
FSS-OBOP: Feature subset selection guided by a bucket order consensus ranking

Juan A. Aledo
Departamento de

Matemáticas,
Universidad de

Castilla-La Mancha,
Albacete 02071, Spain

juanangel.aledo@uclm.es

José A. Gá
Departamento de

Sistemas Informáticos,
Universidad de

Castilla-La Mancha,
Albacete 02071, Spain
jose.gamez@uclm.es

David Molina
Departamento de

Matemáticas,
Universidad de

Castilla-La Mancha,
Ciudad Real 13071, Spain

david.molina@uclm.es

Alejandro Rosete
Instituto Superior
Politécnico José

Antonio Echeverrı́a
(Cujae), Marianao 19390,

Havana, Cuba
rosete@ceis.cujae.edu.cu

Abstract—Several authors have ton the importance of aggre-
gating the results of different feature selection methods in
order to improve the solutions obtained. To the best of our
knowledge, the consensus rankings obtained in all of these
proposals do not allow that some variables are tied. This
paper studies the advantages of allowing ties in the consensus
ranking obtained from aggregating several features selection
methods. This implies that the consensus ranking is modeled as
the problem of obtaining the Optimal Bucket Order instead
of solving the Rank Aggregation Problem. In this paper we
propose a filter-wrapper algorithm, that we will call FSS-
OBOP, which uses a filter-based consensus ranking with ties
to guide the posterior wrapper phase. By using a benchmark
with 12 high-dimensional datasets, we show that allowing
ties in the consensus rankings leads to subsets that, when
used to induce a classifier, obtain at least the same, when
not better, accuracy. Furthermore, and what is actually more
significant, they reduce the number of wrapper evaluations
extraordinarily.

1. Introduction

Given a dataset with n predictive variables, attributes or
features X = {X1, . . . , Xn} and a discrete (nominal) target
variable known as class C, supervised classification consists
in the induction from the available data of a classifier or
function

C : X1 ×X2 × · · ·Xn −→ C

which generalizes well on unseen (new) data. Supervised
Feature Selection (SFS) or Feature Subset Selection (FSS)
is the problem of selecting a subset S ⊆ X which will be
used to induce the classifier instead of X . When n is large,
then |S| � |X |.

FSS is a very important problem in data mining and
pattern recognition because of the increasing size of the
attributes (variables) of databases [1], e.g. in biology [2].
FSS is also relevant since several studies have demonstrated
that a subset of features may produce more accurate pre-
dictive models than the entire set [3]. Furthermore, feature

selection is convenient to simplify (in terms of time, space
and comprehensibility) the induced models [3].

In SFS the information provided by the class variable
is used to guide the feature selection process. There are
two main schemes: filter and wrapper, although they can
be successfully combined in the so-called filter-wrapper
approach [4], [5]. In the univariate filter approach, the
predictive variables are scored according to their merit with
respect to the class. Thus, information, distance or error-
based measures are used, and then the variables are ranked
from best to worse score and the best k variables are
retained, k being a user-defined value. Multivariate filter
approaches are also available. They work by approximating
the merit of a subset by aggregating in some way the
merit of the pairs or triplets of variables it contains [6].
On the other hand, in the wrapper approach the merit of
a subset is directly assessed by inducing a classifier over
the selected subset and (cross)validating it. Obviously, both
approaches have their own (dis)advantages, mainly related
with CPU time and generalization capability. Finally, the
filter-wrapper approach arises as a combination that tries
to take advantage from the two base methods. It starts by
creating a ranking of variables by using univariate filter
criteria, and then runs over the (first k ≤ n) variables of
the ranking by scoring in a wrapper way the subsets formed
by the first r variables of the ranking (r = 1, . . . , k). In
the simplest filter-wrapper approach, it means to reduce
the number of induced/evaluated classifiers from polynomial
(≥ n2) to linear.

In this paper we focus on the univariate filter+wrapper
approach, but instead of using a single ranking we produce
a set of them by using re-sampling techniques. Then we
aggregate these sets of rankings into a single one, but with
the novelty of allowing ties in the obtained consensus, that
is, variables can be arranged in groups in such a way that
there is no preference among them. This bucket order-based
ranking will be used to guide the wrapper phase. As a result,
we expect to maintain or even increase the predictive power
of the obtained classifier; but, over all, what we pursue is
to reduce the number of (highly time consuming) wrapper
evaluations. Our expectations are corroborated by the experi-

ments carried out over 12 high-dimensional datasets, ranging
from 500 to more than 50000 variables.

The rest of the paper is organized as follows. Section 2
briefly recaps some of the proposals in the literature dealing
with rank aggregation-based FSS. Section 3 introduces the
optimal bucket order problem. In Section 4 we formally
present the FSS-OBOP algorithm, which is our proposal
to approach the FSS problem by using a bucket order-
based consensus ranking. In Section 5 we carry out an
extensive experimental comparison over a benchmark of
12 high-dimensional datasets and, finally, in Section 6 we
conclude and identify some possibilities to continue with
this research.

2. Related studies

Recently, researchers in FSS have considered the use
of a ranking of predictive variables which comes from
the aggregation of a set of different rankings of variables,
obtained by using different feature selection techniques of
different samples of the original dataset. In this section we
briefly review (classify) some of the works in this direction.

Several papers have been devoted to study the way in
which the ranking is made. Thus, in [7] permutations of the
most important variables (top-k lists) are aggregated, while
in [8] and [9] the aim of the study is to compare the mean
and the median as the criterion to be used in the aggregation
process. In [10] a more flexible approach is followed, by
allowing weighted input rankings and so using a weighted
rank aggregation method.

