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Abstract—This paper presents a novel strategy for weed moni-
toring, using images taken with unmanned aerial vehicles (UAVs)
and concepts of image analysis and machine learning. Weed
control in precision agriculture designs site-specific treatments
based on the coverage of weeds, where the key is to provide
precise weed maps timely. Most traditional remote platforms,
e.g. piloted planes or satellites, are, however, not suitable for
early weed monitoring, given their low temporal and spatial
resolutions, as opposed to he ultra-high spatial resolution of
UAVs. The system here proposed makes use of UAV-imagery
and is based on: 1) Divide the image, 2) compute and binarise
the vegetation indexes, 3) detect crop rows, 4) optimise the
parameters and 4) learn a classification model. Since crops are
usually organised in rows, the use of a crop row detection
algorithm helps to separate properly weed and crop pixels, which
is a common handicap given the spectral similitude of both.
Several artificial intelligence paradigms are compared in this
paper to identify the most suitable strategy for this topic (i.e.
unsupervised, supervised and semi-supervised approaches). Our
experiments also study the effect of different parameteres: the
flight altitude, the sensor and the use of previously trained models
at a different height. Our results show that 1) very promising
performance can be obtained, even when using very few labelled
data and 2) the classification model can be learnt in a subplot
of the experimental field at low altitude and then applied to the
whole field at a higher height, which simplifies the whole process.
These results motivate the use of this strategy to design weed
monitoring strategies for early post-emergence weed control.

I. INTRODUCTION

Crops require the use of herbicides as a tool for maintaining
and ensuring the quality and quantity of crop production. Her-
bicides are usually broadcast over entire fields even although
there are weed-free areas because weeds are usually spatially
distributed in patches [1]. Nowadays, the estimated yield loss
because of weeds is 9% (being aproximately AC3.334M the cost
of all herbicides used, 41.5% of the total pesticides sales and
40% of the cost of all the chemicals applied to agricultural land
in Europe). There are, however, clear economical and envi-
ronmental risks derived from over-application, which have led
to the creation of the European legislation for the sustainable
use of pesticides, which has set guidelines for the reduction of
these chemicals [2]. On this sense, patch spraying has enabled
the use of site-specific weed management (SSWM) according
to the coverage of weeds [3]. One of the keys for ensuring

early SSWM are precise weed maps, which should be provided
timely for appropriate post-emergence weed monitoring. Until
now, weed monitoring [4] has been performed either by
remote detection or ground sampling [5]. In this sense, remote
sensing has been seen to improve significantly the reliability
of SSWM (against ground sampling), provided that the spatial
and spectral resolutions of the equipment is suitable for the
distinguishing differences in spectral reflectance [6]. However
the appearance characteristics of crop and weeds are very
similar in early growth stages. To solve this, previous works
have mapped weeds at late growth stage (e.g. flowering) using
piloted aircrafts or QuickBird satellite imagery. Nonetheless,
because of their scarce spatial resolution, these technologies
can not be successfully applied in early detection. However, a
new aerial technology has recently joined the traditional ones:
the Unmanned Aerial Vehicle (UAV) [7] and its advantages
against airborne or satellite missions have been demonstrated
in different studies [8], [9], i.e. a lower cost, more flexibility
in flight scheduling and the possibility of acquiring ultra-high
spatial resolution images. UAVs represent then a promising
tool for multi-temporal studies in early crop and weed mapping
[10], [11], which has been one of the classic limitations with
traditional remote-sensed technologies.

