensitivity analysis may be employed to 

simplify the analysis of such systems and identify the most 

important factors upfront. The paper introduces two new 

sensitivity analysis methods based on the measure of entropy, 

which overcome the limitation of several state-of-the-art methods 

imposing a specific design of experiments and a high 

computational cost, measured as the number of simulations 

(measurements) needed, for the sensitivity analysis. Their 

performance is compared to other methods based on variance 

decomposition and One-Factor-at-a-Time screening. The 

proposed methods named the Entropy Simple method and the 

Entropy Pair one are applied on a set of custom functions and an 

E-Bike application. They proved to have comparable accuracy to 

the state-of-the-art methods with the advantage of a lower 

computational cost and which does not increase with the number 

of factors. 

Keywords— Sensitivity analysis, entropy, variance 

decomposition 

I.  INTRODUCTION 

Modern electronic technology brings systems of high 
complexity, which leads to the need of new analysis 
techniques. The responses of these systems may be influenced 
by hundreds of input parameters, called factors. Examples of 
such factors are configuration settings, design parameters, 
stimuli variation, etc. The verification of such complex systems 
is time-consuming and costly. In order to shorten the 
verification time, one could reduce the analysis to a smaller 
number of factors of the system; it is often the case that only a 
few factors influence the variability of the system response. 
Examples of system responses are power consumption, rising 
time, noise level, etc. 

The problem of determining the subset of factors most 
influential on the response may be addressed by sensitivity 
analysis (SA) [1-2]. Common statistical procedures for SA are 
Analysis of Variance (ANOVA) [3], statistical regression [4-5] 
and the correlation coefficient method [6]. However, for 
systems with a large number of factors or nonlinear factor-
response relationships, these methods have poor accuracy. The 
standardized regression coefficient (SRC) method [4] can be 
applied only for linear factor-response relationships, otherwise 
the results are difficult to explain. Visual methods, such as the 

matrix scatter plots [3] are able to detect complex factor-
response relationships, but their disadvantage is that they 
require human intervention for judgment on the factors’ 
impact, which for a high number of factors becomes 
intractable. 

SA may be employed also for uncertainty and worst-case-
analysis. The choice of a SA method depends on the objective 
of the research, as well as on the types of factors involved and 
the execution cost implied. Here, by execution cost we mean 
the number of system evaluations, i.e. simulations or 
measurements. 

SA methods were successfully applied in domains, e.g. 
atmospheric chemistry [7], transport emission [8] or fish 
population dynamics [9]. For electronic systems, however, the 
common SA methods applied are the One-Factor-at-a-Time 
(OFAT) method [10] and the partial derivatives [11], which are 
local methods and do not explore the full input space. 

In this paper, we propose two efficient SA methods based 
on the measure of entropy. We also provide a comparative 
assessment of their accuracy to several SA methods from the 
literature based on variance decomposition [12-13] and the 
Morris OAT screening [13]. The comparison is performed on a 
set of custom-defined test functions and an E-Bike application. 
The SA approaches are compared from the point of view of 
factor ranking and the execution cost implied.  

The paper is structured as follows: Section II describes the 
theoretical framework of the proposed entropy-based SA 
methods, followed by a summary of the applications along with 
the obtained results on the custom test functions and on the E-
Bike application in Section III and Section IV, respectively. 
Conclusions are drawn in Section V. 

II. PROPOSED SA METHODS 

Using the measure of the statistical entropy, two SA 
methods were developed: the Entropy Simple method, which is 
capable of determining main effects of factors and the Entropy 
Pair method, which can determine also interactions between 
factors. 

The core idea is based on the intuition given by scatter 
plots. For simplification, let us illustrate the idea through a 
simple example. Let (1) describe an example of factor-response 
relationship, where F1÷F4 are the factors and Y denotes the 
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response. Equation (1) includes a main effect of F2, a quadratic 
effect of F1 and an interaction effect between F2 and F3; F4 has 
no effect on Y. 
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The factor-response relationship is illustrated by the scatter 
plots in Fig 1. Note that F4 has no impact on Y and this fact is 
revealed by the random distribution in the F4-Y quadrant of Fig. 
1, while for all other factor-response distributions one can 
observe an order of the distribution (or a deformation from 
randomness). 