Regarding the algorithms used to carry out the aggrega-
tion process, heuristic and fast greedy methods like Borda
are mainly used [11]. However, in some papers more so-
phisticated search engines have been used, obtaining better
results but needing, by far, more CPU time. This is the
case of [12] and [13] where genetic algorithms are used
to guide the search, or [14] where a Markov chain-based
rank aggregation algorithm is applied.

With a different goal, several papers have devoted their
effort to study the effect that the use of a consensus or
aggregated ranking has in terms of stability and robustness.
For example, [15], [16], [17], [18] claim that the use of
a consensus ranking reduces the unstability of the selected
subset with respect to sampling variations. The robustness
against small variations in the scores used to construct the
original rankings is analyzed in [3], [19], concluding that
the consensus ranking is a more robust approach.

With respect to applications, consensus based feature
selection has been applied to different real world problems:
medical data [20], credit scoring [21], micro-array data [22],
text sentiment classification [13], mass spectometry data
[16], etc.

Finally, it is interesting to remark that in many of the
previous papers, it is explicitly stated that ties in the final
ranking could be of interest, but in practice they are resolved
randomly if necessary. In this paper, we focus our study on
filling this gap.

3. The optimal bucket order problem

In all the papers cited in the previous section, the goal
of the aggregation is to obtain a ranking without ties, that
is, a strict preference relation is defined over all the items
(features) appearing in the ranking. Therefore, the problem
approached is the one known as the Rank Aggregation
Problem (RAP) [23]. Basically, the RAP can be defined as
follows (see e.g. [24] for the details):

• Let [[n]] be a set of items.
• Let Σ = {σ1, . . . , σr} be a set of rankings, σi

establishing a preference order for a subset [[mi]]
of [[n]], i = 1, . . . , r.

• The solution to the RAP is the consensus ranking
π0, which is a permutation of (all) the elements in
[[n]] (or complete ranking without ties).

• π0 is computed as the permutation having the small-
est average distance to the rankings in Σ. Usually,
the distance measures the number of disagreements
between two given rankings.

If all the rankings in Σ are permutations of the elements
in [[n]], then the problem is known as the Kemeny Problem
(KP) [25] and the Kendall distance is used as measure. If
the rankings in Σ can be incomplete and/or have ties, then
we are in the general setting or RAP, and a generalized
Kendall distance is used as measure [26]. Both problems are
NP-complete and usually tackled by using greedy heuristic
algorithms [24], [27].

Although RAP has more degrees of freedom regarding
the type of rankings in the input, both problems, KP and
RAP, require to obtain a permutation as output. In this paper
we argue in favor of allowing ties in the obtained consensus
ranking. To the best of our knowledge, this constitute a novel
approach to deal with the FSS problem. In feature selection,
allowing ties may be convenient because of the following
reasons:

• Semantics. Suppose we use several methods and
obtain different rankings for a subset of variables1:
{1|2|3|4, 2|1|3|4, 1|2|4|3, 2|1|4|3}. Then, if we want
to aggregate them into a consensus one, it is obvious
that all of them agree in that i is better that j for
i ∈ {1, 2} and j ∈ {3, 4}, but there is no consensus
with respect to the preference between 1 and 2,
and between 3 and 4. Hence, the most reasonable
solution in this case would be 1, 2|3, 4. However, by
applying RAP (KP in this case) this solution is not
allowed and the ties must be arbitrarily or randomly
broken.

• Coherence. Suppose that in all the obtained rankings
1 and 2 are tied, that is, no preference relation
between them is expressed. Even in this case, where
there is no doubt, the algorithm solving RAP must
break the tie in order to fulfill the requirements of
RAP.

1. Items between vertical bars are equally preferred or tied;a|b means
that a is preferred to b.

• Computational advantages. If we take the ranking
to guide an ulterior wrapper FSS stage, then, as we
will detail in Section 4, the presence of ties in the
resulting ranking will reduce the number of wrapper
evaluations.

To allow ties in the solution we rely on a different
approach to aggregate the rankings: the Optimal Bucket
Order Problem (OBOP) [28], where a bucket is a set of
items that are tied. The output of the OBOP is a bucket
order, instead of a strict preference ordering or permutation.

Next we formally introduce the OBOP, but adapting the
presentation to the FSS problem, e.g. we talk of features
instead of items, etc.

• Given a set of features [[n]] = {1, ..., n}, a bucket or-
der B is an ordered partition of [[n]] [28], [29]. More
precisely, it is a linear ordering of disjoint subsets
(buckets) B1, B2, . . . , Bk of [[n]], 1 ≤ k ≤ n, with
∪ki=1Bi = [[n]].

• Given two buckets Bi, Bj in B, we will write Bi ≺B
Bj to indicate that Bi precedes Bj according to the
bucket order B. Analogously, given two features u ∈
Bi, v ∈ Bj , we will write u ≺B v if Bi ≺B Bj .
All the features that belong to the same bucket are
considered tied. Thus, if u, v are tied regarding B,
we will write u ∼B v.

• Associated to a bucket order B we will consider its
associated bucket matrix B [28], which is the square
matrix n × n such that B(u, v) = 1 if u ≺B v,
B(u, v) = 0 if v ≺B u and B(u, v) = 0.5 if u ∼B v.
In particular, all the entries in the main diagonal
of B are equal to 0.5 and B(u, v) + B(v, u) = 1
for all u, v ∈ [[n]], u 6= v. Alternatively, we will
write u ≺B v, v ≺B u and u ∼B v to express
that B(u, v) = 1, B(u, v) = 0 and B(u, v) = 0.5,
respectively.