Machine learning and image analysis has been used recently
for precision agriculture using UAV-imagery in some recent
works [12], [13], [14], [15]. However, this is still a mostly
undeveloped area (despite its potential). In this sense, a popular
choice for designing a weed management strategy using UAVs
is the use of manually-defined rules [9], [16] (based on spectral
differences, location and vegetation indexes). Nonetheless, we
believe that remote sensing will benefit to a large extent from
different techniques of image analysis and machine learning.
This type of methods has been used with on-ground images
with success [17], [6], [18], which motivates further research
in this line. Proximal sensing, however, presents some limita-
tions that make its use difficult in practice [18] (computational
resource limitations given that it is usually performed in real-
time, vibration of the equipment, changes of luminosity and
others). Opposed to this, with remote sensing, the analysis
should be performed prior to broadcasting, but it could be also
useful to estimate a priori the needed quantity of herbicide and



optimise the field path that the broadcasting equipment should
follow. It is now, that the most common issues with UAVs
have been mastered (e.g. route planning) and that the cost of
this technology is acceptable, that this technology is ready
for its use. Up to this date, different studies have analysed
the advantages and feasibility of this idea, and have proposed
as well new techniques for weed monitoring, testing them in
different experimental setups. This has shown great promise
for the detection of weeds between crop rows [9], [11], but
distinguishing weeds within crop rows still represents an open
and complex challenge. The major difference between our
proposal and the rest of papers in the literature is the use of a
wide range of machine learning approaches and the combined
use of these with an accurate row detection strategy, resulting
in a precise and robust system to distinguish weeds either
outside or within crop rows.

This paper proposes a novel system for weed monitoring
in sunflower via UAV-imagery. The analysis of the images is
performed using machine learning and image analysis. The
system here proposed is defined so that it minimises the
information provided by the user (i.e. in this case a set of
labelled patches for each class and the set of parameters
for the algorithm) since this is the major bottleneck in a
framework like this. The proposed methodology is composed
of the following steps: divide the field image (into a set of
smaller subimages), compute vegetation indexes and binarise
them, detect crop rows and, finally, train a prediction model.
The main novelty of our approach is the detection of crop rows
using the Hough transform (HT) [19] and images taken by
UAVs (although HT has been employed in on-ground studies
[17], it has not been so common with remote-sensed platforms
[20]).

Concerning machine learning, most standard classifiers are
based on learning a discriminant function using a labelled
data (i.e. supervised learning). Nonetheless, obtaining labelled
data can be time-consuming and expensive, in contrast with
unlabelled data. In this line, the new system proposed here
is based on two main intentions: perform the analysis of the
image with scarce a priori knowledge and processing of the
image, and optimise all the parameters automatically. The
second novelty of our work is the comparison between three
areas of machine learning (unsupervised, supervised and semi-
supervised learning) to study the importance and influence
of labelled and unlabelled data. The objectives of this paper
are the following: 1) analyse how to combine UAV images
with the information that a row detection algorithm provides,
to improve the performance and help to distinguish weeds
within crop rows; 2) analyse the potential of several machine
learning strategies in the development of new monitoring
system (basing our analysis on easy to compute information,
then providing a mostly unsupervised analysis that can be
used in other scenarios); 3) compare several factors such as
the sensors or the flight altitudes; and finally 4) analyse the
generalisation ability of the final models to other scenarios,
to alleviate the whole process. This paper complements our
previous work in [15], including a more thorough analysis of

the results and an additional experiment.
This paper is organised as follows: Section II describes the

data acquisition and summarises the proposed system; Section
III describes the experimental setup and analyses the results.
Finally, Section IV outlines the conclusions and future work.

II. MATERIALS AND METHODS

Fig. 1 presents a summary of the steps of the weed mon-
itoring system proposed here. As can be seen, the user only
provides the UAV-images, label some pixels and set the initial
values for the parameters of the system. As said, the steps of
our system are the following: Divide the whole image into
more tractable subimages for the use of the different algo-
rithms employed later, calculate the well-known vegetation
indexes (depending on the sensor), binarise this vegetation
indexes (needed step for row detection), use the HT for crop
row detection, and finally, optimise the parameters and classify
the pixels as soil, crop or weed.

Fig. 1. Representation of different stages for the proposed algorithm for an
image obtained using the TetraCam sensor.