Based on the above observations, the principle of the 
entropy-based methods is the following: if the distribution of a 
response is independent of the distribution of the factor, it 
means that the factor has no impact on the response (see F4-Y 
quadrant of Fig. 1). 

Furthermore, if we divide the factor-response distribution 
into subsets with respect to the response value (e.g. subset 1: 
response < median and subset 2: response > median) and 
compare the distribution of the subset to the total distribution 
of the data, we can determine the impact of the factor on the 
response. The same principle can be applied on pairs of factors, 
leading to the ability of determining interactions between 
factors. 

The term entropy and its formula are borrowed from 
literature and is used here as a measure of the randomness of a 
system [14]. Note that lower entropy means greater impact of 
the factors on the response. Shannon defined the statistical 
entropy in [14] as: 

ln
i i

H Y p p  (2) 

where Y has a discrete distribution and pi =P(Y=Yi). We used 
the measure of entropy as an objective measure of the 
randomness of a system. 

Fig. 2 describes the steps of the Entropy Simple SA 
approach in detail. The first step is similar to any SA approach, 
where the experiment is planned and the responses are 
measured. Note that if there are simulations/measurements 
available from other types of analysis, this step can be skipped, 
because opposite to the state-of-the-art SA methods, the 
entropy-based methods do not impose a specific experiment 
plan for the SA. Otherwise, we recommend a Monte Carlo 
(MC) design where the factors take random values uniformly 
distributed from their allowed interval. This assures a better 
coverage of the factors’ space. 

In the second step, the factor-response space,(Fi, Y), is 
divided into rectangles, also called bins. The edges of each bin 
are the quantiles of distributions of Y and Fi. For example, if 
we decide to divide the space 10 by 10, the edges of the bins 
will be the 10-quantiles of distribution Y and 10-quantiles of 
distribution Fi. 

Then, the number of data points mb falling in each bin b 
from a total of B bins, are counted. Their sum is equal to the 
total number of runs, N: 

 

Fig. 1. The scatter plot of the factor-response relationship of (1) 
 

 
 

Fig. 2. The steps of the Entropy Simple SA method 
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Note that the number of bins is arbitrarily chosen and 
depends on the number of observations. From statistical point 
of view, a bin should be large enough such as to cointain 
sufficient data points in average (>20). 

In step 4, the entropy of the space formed by Fi and Y is 
computed as: 
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Hi is computed for each Fi and in the end, the most 
important factors are determined. Note that the factor with the 
lowest Hi has the greatest impact on the response. 

The approach for the Entropy Pair SA method is similar, 
but here, 3D bins of (Fi, Fj, Y) are formed and they will be 
rectangle prisms with edges the quantiles of Fi, Fj and Y. 

Also, each Hij has to be computed, which will lead to a KxK 
symmetric matrix, where K denotes the total number of factors 
and Hij represents the entropy of (Fi, Fj, Y). Note that Hij=Hji. 
Again, the pair with the lowest entropy has the greatest impact 
on the response. Then, the impact of each individual Fi on Y is 
computed as: 

min ( )
Ti i i j

H H  (5) 

where HTi measures the total impact of factor Fi on Y. 

Note that Hi and HTi are metrics which aim to give 
information about the main and total effect contribution of each 



factor on the response, similar to Si and STi metrics of the 
variance-based SA methods [15]. The common judgement of 
sensitivity indices, including Si and STi, is that a higher index 
means higher impact. Therefore, we rescaled Hi and HTi such 
that a higher Hi or HTi means higher impact. For example, we 
obtained the following HTi indices for (1): HT1=0.316, HT2=1, 
HT3=1, HT4=0. 

One advantage of these methods over the methods from 
literature is that they do not impose a particular design of 
experiments in order to perform the SA, meaning that they can 
be performed with a design of experiments created for another 
type of analysis (e.g. pass/fail, yield analysis, etc). This is 
possible because the range of a factor or a response is not 
divided into equal intervals, but into quantiles which can be 
calculated regardless the type of distribution. Also, the methods 
do not have any restriction about the orthogonality of the 
factors, which means that correlations between factors may be 
induced. 