• A pair order matrix M of dimension n × n is a
matrix with entries in the interval [0, 1] and such
that M(u, v) + M(v, u) = 1 for whichever u, v ∈
[[n]], u 6= v, and M(u, u) = 0.5 for all u ∈ [[n]].
Usually M(u, v) is interpreted as the probability that
the feature u precedes the feature v regarding a given
set of rankings.

• Given a pair order matrix M , the OBOP consists in
finding a bucket matrix B n × n (that represents a
bucket order) which minimizes

D(B,M) =
∑
u,v

|B(u, v)−M(u, v)|. (1)

Since any solution of RAP is in the space of solutions
of OBOP, OBOP can be considered as a generalization of
RAP, and it is also NP-complete [29].

In [29] the Bucket Pivot Algorithm (BPA) was introduced
to tackle with the OBOP and an approximation study of
its performance was presented in [28]. BPA is a recursive
algorithm that works similarly to the quicksort algorithm. It
picks a pivot at random and then places the other features
(items) before, after or in the same bucket as the pivot

according to the value in the pair order matrix M . In
particular, given a parameter β ∈ [0, 0.5], we put a feature
u before the feature-pivot p if M(p, u) ≤ 0.5−β, we put a
feature u after the feature-pivot p if M(p, u) ≥ 0.5+β, and
in the same bucket as p otherwise. Then, recursive calls are
carried out for the lists before and after.

4. FSS based on the consensus bucket order

As mentioned in the introduction, perhaps the simplest
filter-based feature selection method consists in the ap-
plication of an evaluator eval(fi, C) which measures the
discriminative power of feature fi with respect to the class C
in some way. Then, a ranker is used as search method, which
simply sorts the features according to their eval(·, C) value.
Finally, only the first k features in the rank are retained
to induce the classifier. This method has the advantage of
being computationally efficient, as only n filter evaluations
are needed. However, it has two important drawbacks: (1) it
does not consider interactions between the features; and (2)
the value of k must be manually set, with the risk of being
too small or too big.

A potential solution to the aforementioned problems is
to use the filter-wrapper approach. In this approach, first a
ranking is obtained, which is later refined by using wrapper
evaluations. Thus, the value of k is less important and an
enoughly large value is selected, since it would be reduced
later in the wrapper phase. The wrapper process is guided
by the filter-based ranking, which leads to a reduction in
the number of wrapper evaluations in comparison to pure
wrapper methods. In this work we focus on the simplest
approach, which carries out k wrapper evaluations exactly:

1) Let σ = f1|f2| . . . |fk be the ranking obtained for
the best k features according to the filter measure.

2) For i = 1, . . . , k do
evaluate the subset Si = {fj : fj ∈ σ ∧ j ≤ i}
in a wrapper way.

3) Return the subset Si with the best evaluation score.

As have been pointed out in Section 2, dealing with
the aggregation of several rankings has some advantages
with respect to dealing with a single one, e.g. stability
and robustness against the small variations introduced by
the evaluation measures and the train/test partitions. In this
paper we advocate for the use of bucket orders instead of
strict preference orders. Some of the reasons have been
detailed in the previous section. Now we discuss on the
computational efficiency expected gain, which consists in
saving a considerably number of wrapper evaluations.

If we use a bucket order to guide the wrapper evaluation
process, all the features in the same bucket are equally
preferred, so there is no need to deal with them one by one.
Thus, instead of adding a single variable to the selected
subset at each iteration, we add in a single step all the
variables placed in the next bucket. For example, if the
obtained ranking (bucket order) is 1|2, 3|4, 5, 6|7, then only
4 subsets instead of 7 will be evaluated in the wrapper phase:
{1}, {1, 2, 3}, {1, 2, 3, 4, 5, 6}, and {1, 2, 3, 4, 5, 6, 7}. As

wrapper evaluations mean to train and validate a classifier,
even many times depending on the validation carried out, the
process is computationally time demanding, and so reducing
the number of wrapper evaluations represents a great saving
in CPU time.

The proposed method is shown in Table 1. Now we
briefly explain it:

• Lines 1-5. Following the idea used in ensemble
theory [30], we draw b samples from D and compute
a ranking of size k for each one. As the k features
ranked in each σi can be different, the number of fea-
tures selected in at least one ranking, k∗ = |∪bi=1σi|,
is larger than k (usually, in practice k∗ � k).

• Line 6. M , the square matrix of size k∗ × k∗, is
constructed from Σ = {σ1, σ2, . . . , σb}. M(u, v) is
the proportion of rankings where u precedes v given
the number of rankings in Σ where both features
appears.

• Line 7. BPA is stochastic because of the random
selection of the pivot. We observed that the initial
pivot plays a major role in the final bucket order.
Thus, by BPAit we refer to iterate BPA it times by
using different seeds, so that the best one is returned.
Two remarks must be done here: (1) BPA is very fast
O(k∗log(k∗)); and (2) the goodness of the bucket
order returned by each iteration of BPA is scored by
using the matrix C and equation 1. Thus, this step
is independent of the size of the dataset.

• Line 8. The bucket order is truncated to its first k′
buckets. k′ is selected such that | ∪k

′−1
i=1 Bi| < k and

| ∪k′i=1 Bi| ≥ k.
• Lines 9-13. This is the wrapper phase guided by the

bucket order. k′ wrapper evaluations are carried out,
each one using as input features the union of those
included in the first i buckets, i = 1, . . . , k′. We
use accuracy as goodness score and each subset is
assessed by using a cross validation process (5cv in
our experiments) in order to prevent overfitting.
A particular situation arises in this phase. Usually
| ∪k′i=1 Bi| > k, and therefore including all the
features in the last bucket means using more than k
features. For a fair comparison with the approaches
using rankings without ties, we only add to Sk′ the
first k − | ∪k

′−1
i=1 Bi| features of bucket Bk′ . Notice

that the position inside of a bucket is arbitrary and
depends on the random seed used by the particular
iteration of BPA.