A. Data acquisition

a) Studied area: The studied area is a sunflower field
situated in Seville at the South of Spain (private farm La Mon-
clova in La Luisiana, coordinates 37.527N, 5.302W, datum
WGS84). The flights were authorised by a written agreement
between the owners and our research group. The sunflower
seeds were planted at the end of March 2014 at 6kg ha−1

in rows 0.7m apart. The set of aerial images were collected
on May 15th, just when post-emergence herbicide or other
control techniques are recommended. An experimental plot of
100× 100m was used for the flights. An on-ground sampling
procedure was performed the day of the UAV flights, to



compare on-ground weed infestation (observed weeds versus
the output of our system).

b) UAV flights and sensors: A quadrocopter platform
(model md4-1000, microdrones GmbH, Siegen, Germany) was
used for this study taking images at different flight heights. The
coordinates of each corner were collected with a GPS. Then,
the flight route was programmed into the UAV.The images
were taken at three different altitudes: 30, 60 and 100m,
with two different sensors mounted separately: a six-band
multispectral camera, model TetraCam mini-MCA-6 (Tetra-
Cam Inc., Chatsworth, CA, USA), and a still point-and-shoot
camera, model Olympus PEN E-PM1 (Olympus Corporation,
Tokyo, Japan). The TetraCam mini-MCA-6 is a multispectral
sensor composed of six individual digital channels arranged
in a 2 × 3 array. Each channel has a focal length of 9.6mm
and a 1.3 megapixel (1, 280 × 61, 024 pixels) CMOS sensor.
The camera has user configurable band pass filters of 10-nm
full-width at half-maximum and centre wavelengths at blue
(B, 450nm), green (G, 530 nm), red (R, 670 and 700 nm),
R edge (740 nm) and near-infrared (NIR, 780 nm). The
Olympus camera acquires 12-megapixel images in true colour
(R, G and B bands) with 8-bit radiometric resolution and is
equipped with a 14 − 42mm zoom lens. A sequence of 60%
end or longitudinal lap and 30% side or lateral lap images
were collected corresponding to each flight mission sensor and
altitudes. Further information concerning the configuration of
the UAV and the specifications of this platform and the sensors
used can be found in [10].

c) Image preprocessing: Several overlapping images
were collected to cover the whole experimental field. This is
because UAVs fly at low altitudes (because of the Spanish
regulation the maximum altitude is 120m for UAVs with
a weight lower than 25kg) which makes it necessary to
take a sequence of multiple images. A crucial step is then
the combination of these images using orthorectification and
mosaicking. To do so, the Agisoft Photoscan Professional
Edition (Agisoft LLC, St. Petersburg, Russia) software was
employed. Further details concerning mosaicking can be found
in [21].

B. Image partition and labelling

One of the objectives of this system is to provide timely
weed mapping responses. To do so, the processing step has to
be light in terms of: 1) user intervention (therefore the need to
use very few labelled information and optimise automatically
all the parameters of the system) and 2) computational time
(which is performed dividing the process into independent
chunks of computation).

Thus, after the orthorectification and mosaicking steps, the
mosaicked image is partitioned into multiple subimages of
approximately 1000×1000 pixels. Each subimage is separately
processed, i.e. an independent classifier is trained for every
subimage. Note, however, that the training labelled samples
are always the same, and the only information that change
is the unlabelled one. This partition is also important to

consider potential differences in the spectral information of
the experimental field or lighting changes.

To alleviate the process of labelling, the expert is asked
to label only three patches of pixels, each corresponding to
one of the classes considered: soil, crop and weeds. In this
case, the patches are chosen of size 10× 10 pixels, to analyse
whether it is possible to learn a model with such little labelled
information. Fig. 1 includes a visual representation of these
patches for the TetraCam sensor.

C. Vegetation indexes (VI) and crop row detection

The term VI refers to a mathematical expression that com-
bines the surface reflectance at two or more wavelengths of an
image in order to highlight a particular property of vegetation.
In this work, two widely-used indices for vegetation estimation
are compared to analyse their performance: 1) the normalised
difference vegetation index (NDVI) [22], [11] is used with the
images obtained from the multispectral camera (TetraCam)
to consider the near infrared (NIR) wavelength; and 2) the
excess green index (ExG) [23], [11] is used with visible images
(Olympus sensor).