III. EVALUATION OF THE SA METHODS ON CUSTOM TEST 

FUNCTIONS 

First, the methods were tested via a mathematical example 
where the relations are known, in order to allow a comparison 
between the methods’ prediction and the experimenter’s 
expectation. The custom defined test functions are polynomial 
functions of the form of (6), which included different types of 
factor effects (main, quadratic and first order interactions) and 
the coefficients βi and βij measure the importance of factor xi: 
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A set of 60 polynomial functions of the form of (6) was 
implemented, each including 30 factors. For each function, we 
selected a set of important (target) factors. To test the 
robustness of the methods we added noise on the response as 
in (7): 

 i noise i noise i
y y  (7) 

where ηi are normally distributed pseudorandom numbers. 
Noise scenarios represent the case where the analysis is made 
on measurement data and not simulation ones. 

In order to quantify the effect of the noise, the measure of 
Signal-to-Noise Ratio (SNR) was considered and it was 
defined as the ratio of the variance of the response and the 
variance of the noise: 
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The methods were tested with seven SNR values SNRdB 

={25, 20, 15, 10, 5, 0, -5} dB. At SNR=25 dB the same 
accuracy was obtained for all methods as if no noise was 
added. 

We defined the pass rate as the accuracy testing criteria of 
the methods. This measure determines the percentage of 
selected important (target) factors, xt, which have also been 
returned in the top of the five most important factors of a 
method. 

As the polynomial functions included 2-4 important 
factors, we found it a sufficient condition that the factor is 
returned in the top five most important factors. 

Fig. 3 illustrates a comparison of the accuracy of the 
proposed methods to several variance-based methods and the 
Morris method for noise added on y. The FAST method is 
capable of detecting only the main effects and it was tested 
only for this type of effect. The proposed entropy-based SA 
methods outperformed the Morris and Sobol methods and had 
similar accuracy with the EFAST and Jansen methods. 

From the point of view of the execution cost, meaning the 
number of simulations required for the SA analysis, the 
proposed methods were the most efficient, as they were 
performed on a uniform Monte Carlo design with 300 runs, 
followed by the Morris method which required 310 runs. The 
high accuracy of the Jansen and EFAST methods implies a 
high computational cost, because they required 900 and 1950 
runs, respectively. The FAST method required 23081 runs, 
while the Sobol method implied 1830 runs. 

This study provided valuable information about the 
accuracy of the proposed methods compared to the other SA 
methods, highlighting the advantage of a lower execution cost 
and it served as reference for the study of a real system 
application, where there is little information about the effects 
of each factor on the output. 

IV. EVALUATION OF THE SA METHODS ON THE E-BIKE 

APPLICATION 

The knowledge provided by the tests on the synthetic 
functions served as reference for the study of a real system, 
which was an E-Bike application model [16-17]. An E-Bike is 
a regular bicycle with an integrated electric motor to provide 
additional assistance. The analysis included 15 factors (see in 
Table I) and two responses (see in Table II). Note that the 
factors are of different nature (system architecture properties, 
component properties, system inputs, operating conditions). 

For the SA we selected the proposed entropy-based 
methods and the EFAST method, because the latter gained 
very good accuracy on the synthetic functions and served as 
reference of the true factor-response sensitivities. The factors-
responses scatterplots revealed nonlinear relationships 
between certain factors and responses, this is why simple 
methods such as SRC were not considered. 

 

 

Fig.3. Accuracy comparison of the SA methods; noise added on y 



The purpose of the experiments was to assess and compare 
the accuracy of each method on an application. We applied 
each method for both responses and the results were compared 
in terms of the returned ranking of the factors, by considering 
the ranking of the EFAST method as reference. 

The high accuracy of the EFAST method (proved 
previously on the synthetic functions) implied the compromise 
of a high computational cost which translates also into a high 
computational time. The simulations are costly because the 
implemented E-Bike uses a direct driven motor with a large 
mechanical time constant. Given the imposed computational 
cost as a function of the factors implied [15], the EFAST 
method required 975 simulations for the SA approach, which 
translates into a computational time of approximately 112 
hours. 

First, we performed the simulations according to the design 
of experiments imposed by the EFAST method. Then, we 
applied the SA for both the EFAST and entropy-based 
methods, using the advantage of the entropy-based methods 
that they do not impose a particular design of experiments and 
that they can be applied on simulations resulted from other 
analysis. 