• Lines 14-15. Finally the subset having the best ac-
curacy is returned.

FSS-OBOP requires b·n filter evaluations and k′ wrapper
evaluations. In fact, in this case, each wrapper evaluation
means to learn and test n · f classifiers, where n · f is the
number of folds of the inner cross-validation used to fight
overfitting. Therefore, wrapper evaluations are much more
computationally expensive than filter ones. The reduction of
wrapper evaluation calls is the goal of this paper.

TABLE 1. ALGORITHM FSS-OBOP

Input
D a dataset of m instances over variables {f1, . . . , fn, C}

eval a univariate evaluator to score the features

k the number of features to select in the filter phase

b the number of bootstrap samples to create the rankings

β the β value for BPA

it the number of times BPA is iterated

A the classification algorithm be used in the wrapper phase

Ouput
S the subset of selected features

1 for i = 1, . . . , b do
2 Obtain a sample Ti of size m from D by using sampling

with replacement

3 Create a ranking πi of the features by using Ti and eval

4 σi ← Truncate(πi, k)

5 endfor
6 M ← ConstructMatrix({σ1, σ2, . . . , σb}) // Mk∗×k∗

7 B0 ← BPAit(M,β)

8 Bk0 ← Truncate(B0, k) // Bk0 = B1| . . . |Bk′ , k
′ ≤ k

9 for i = 1, . . . , k′ do
10 Si ←

⋃i

j=1
Bj

11 Di ← D↓Si∪{C}

12 acci ← CrossValidate(A,Di)

13 endfor
14 s = argmax{acc1, . . . , acck′}
15 return S = Ss

5. Experimental results and discussion

The goal of this paper is to study if the use of the
consensus bucket order represents a significant reduction in
the number of wrapper evaluations without decreasing the
accuracy of the obtained model. Therefore, our experiments
are designed in order to test these two issues. As bench-
mark, we use a set of 12 high-dimension datasets usually
considered in recent FSS literature [11], [16], [19].

In Table 2 we show a brief description of these datasets:
number of rows (instances) m, number of variables n and
number of labels for the class variable c.

For the comparison, we use the following algorithms:

• Ranker (R). In this case the ranking (strict preference
order) directly computed by using the evaluator is
used to guide the wrapper search. This method re-
quires n filter evaluations and k wrapper evaluations

• FSS-OBOP(β = 0). When β = 0 BPA returns a
strict preference order, that is, a bucket order in
which every bucket contains a single feature. This
approach, which uses a strict preference order as
consensus, has been the one used in the literature
to deal with consensus-based FSS. It requires b · n
filter evaluations and k wrapper evaluations

TABLE 2. DATABASES USED IN THE EXPERIMENTS

DB m n c

madelon 501 2000 2
colon 2001 62 2
dlbcl 4027 47 2

lymphoma 4027 96 9
gisette 5001 6000 2

leukemia 7130 72 2
arcene 10001 100 2
lung 12534 181 2

prostate 12601 136 2
gcm 16064 190 14

dexter 20001 300 2
psoriasis 54676 180 3

• FSS-OBOP(β > 0). The approach proposed in this
paper. In this case, a bucket order is used to guide the
wrapper search. The value of β controls the number
of bucket in the bucket-order, larger values of beta
produce a small number of buckets. We have tried
β = 0.25 (as it is the value recommended in [28]),
β = 0.2 and β = 0.15.

We perform 8 experiments over each dataset by changing
some of the parameters of the FSS-OBOP algorithm:

• Two evaluators are used, one based on information
theory and the other one on the classification error:

– Symmetrical Uncertainty (SU) [31] is a sort
of normalized mutual information between
the class C and a given feature fi. It is given
by the expression

SU(fi, C) =
2(H(C)−H(C|fi))
H(C) +H(fi)

,

where H(·) stands for Shannon entropy. In
our case, if fi is numeric, then it is discretized
by using entropy-based multi-interval Fayad
and Irani discretization [32]. The discretiza-
tion is only used to compute SU(·). In the
wrapper phase the original numeric values are
used.

– OneR (1R) [33] scores each variable by ap-
plying the 1R classification algorithm. This
algorithm generates a set of rules which only
uses a single variable as predictor, then the
classification error using these rules is used
to score the given feature.

• Two different classifiers are used.

– Naive Bayes (NB) [34] is a computationally
very efficient probabilistic classifier which
is known to be affected by irrelevant and
redundant features.

– C4.5 [35] is a state-of-the-art decision tree-
based classifier. It carries out its own embed-
ded feature selection process, but it is largely

benefited from a previous FSS process, in
particular when it has to deal with many
numerical variables.

• The number of features that are selected in the filter
step (k). We use k = 50 and k = 100.

• We always generate b = 50 samples and then 50
rankings are used to obtain the consensus.

• BPA is always iterated 100 times to select the best
bucket order (according to the input matrix C).

5.1. Results

To study the performance of the proposed algorithm with
these parameterizations, we run a 10 folds cross-validation
for each parameterization and dataset. The averaged ac-
curacy for the test folds when using SU as evaluator are
reported in Table 3, while the results when using 1R as
evaluator are reported in Table 4. The best result(s) for each
experiment is(are) in bold.