One of the main hypothesis of this paper is that weed
discrimination can be improved using the relative location of
weeds with respect to crop lines. The Hough transform (HT)
[19] is a powerful technique for the detection of complex
patterns in binary images (e.g. lines or circles). This method
relies on a parametrisation (defined beforehand) that charac-
terises the patterns that the algorithm is aiming to find (e.g.
the parameters for the case of a line are the corresponding
slope and intercept). This technique converts a difficult global
detection problem in the image space into an easier local peak
detection problem in the parameter space.

The HT method is applied to the VI considered. As stated
before, the HT method is used for binary images. Because
of this, a thresholding procedure is necessary to binarise the
VI. In this paper, the Otsu’s method [24] is selected, given its
demonstrated robustness and simplicity [11].

The HT method detects only the first and last points of
a crop row, but these rows should have a predefined width
(which is associated to the crop and height). Consequently,
the pixels adjacent to the lines should also be considered part
of the crop row. In [15] we develop a method to automatically
optimise this parameter and the rest of parameters of the
proposed system. In this case, the distance from each point to
the nearest crop row is computed. A threshold is then applied
to these distances to decide the points of the buffer for the crop
row. This threshold is optimised using an evaluation metric
which captures the amount of pixels with a high value of VI
that are covered by the detected crop rows [15].

D. Features

The detected crop rows have to be incorporated in the
classification process. To do so, we propose a new feature
to incorporate to the learning process of the classifier (apart
from the spectral information and VI, which would be the most
straightforward idea). This feature is computed by multiplying



the VI and the crop row binary mask (the result being zero for
points outside the buffer of the crop row and the VI value for
points within the buffer). Ideally, this will allow to distinguish
between pixels which lie very far from the crop rows (bare soil
or weeds in between crop rows) and pixels which lie closer to
these crop rows (crop or weeds within crop rows). However,
at the same this feacture also incorporates information about
the VI (e.g. in order to distinguish between the different pixels
within the buffer, which is the most common handicap in weed
mapping).

E. Machine learning paradigms

As said, three paradigms are considered in this paper to
approach the previously-mentioned problem. Note that unsu-
pervised learning alone does not match the definition of our
problem. Moreover, labelling all the pixels in the experimental
field (or, at least, a majority of them) is a hard and tedious
work, and almost intractable for practical applications. Be-
cause of this, we consider a different strategy, and guide the
learning process using only a 10× 10-pixel window for each
group of pixels (i.e., crop, weed and soil). The idea is to check
if this is feasible and help us to capture the nature of these
three classes.patch of pixels for each group. Semi-supervised
learning can also be considered, where both labelled and
unlabelled data is included in the model.

Note that the pixel information is used differently depending
on the paradigm considered. For unsupervised learning, it is
used only for initialising the data centroids, but the training
data correspond to each subimage. For supervised classifica-
tion, labelled data are used for the training phase, and the
rest (i.e. the subimage) is only considered for prediction. For
semi-supervised approaches, it is used for the training phase,
in conjunction with all of the unlabelled data (i.e. the rest
of the image). For more information concerning the system
proposed for weed mapping refer to [15].

d) Unsupervised learning: The most widely used clus-
tering method is the k-means algorithm [25]. Two versions of
this algorithm are included in the experimentation to analyse
whether averaging a small part of the image could be sufficient
to initialise the centroids. These versions are the following: k-
means (which computes the initial data centroids by averaging
each of the labelled 10×10 subimages) and repeated k-means
(Rk-means), which chooses a random pixel of each 10 × 10
subimage (a procedure that is repeated 30 times) and the final
centroids are the ones which produce the best results in train.

e) Supervised learning: Supervised learning concerns
the design of a prediction model using labelled samples. In our
case, we test the performance of these methods when very few
labelled data is considered (300 pixels, 100 for each class). We
test two well-known and widely used classification methods:
k-nearest neighbours (k-nn) and Support Vector Machines
(SVM) [26]. Both linear and kernel versions of the SVM
algorithm are tested, to compare the results (between the two
methods and the semi-supervised linear version).