For validation of the results, we compared the top of the 
most important factors returned by each method, considering 
the true top of important factors the one returned by the 
EFAST method. 

A subsequent analysis was to apply the entropy-based 
methods on a lower number of simulations and to compare the 
returned top of the most important factors to the top of the 
EFAST method. The purpose of this analysis was to determine 
if the entropy-based methods determine the same important 
factors even with a lower number of simulations. 

As the system contained a number of 15 factors, we 
considered the top five for the AccTime response, respectively 
top four for the TorqueRipple of the most important factors, as 
usually only a lower number of factors have impact on the 
output response.  

Table III illustrates the results of the SA analysis with the 
entropy-based methods performed on the simulation results of 
the EFAST method. The top five most important factors of the 
Entropy Simple and Entropy Pair methods is the same as the 
top of the EFAST method. Also, the ranking of the first three 
factors, i.e. HumanInertia, Ke and GainA, is the same as for the 
EFAST method, while the ranking of factors Rshunt and Wref 
is interchanged compared to the EFAST method. However, 
Rshunt and Wref have approximately the same total sensitivity 
index, STi, and hence similar impact on the AccTime response, 
which explains the swapping of the two factors by the entropy-
based methods. 

One subsequent analysis was to apply the entropy-based 
methods on a lower number of simulations and test if the top of 
the most important factors is similar to the EFAST method, 
performed on 975 simulations. For this we used a uniform 
Monte Carlo design with 300 runs, as this is the common 
number of simulations for a Monte Carlo experimental setup. 

TABLE I.  THE FACTORS OF THE E-BIKE APPLICATION 

Components 
Factors Label 

[units] 
Description 

Current 
Sensor 

GainA [-], 

OffsetA [µV] 

Gain of the sensor amplifier 

Offset voltage of the sensor 
amplifier 

LevelNoise [-] 
Adjustment factor for the level of 

noise floor of the amplifier 

RoLPF [ ] 

CoLPF [nF] 

Resistance and capacitance of the 
output Low Pass Filter 

Rshunt [µ ] Shunt resistor  

Angle Sensor 

OffSin [V] 

ASin [-] 

PhiY [ ] 

Offset in the sine sensor voltage 

Synchronicity error 

Mechanical misalignment 

Motor 
Rs [ ] 

Ls [H] 

Motor resistance 

Motor inductance 

Ke [V/rad/s] BackEMF voltage constant 

Operating 
Conditions 

Wref [rad/s] Speed reference 

HumanInertia 
[kgm2] 

Human moment of inertia 

Inverter InverterSupply [V] Supply of the inverter 

TABLE II.  RESPONSES NAMES AND SIGNIFICANCE 

Response name Significance 

AccTime Acceleration time 

TorqueRipple Torque ripple 

 

Table IV illustrates the results. Even with a computational 
cost three times smaller than for the EFAST method, the 
entropy-based methods identified four factors from a total of 
five important factors in the top of the most important factors. 
HumanInertia and Ke, which were returned to have the greatest 
impact on the AccTime response by the EFAST method, are 
ranked in the top of the three most important factors according 
to the entropy-based methods. 

The same approach was repeated also for the TorqueRipple 
response. Table V presents the results of the SA with the 
entropy-based methods applied on the simulations of the 
EFAST experimental setup. Three factors from the top of the 
four most important factors of the EFAST are returned as 
important factors also by the entropy-based methods. 
Moreover, the Wref and LevelNoise factors are ranked similarly 
by all methods.  

The same approach was applied on a lower number of 
simulations, considering a uniform Monte Carlo design with 
300 runs. Table VI illustrates the results. The ranking of the 
important factors according to the Entropy Simple method 
remains the same even with 300 simulations, while the ranking 
of the top three most important factors of the Entropy Pair 
method corresponds to the top three of the EFAST method. 

The proposed entropy-based methods proved their 
efficiency in terms of the computational cost and also 
accuracy, having approximately the same accuracy on 300 
simulations as the EFAST method on 975 simulations, which 
means a 60% lower computational cost than the EFAST 
method. 