Following the recommendations in the literature [36],
we carry out a statistical analysis based on the application
of Friedman test (α = 0.05) and a post-hoc Holm test
(α = 0.05) for the cases in which Friedman has detected
that at least one algorithm is significantly different to the
others. We compare the algorithms globally, considering all
the results for each algorithm (8 experiments × 12 datasets).
We also carry out particular comparisons by taking into
account only the results for SU, 1R, NB, C4.5, k = 50
or k = 100. The p-values and rankings obtained by the
Friedman tests are shown in Table 5, with the averaged
position between brackets. If the Friedman test detects that
at least one algorithm is different, then we highlight the p-
value by using bold face. In these (3) cases, the post-hoc
Holm test is carried out by using as control the algorithm
in the first position of the ranking. We highlight those
algorithms which are significantly worse than the control
according to Holm test in bold face.

5.2. Discussion

From the statistical analysis we can extract the following
conclusions:

• The use of bucket orders to guide the search is
never worse than using a strict preference order-
based consensus or the ranking directly obtained by
ranker+evaluator.

• More precisely, the use of the bucket orders obtained
by using β = 0.2 or β = 0.25 is significantly
better in 3 out of the 7 cases studied. Between this
two algorithms (betas), even significant difference is
never observed, we should select β = 0.2 as it is
placed in the first position of the ranking obtained
by Friedman test in 6 out of the 7 cases, and it is
always in a better position than β = 0.25.

• Our experiments do not report any supremacy re-
garding accuracy of using the consensus ranking
without ties instead of the ranking directly obtained

TABLE 3. ACCURACY RESULTS WHEN USING SYMMETRICAL UNCERTAINTY AS EVALUATOR

β β β β

Dataset R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25

arcene 0,79 0,72 0,75 0,75 0,76 0,8 0,76 0,76 0,77 0,79 0,79 0,75 0,74 0,76 0,74 0,77 0,81 0,8 0,81 0,8
colon 0,84 0,8 0,79 0,79 0,79 0,8 0,79 0,73 0,76 0,76 0,84 0,8 0,75 0,82 0,79 0,82 0,78 0,82 0,79 0,79
dexter 0,86 0,86 0,87 0,87 0,87 0,87 0,87 0,87 0,82 0,83 0,9 0,91 0,91 0,91 0,9 0,83 0,84 0,87 0,86 0,83
dlbcl 0,93 0,93 0,91 0,91 0,89 0,7 0,7 0,71 0,74 0,71 0,93 0,89 0,93 0,93 0,91 0,7 0,68 0,68 0,71 0,78
gcm 0,52 0,56 0,58 0,55 0,57 0,43 0,39 0,44 0,38 0,45 0,53 0,57 0,58 0,54 0,57 0,43 0,43 0,43 0,48 0,46

gisette 0,89 0,89 0,89 0,89 0,88 0,92 0,92 0,92 0,92 0,92 0,89 0,89 0,89 0,89 0,89 0,93 0,93 0,93 0,94 0,93
leukemia 0,91 0,94 0,92 0,97 0,96 0,86 0,88 0,88 0,86 0,86 0,91 0,94 0,94 0,97 0,96 0,86 0,89 0,88 0,86 0,86

lung 0,98 0,98 0,99 0,99 0,99 0,93 0,91 0,93 0,93 0,95 0,98 0,98 0,99 0,99 1 0,93 0,91 0,94 0,94 0,95
lymphoma 0,79 0,8 0,79 0,8 0,78 0,8 0,76 0,77 0,77 0,77 0,78 0,78 0,78 0,79 0,8 0,8 0,77 0,79 0,78 0,81
madelon 0,61 0,61 0,6 0,6 0,6 0,75 0,76 0,76 0,76 0,77 0,61 0,6 0,6 0,59 0,59 0,75 0,76 0,76 0,77 0,77
prostate 0,7 0,65 0,64 0,66 0,61 0,85 0,87 0,84 0,88 0,87 0,7 0,65 0,63 0,64 0,62 0,85 0,88 0,88 0,87 0,86
psoriasis 0,69 0,71 0,72 0,69 0,77 0,67 0,67 0,64 0,73 0,71 0,71 0,72 0,73 0,72 0,77 0,68 0,7 0,66 0,71 0,71

k = 50, A = Naive Bayes k = 50, A = C4.5 k = 100, A = Naive Bayes k = 100, A = C4.5

TABLE 4. ACCURACY RESULTS WHEN USING ONER AS EVALUATOR

β β β β

Dataset R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25

arcene 0,7 0,65 0,64 0,65 0,62 0,68 0,75 0,66 0,73 0,65 0,7 0,68 0,67 0,73 0,7 0,67 0,69 0,65 0,75 0,72
colon 0,84 0,8 0,82 0,82 0,75 0,78 0,82 0,85 0,82 0,71 0,84 0,8 0,75 0,79 0,74 0,78 0,82 0,82 0,85 0,84
dexter 0,85 0,81 0,83 0,85 0,84 0,84 0,84 0,86 0,85 0,85 0,89 0,89 0,9 0,89 0,89 0,84 0,85 0,85 0,84 0,83
dlbcl 0,91 0,89 0,93 0,93 0,91 0,78 0,76 0,74 0,78 0,82 0,93 0,89 0,91 0,91 0,91 0,78 0,74 0,7 0,83 0,86
gcm 0,54 0,57 0,56 0,52 0,52 0,48 0,43 0,47 0,46 0,45 0,56 0,56 0,55 0,53 0,55 0,45 0,41 0,44 0,46 0,46

gisette 0,87 0,87 0,87 0,87 0,87 0,91 0,91 0,91 0,91 0,91 0,88 0,88 0,88 0,88 0,88 0,93 0,93 0,93 0,93 0,93
leukemia 0,94 0,94 0,97 0,97 0,97 0,88 0,86 0,86 0,86 0,86 0,94 0,96 0,97 0,94 0,94 0,88 0,86 0,86 0,86 0,86