f) Semi-supervised learning: Semi-supervised
approaches [27] are based on the idea of deriving a

decision boundary sufficiently smooth with respect to the data
structure, composed by labelled and unlabelled information
to improve the robustness and precision of the model. The
motivation to use semi-supervised learning in this problem is
to analyse whether the inclusion of unlabelled data helps to
the construction of the decision model when the amount of
labelled data is low (compared to the number of unlabelled
examples). In this case, a light linear semi-supervised SVM
algorithm is used [27].

g) Output of the classifier: The output of the proposed
system can be used for different treatments: a binary apply/not
apply herbicides to weed infested field section or the ap-
plication of different herbicides (e.g. to control broadleaved,
grass or resistant weeds). These treatment maps will be given
afterwards to the treatment equipment software to properly
apply the herbicides. Moreover, the detection of crops could
also be useful for plant counting or to position the equipment
according to crop rows. For more information concerning the
system proposed for weed mapping refer to [15].

III. EXPERIMENTS
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Fig. 2. Boxplot of the MAE results obtained for the different factors taken
into account in this study.

Two different experiments are considered in this section in
order to verify and study the potential of the methods tested.
The former experiment intends to test the difference in mean
performance among the different chosen paradigms and sets
of input features, as well as to analyse the impact of the flight
height and sensor used. The latter experiment tests whether
it is possible to use previously trained models to generalise
well on images with similar lighting and spectral settings and
whether the performance of the method could be improved by
choosing more fine-tuned models (e.g. train the model at a
subplot at 30m but use it at 100m).

A. Methods tested

As stated before, different learning paradigms are tested
in these experiments to perform a thorough analysis of the



techniques which show the best and most robust results for
the purpose considered in this paper. To do so, we use
two centroid-guided unsupervised algorithms (k-means and
Repeated k-means or Rk-means), a semisupervised SVM
method (SS-SVM), and three supervised learning techniques
(k-nn, linear SVM version or LinSVM and kernel SVM).
The selection of these methodologies is not arbitrary: k-
means is one of the pioneer and most widely-used methods
for unsupervised learning, Rk-means is included in order to
analyse the impact of the choice of the centroids, the k-nn
method is chosen because the prediction is also based on a
distance relation (as for the k-means) methods and finally,
the SVM methodology is one of the most successful machine
learning methods (both the linear and nonlinear versions were
included to analyse the difficulty in separating the data).

For optimising the parameters of the chosen methods,
a 5-fold cross-validation procedure is used. For the k-nn
method the number of nearest neighbours is cross-validated
among the following values: {1, 3, 5, 7}. For the LinSVM
and SVM techniques the cost parameter is chosen from
one of these values: {10−2, 10−1, 100, 101, 102} (and so is
the kernel parameter associated to SVM). For the regu-
larisation parameters of SS-SVM the following values are
used: {10−4, 10−3, 10−2, 10−1, 100}. The evaluation metric
for cross-validation in this case is the well-known accuracy.

For HT, the number of lines to detect is set to 200 (as this
number is only orientative). The rest of the parameters (i.e. the
minimum length of the lines and the gap between lines) are
chosen by cross-validation from the following set: {10, 30, 50}
(using the evaluation metric defined in [15]).

B. Performance evaluation

For evaluating the results, 32 ground truth frames are
considered. For each of these frames, we compute the ap-
proximate percentage of soil, crop and weed pixels and these
are compared to the ones obtained by our system.

To evaluate the performance of the different methodologies,
the Mean Average Error (MAE metric) is used. This measure
computes the general mean deviation from the expected per-
centages, computed differently for each class Cj :

MAECj =
1

N

N∑
i=1

1

100
|ppji − tpji|, (1)

where Cj ∈ {c, w, s} (referring to the crop, weed and soil
classes, respectively), N is the number of frames of ground
truth (32 in this case), ppji corresponds to the predicted
percentage for class Cj and true ground frame with index i
and tpji to the analogue true percentage. Then, we average
MAE for the three classes and the final error measure is:

MAE =
(MAEc +MAEw +MAEs)

3
, (2)

this coefficient ranging from 0 to 1 (being 0 the ideal value).