TABLE III.  TOP OF MOST IMPORTANT FACTORS; ACCTIME RESPONSE; 
975 SIMULATIONS FOR THE ENTROPY-BASED METHODS 

EFAST 

(975 runs) 

Entropy Simple 

(975 runs) 

Entropy Pair 

(975 runs) 

factor STi factor Hi factor HTi 

HumanInertia 0.629 HumanInertia 1 HumanInertia 1 

Ke 0.228 Ke 0.149 Ke 1 

GainA 0.073 GainA 0.113 GainA 0.767 

Rshunt 0.035 Wref 0.102 Wref 0.608 

Wref 0.033 Rshunt 0.042 Rshunt 0.330 

TABLE IV. TOP OF MOST IMPORTANT FACTORS; ACCTIME RESPONSE; 
300 SIMULATIONS FOR THE ENTROPY-BASED METHODS 

EFAST 

(975 runs) 

Entropy Simple 

(300 runs) 

Entropy Pair 

(300 runs) 

factor STi factor Hi factor HTi 

HumanInertia 0.629 HumanInertia 1 HumanInertia 1 

Ke 0.228 Wref 0.148 GainA 1 

GainA 0.073 Ke 0.115 Ke 0.770 

Rshunt 0.035 ASin 0.097 Wref 0.548 

Wref 0.033 GainA 0.065 LevelNoise 0.340 

TABLE V. TOP OF MOST IMPORTANT FACTORS; TORQUERIPPLE 

RESPONSE; 975 SIMULATIONS FOR THE ENTROPY-BASED METHODS 

EFAST 

(975 runs) 

Entropy Simple 

(975 runs) 

Entropy Pair 

(975 runs) 

factor STi factor Hi factor HTi 

Wref 0.426 Wref 1 Wref 1 

LevelNoise 0.318 LevelNoise 0.836 InverterSupply 1 

Rshunt 0.249 PhiY 0.404 LevelNoise 0.767 

InverterSupply 0.248 Rshunt 0.303 ASin 0.417 

TABLE VI. TOP OF MOST IMPORTANT FACTORS; TORQUERIPPLE 

RESPONSE; 300 SIMULATIONS FOR THE ENTROPY-BASED METHODS 

EFAST 

(975 runs) 

Entropy Simple 

(300 runs) 

Entropy Pair 

(300 runs) 

factor STi factor Hi factor HTi 

Wref 0.426 Wref 1 Wref 1 

LevelNoise 0.318 LevelNoise 0.661 LevelNoise 1 

Rshunt 0.249 PhiY 0.253 Rshunt 0.701 

InverterSupply 0.248 Rshunt 0.240 ASin 0.625 

Moreover, the proposed methods have the advantage that 
they do not impose a particular design of experiments and 
could be applied also on the simulation results of the EFAST 
experiment plan. 

V. CONCLUSIONS 

Two novel entropy-based methods were introduced and a 
comparison of their performance in terms of accuracy and 
computational cost to the state-of-the-art methods was done for 
two setups. First, the methods were applied on a set of custom-
defined functions and then an E-Bike application, both 
including a high number of factors. 

The reason for using the test functions was to do a 
comparison in a controlled manner of the methods’ 
performance in terms of factor ranking for different types of 
effects and to determine the execution cost implied by each 
method. 

On the test functions, the proposed methods outperformed 
the Morris and Sobol variance-based methods and had similar 
accuracy as the Jansen and EFAST methods, with the 

advantage of lower computational cost (which does not 
increase with the number of factors). 

The methods were also evaluated on a real life application, 
an E-Bike. In this case, the results of the EFAST method were 
considered as reference (because of their high accuracy on the 
test functions) and we compared the rankings provided by the 
proposed entropy-based methods to the ranking of the EFAST 
method. 

As the proposed entropy-based methods have no 
restrictions about the experimental setup nor the number of 
simulations required, we applied them on the experimental 
runs resulted from the EFAST SA approach (975 runs) and on 
a uniform Monte Carlo design with 300 runs.  

Even with a much lower computational cost, the proposed 
methods returned the factors labeled as important by the 
EFAST method. By such an analysis we were able to 
determine the most influential factors on the E-Bike’s 
responses of interest. 
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