lung 0,99 0,98 0,99 0,99 0,98 0,96 0,93 0,94 0,95 0,95 0,99 0,98 0,99 0,99 1 0,96 0,94 0,93 0,95 0,95
lymphoma 0,75 0,78 0,82 0,75 0,77 0,6 0,75 0,69 0,78 0,73 0,77 0,77 0,75 0,81 0,79 0,64 0,74 0,69 0,73 0,75
madelon 0,62 0,6 0,6 0,61 0,6 0,69 0,75 0,75 0,75 0,74 0,62 0,6 0,6 0,6 0,61 0,71 0,74 0,74 0,75 0,74
prostate 0,67 0,71 0,62 0,66 0,63 0,85 0,91 0,87 0,87 0,86 0,67 0,7 0,6 0,62 0,65 0,85 0,89 0,83 0,85 0,85
psoriasis 0,78 0,78 0,81 0,79 0,81 0,67 0,71 0,71 0,68 0,69 0,79 0,78 0,78 0,81 0,81 0,69 0,67 0,71 0,74 0,73

k = 50, A = Naive Bayes k = 50, A = C4.5 k = 100, A = Naive Bayes k = 100, A = C4.5

TABLE 5. RESULTS FOR THE STATISTICAL ANALYSIS ON ACCURACY

All (p=0,033) SU (p=0,114) 1R (p=0,143) C4.5 (p=0,000) NB (p=0,343) k = 50 (p=0,526) k = 100 (p=0,021)
β = 0, 20 (2,60) β = 0, 20 (2,65) β = 0, 20 (2,53) β = 0, 20 (2,34) R (2,67) β = 0, 20 (2,69) β = 0, 20 (2,5)
β = 0, 25 (2,92) β = 0, 25 (2,77) R (2,92) β = 0, 25 (2,59) β = 0, 20 (2,85) R (2,97) β = 0, 25 (2,68)

R (3,11) β = 0, 15 (2,97) β = 0, 25 (3,07) β = 0,15 (3,21) β = 0, 15 (3,06) β = 0, 15 (2,99) R (3,25)
β = 0,15 (3,14) R (3,29) β = 0 (3,17) β = 0 (3,31) β = 0 (3,18) β = 0, 25 (3,15) β = 0,15 (3,28)

β = 0 (3,25) β = 0 (3,32) β = 0, 15 (3,31) R (3,55) β = 0, 25 (3,24) β = 0 (3,20) β = 0 (3,29)

by the evaluator. Things may be different if other
filter-wrapper strategies were used or if other param-
eters were studied, e.g. size of the selected subset or
stability, as reported in the literature.

Once we have concluded that using FSS-OBOP (β =
0.2) is the preferred algorithm with respect to accuracy,
we pay attention to the number of wrapper evaluations
carried out by the different algorithms (Tables 6 and 7). Now
the difference is clear. The algorithms using the ranking
produced by the evaluator+ranker or using the consensus

represented by the ranking without ties need exactly 50
or 100 wrapper evaluations for k = 50 and k = 100
respectively. These numbers reduce to 5.04 (k = 50) and
6.46 (k = 100), which represents the 10.08% and the 6.46%
with respect to the rankings non allowing ties. As wrapper
evaluations are much more costly in terms of CPU time than
filter ones, this fact clearly compensates the number of extra
filter evaluations carried out with respect to the direct use
of the evaluator-based ranking.

Finally, due to the lack of space, we only briefly com-
ment on the number of selected features. In this case, we

TABLE 6. NUMBER OF WRAPPER EVALUATIONS WHEN USING SYMMETRICAL UNCERTAINTY AS EVALUATOR

β β β β

Dataset R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25

arcene 50 50 4,1 2,9 2,1 50 50 4,1 2,9 2,1 100 100 4,8 4,1 3,1 100 100 4,8 4,1 3,1
colon 50 50 4,6 4 3,7 50 50 4,6 4 3,7 100 100 5,4 4,4 4 100 100 5,4 4,4 4
dexter 50 50 10,5 8,7 7,1 50 50 10,5 8,7 7,1 100 100 12,5 10 8,5 100 100 12,5 10 8,5
dlbcl 50 50 5,1 4,3 3,4 50 50 5,1 4,3 3,4 100 100 6,2 5,1 3,9 100 100 6,2 5,1 3,9
gcm 50 50 2,9 2,5 2 50 50 2,9 2,5 2 100 100 3,8 3,1 2,2 100 100 3,8 3,1 2,2

gisette 50 50 15,2 12,2 10,1 50 50 15,2 12,2 10,1 100 100 23,5 18,5 14 100 100 23,5 18,5 14
leukemia 50 50 7,1 4,8 4,5 50 50 7,1 4,8 4,5 100 100 8,4 6,4 5,3 100 100 8,4 6,4 5,3

lung 50 50 6 4,5 3,5 50 50 6 4,5 3,5 100 100 8,1 6,2 4,6 100 100 8,1 6,2 4,6
lymphoma 50 50 3,6 2,9 3,2 50 50 3,6 2,9 3,2 100 100 5 3,6 3,2 100 100 5 3,6 3,2
madelon 50 50 8,8 6,7 5,3 50 50 8,8 6,7 5,3 100 100 9,2 7,2 5,5 100 100 9,2 7,2 5,5
prostate 50 50 4,8 4,1 3,5 50 50 4,8 4,1 3,5 100 100 6,5 4,7 3,8 100 100 6,5 4,7 3,8
psoriasis 50 50 2,6 2,3 2,1 50 50 2,6 2,3 2,1 100 100 4,1 2,6 2,5 100 100 4,1 2,6 2,5

k = 50, A = Naive Bayes k = 50, A = C4.5 k = 100, A = Naive Bayes k = 100, A = C4.5