C. First experiment: Study of the impact of different factors

This experiment explores the difference in performance with
respect to four factors:

• Input features: input features include the original spectral
information, a vegetation index (VI, ExG for Olympus
and NDVI for TetraCam) and the proposed feature, to
check whether the proposal of a combined use of spectral
information, VI, and the HT information reduces the
prediction errors.

• Classifiers: six methods are compared. The objective is
to check whether semi-supervised methods could lead to
a more precise and robust prediction.

• Flight height: images taken at 30, 60 and 100 meters are
used.

• Camera: two sensors (visible Olympus and multispectral
TetraCam) are compared.

Table I presents the performance results obtained for the
different set of input features, classifiers, flight altitudes and
sensors. Different conclusions can be drawn from this table:
Firstly, analysing the results of k-means and Rk-means, it
can be seen that, in general, the unsupervised approach does
not yield satisfactory results (competitive results are obtained
in specific cases but the performance of these methods is
not robust). Moreover, repeating the cluster computation (i.e.
using Rk-means instead of k-means) does not result in more
consistent results. Secondly, concerning the supervised and
semi-supervised approaches, all of them result in a similar
performance, although SS-SVM presents the best results in
mean, meaning that using unsupervised information comple-
ments satisfactorily the model and helps to stabilise it (to see
this analyse the mean per method). Concerning SVMs, it can
be seen that the linear version yields better results in mean than
the kernel version, which means that the problem is generally
linearly separable and the kernel mapping is not necessary.
Furthermore, the kernel version is also seen to perform better
when using the Olympus sensor, which could indicate that the
feature proposed and the VI is more appropriate to be used
with multispectral sensors (such as the TetraCam), because
it leads to linearly separable decision regions. Thirdly, with
relation to the flight height, it is shown that the highest
resolution (i.e. 30m) presents the best result, followed by 60m
and 100m. The performance gap between 30m and 60m could
be acceptable depending on the application, but up to our
knowledge, the results at 100m are not satisfactory in general.
Finally, regarding the sensors, the Olympus camera produces
better results when taking into account only the spectral
information (or spectral plus VI information), but not when
using our proposed feature. The TetraCam camera, however,
produces outstanding results under this framework, despite the
lower spatial resolution of this camera when compared to the
visible one. In this case, therefore, the improvement is due
to the use of the NIR band, which helps to discriminate the
classes of the problem in a better manner. Note that the best
results are obtained using this camera, the complete set of
features, the SS-SVM method and a flight height of 30m (with



TABLE I
MEAN MAE RESULTS OBTAINED FOR THE FOUR DIFFERENT FACTORS CONSIDERED THE BEST METHOD FOR EACH COMBINATION OF FEATURES,

FLIGHT HEIGHT AND SENSOR IS HIGHLIGHTED IN BOLD FACE, AND THE SECOND ONE IN ITALICS.

MAE Spectral Information Spectral Information + VI Spectral Information + VI + Hough Trans.
Olympus TetraCam Olympus TetraCam Olympus TetraCam

Methods 30 60 100 30 60 100 30 60 100 30 60 100 30 60 100 30 60 100 Mean
k-means 0.181 0.198 0.293 0.137 0.222 0.362 0.166 0.198 0.171 0.155 0.196 0.257 0.208 0.296 0.117 0.088 0.157 0 .193 0.200

Rk-means 0.194 0.198 0.367 0.137 0.222 0.237 0.172 0.198 0.171 0.155 0.190 0.252 0.253 0.254 0 .230 0.149 0.214 0.165 0.209
k-nn 0.065 0 .093 0.274 0.096 0.132 0.223 0.082 0.095 0.234 0.096 0.130 0 .223 0.121 0.128 0.247 0.096 0.124 0.218 0.149

LinSVM 0 .061 0.085 0.297 0.083 0.103 0.229 0.079 0.099 0.291 0.083 0 .096 0.231 0 .098 0.124 0.266 0 .064 0 .088 0.221 0 .144
SVM 0.056 0.098 0.292 0 .094 0.204 0.252 0.075 0 .097 0 .266 0 .093 0.270 0.301 0 .098 0 .125 0.265 0.102 0.065 0.288 0.169

SS-SVM 0.063 0.085 0 .287 0.098 0 .107 0 .227 0 .081 0.121 0.280 0.083 0.094 0.218 0.089 0.126 0 .253 0.046 0.065 0.203 0.140
Mean 0.103 0.126 0.301 0.108 0.165 0.255 0.109 0.135 0.236 0.111 0.163 0.247 0.144 0.176 0.230 0.091 0.119 0.215

a relatively low performance loss when performing the flight
at 60m).