TABLE 7. NUMBER OF WRAPPER EVALUATIONS WHEN USING ONER AS EVALUATOR

β β β β

Dataset R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25 R 0 0.15 0.20 0.25

arcene 50 50 3 2,5 1,9 50 50 3 2,5 1,9 100 100 3,9 3,1 2 100 100 3,9 3,1 2
colon 50 50 3,8 3 2,8 50 50 3,8 3 2,8 100 100 4,6 3,8 2,9 100 100 4,6 3,8 2,9
dexter 50 50 9,8 7,4 5,8 50 50 9,8 7,4 5,8 100 100 10,9 8,5 7,3 100 100 10,9 8,5 7,3
dlbcl 50 50 4,5 3,2 2,8 l 50 50 4,5 3,2 2,8 100 100 5,9 4,6 3,9 100 100 5,9 4,6 3,9
gcm 50 50 3 2,4 1,6 50 50 3 2,4 1,6 100 100 3 2,6 1,9 100 100 3 2,6 1,9

gisette 50 50 19,3 17,1 15,1 50 50 19,3 17,1 15,1 100 100 31,1 26,4 21,3 100 100 31,1 26,4 21,3
leukemia 50 50 5,7 4,4 3,7 50 50 5,7 4,4 3,7 100 100 6,8 5,4 4,3 100 100 6,8 5,4 4,3

lung 50 50 5,7 4,4 3,4 50 50 5,7 4,4 3,4 100 100 8,3 6,1 4,6 100 100 8,3 6,1 4,6
lymphoma 50 50 2,5 2,9 2,4 50 50 2,5 2,9 2,4 100 100 4,1 3,2 3 100 100 4,1 3,2 3
madelon 50 50 5,7 4,6 3,5 50 50 5,7 4,6 3,5 100 100 6,4 5,1 4,2 100 100 6,4 5,1 4,2
prostate 50 50 4,7 3,7 2,7 50 50 4,7 3,7 2,7 100 100 5,2 3,9 3,3 100 100 5,2 3,9 3,3
psoriasis 50 50 3,4 3,1 2,1 50 50 3,4 3,1 2,1 100 100 5 3,7 2,8 100 100 5 3,7 2,8

k = 50, A = Naive Bayes k = 50, A = C4.5 k = 100, A = Naive Bayes k = 100, A = C4.5

observe that the use of bucket orders to guide the search se-
lects a larger number of features. This fact was expected, as
when using bucket orders variables are added in blocks, not
individually. In particular, when using the ranking produced
by the evaluator+ranker, 18.57 (33.48) features are selected
when k = 50 (k = 100). These numbers are similar to
the ones when using a strict preference order as consensus:
19.68 (35.04). Finally, these numbers are bigger when using
the bucket order-based consensus to guide the search: 27.72
(48.56). Therefore, we can conclude that the number of
selected features by FSS-OBOP (β = 0.2) is about 1.5
times the number of features selected by the methods that
use rankings without ties to guide the search. However,
these number of features is extremely small if compared
to the high dimension of the used datasets (12380 features
on average).

6. Conclusions

In this paper we show the advantage of allowing ties in
the filter ranking used to guide the search. This advantage
is mainly due to the reduction on the number of wrapper
evaluations which has a direct effect in CPU time. Further-
more, the algorithm FSS-OBOP (β = 0.2) becomes the right
choice from the point of view of accuracy. On the other
hand, this method selects more features, by a factor of 1.5.
Anyway, the number of selected variables is too small (27.72
when k = 50 and 48.56 when k = 100) if we take into
account that we have dealt with high-dimensional datasets,
having between 500 and 54676 features.

Although this is a first approach in using rankings with
ties to guide the wrapper phase, many possibilities arise for
the future: trying more sophisticated filter-wrapper strategies
than a linear search; using different evaluators to produce the
set of rankings to be aggregated; studying other measures
different to accuracy (e.g. stability and/or robustness); and,
what we consider the most interesting one, allowing ties also

in the input rankings.

Acknowledgments

This work was partially financed by the Ministerio
de Economı́a y Competitividad, Junta de Comunidades de
Castilla-La Mancha, Universidad de Castilla-La Mancha
and FEDER funds by means of the projects TIN2013-46638-
C3-3-P, PEII-2014-049 and CCI-2014ES16RFOP010.

References

[1] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[2] I. Kavakiotis, A. Triantafyllidis, G. Tsoumakas, and I. Vlahavas,
“Ensemble feature selection using rank aggregation methods for
population genomic data,” in 9th Hellenic Conference on Artificial
Intelligence, 2016, p. 22.

[3] R. C. Prati, “Combining feature ranking algorithms through rank
aggregation,” in International Joint Conference on Neural Networks,
2012, pp. 1–8.

[4] P. Bermejo, J. A. Gámez, and J. M. Puerta, “Incremental wrapper-
based subset selection with replacement: An advantageous alternative
to sequential forward selection,” in IEEE Symposium on Computa-
tional Intelligence and Data Mining, 2009, pp. 367–374.

[5] M. Gütlein, E. Frank, M. A. Hall, and A. Karwath, “Large-scale
attribute selection using wrappers,” in IEEE Symposium on Compu-
tational Intelligence and Data Mining, 2009, pp. 332–339.

[6] G. Brown, A. Pocock, M. Zhao, and M. Luján, “Conditional likeli-
hood maximisation: A unifying framework for information theoretic
feature selection,” Journal of Machine Learning Research, vol. 13,
pp. 27–66, 2012.

[7] R. P. DeConde, S. Hawley, S. Falcon, N. Clegg, B. Knudsen,
and R. Etzioni, “Combining results of microarray experiments: a
rank aggregation approach,” Statistical Applications in Genetics and
Molecular Biology, vol. 5, no. 1, 2006.

[8] I. Slavkov, B. Zenko, and S. Dzeroski, “Evaluation method for feature
rankings and their aggregations for biomarker discovery.” in 3rd
International Workshop on Machine Learning in System Biology,
2010, pp. 122–135.

[9] R. Wald, T. M. Khoshgoftaar, and D. Dittman, “Mean aggregation
versus robust rank aggregation for ensemble gene selection,” in 11th
International Conference on Machine Learning and Applications,
vol. 1, 2012, pp. 63–69.

[10] Y. Zhang and F. J. Verbeek, “Comparison and integration of target
prediction algorithms for microrna studies,” Journal Integrative Bioin-
formatics, vol. 7, no. 3, p. 127, 2010.

[11] C. Sarkar, S. Cooley, and J. Srivastava, “Robust feature selection
technique using rank aggregation,” Applied Artificial Intelligence,
vol. 28, no. 3, pp. 243–257, 2014.

[12] W. Bouaguel, A. B. Brahim, and L. Mohamed, “Feature selection
by rank aggregation and genetic algorithms.” in International Joint
Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management, 2013, pp. 74–81.

[13] A. Onan and S. Korukoğlu, “A feature selection model based on
genetic rank aggregation for text sentiment classification,” Journal of
Information Science, 2015.

[14] J. Dutkowski and A. Gambin, “On consensus biomarker selection,”
BMC Bioinformatics, vol. 8, no. 5, p. 1, 2007.

[15] Z. He and W. Yu, “Stable feature selection for biomarker discovery,”
Computational Biology and Chemistry, vol. 34, no. 4, pp. 215–225,
2010.

[16] Y. Saeys, T. Abeel, and Y. Van de Peer, “Robust Feature Selection
Using Ensemble Feature Selection Techniques”, in European Confer-
ence on Machine Learning, 2008, pp. 313–325.

[17] R. Wald, T. M. Khoshgoftaar, D. Dittman, W. Awada, and A. Napoli-
tano, “An extensive comparison of feature ranking aggregation tech-
niques in bioinformatics,” in IEEE 13th International Conference on
Information Reuse and Integration, 2012, pp. 377–384.

[18] A. Woznica, P. Nguyen, and A. Kalousis, “Model mining for robust
feature selection,” in 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2012, pp. 913–921.

[19] F. Yang and K. Mao, “Robust feature selection for microarray data
based on multicriterion fusion,” IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics (TCBB), vol. 8, no. 4, pp. 1080–
1092, 2011.

[20] C. Sarkar, S. Cooley, and J. Srivastava, “Improved feature selection
for hematopoietic cell transplantation outcome prediction using rank
aggregation.” in International Workshop on Artificial Intelligence in
Medical Applications, 2012, pp. 221–226.

[21] W. Bouaguel, G. B. Mufti, and M. Limam, “Rank aggregation for
filter feature selection in credit scoring,” in Mining Intelligence and
Knowledge Exploration, 2013, pp. 7–15.

[22] D. J. Dittman, T. M. Khoshgoftaar, R. Wald, and A. Napolitano,
“Classification performance of rank aggregation techniques for en-
semble gene selection.” in 26th International Florida Artificial Intel-
ligence Research Society Conference, 2013, pp. 420–425.

[23] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation
methods for the web,” in 10th International Conference on World
Wide Web, 2001, pp. 613–622.

[24] J. A. Aledo, J. A. Gámez, and D. Molina, “Using extension sets to
aggregate partial rankings in a flexible setting,” Applied Mathematics
and Computation, vol. 290, pp. 208 – 223, 2016.

[25] J. Kemeny and J. Snell, Mathematical Models in the Social Sciences.
Blaisdell-New York, 1962.

[26] M. G. Kendall, “A new measure of rank correlation,” Biometrika,
vol. 30, no. 1-2, pp. 81–93, 1938.

[27] A. Ali and M. Meila, “Experiments with Kemeny ranking: What
works when?” Mathematical Social Sciences, vol. 64, no. 1, pp. 28
– 40, 2012.

[28] A. Ukkonen, K. Puolamäki, A. Gionis, and H. Mannila, “A random-
ized approximation algorithm for computing bucket orders,” Informa-
tion Processing Letters, vol. 109, no. 7, pp. 356 – 359, 2009.

[29] A. Gionis, H. Mannila, K. Puolamäki, and A. Ukkonen, “Algorithms
for discovering bucket orders from data,” in 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2006, pp. 561–566.

[30] D. W. Opitz and R. Maclin, “Popular ensemble methods: An empirical
study,” Journal of Artificial Intelligence Research, vol. 11, pp. 169–
198, 1999.

[31] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast
correlation-based filter solution,” in 20th International Conference on
Machine Learning, 2003, pp. 856–863.

[32] U. M. Fayyad and K. B. Irani, “Multi-interval discretization of contin-
uousvalued attributes for classification learning,” in 13th International
Joint Conference on Artificial Intelligence, vol. 2, 1993, pp. 1022–
1027.

[33] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets,” Machine Learning, vol. 11, no. 1, pp. 63–
90, 1993.

[34] G. H. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers,” in 11th Conference on Uncertainty in Artificial
Intelligence, 1995, pp. 338–345.

[35] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers Inc., 1993.

[36] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