Fig. 3. Representation of the complete set of features used and the prediction
produced for an image captured at 30m using the Olympus camera, where a
large quantity of weed canopies can be appreciated. The first figure (top-left)
represents the spectral information, the second figure (top-right) the VI (ExG),
the third figure (bottom-left) the proposed feature which combines detected
crop rows and VI and finally the last figure (bottom-right) represents the
output of the algorithm. This results have been obtained using the SS-SVM
method.

Fig. 2 shows the performance boxplots for each of the four
factors considered in this paper. The results presented in the
previous paragraph can also be verified using this figure.

Fig. 3 shows the representation of the complete set of
features used for a portion of the experimental field: 1) spectral
information (in this case, to help the reader visualise the
difference between the two sensors we include the case of
the visible Olympus camera); 2) VI (ExG in this case, where
white pixels represent vegetation); and 3) our proposed feature
which mixes the data from the VI and detected crop rows.
As can be seen, this feature incorporates the VI concerning
only sunflower in the crop row, which helps distinguish the
crop and weeds. Furthermore, the HT detects sowing fails,
which is an important characteristic. The figure at the bottom-

Fig. 4. Results of the SS-SVM method (S + VI + HT). The plots at the top of
the figure show the image at 30m using the TetraCam sensor. The plots at the
bottom show the prediction obtained for the four true ground patches where
each colour represents a class (dark blue represents soil, cyan represents the
crop and yellow represents weeds).

right part of the figure represents the output of the SS-SVM
method trained in this region. Each colour represents a class:
black (soil), white (crop) and gray (weeds). It can be seen,
that although this subimage presents a large concentration of
weeds, all of them are detected accurately, even small ones or
those that lie within crop rows.

Finally, Fig. 4 shows the prediction provided for four of
the true ground patches using the SS-SVM method at 30m.
From this image it can be confirmed that weeds close to the
crop row are detected, although some pixels are misclassified
(mostly pixels belonging to crops).

D. Second experiment: Generalising with previously computed
models

The use of previously trained models could highly reduce
the required computational time and alleviate the process of
weed mapping. Different hypotheses arise in this topic: Is it
possible to train models at a height and generalise with success
to other heights? Is it possible to apply the model learnt at an
experimental field to a different field with the same crop? Note
that this is a rather complex topic, given that the experimental
fields could have very different characteristics (e.g. lighting or
soil characteristics).

For this last experiment, we test whether the models trained
(at a specific flight height) generalise well on images at differ-
ent heights. This could be useful to reduce the computational
time and alleviate the whole process. To do so, we considered



all of the different models trained before (recall that for each
image there was as many models as divisions made for the
experimental field). Each model is used with the whole image,
thus obtaining as many results as models. The mean of these
results can be seen in TABLE II, where one can appreciate
e.g. that when using the image at 30m for the Olympus
camera but with the model trained at 100m the performance
deteriorates (to see this, analyse TABLE I. In this case, the
base performance is 0.046, as opposed to the obtained results:
0.102 and 0.170 for 60m and 100m respectively). On the
contrary, when using an image for the generalisation at a
higher height (e.g. 100m) but using a model trained at a lower
height (30m for TetraCam) the performance is seen to improve
significantly (from 0.203 to 0.124). This result is important,
because it means that learning a model at a lower height
(even using a relatively small section of the field) and then
using this model at a higher height (which would in this case
cover all of the experimental field) is feasible and leads to
promising results. As said before, this is crucial to shorten
flight times and the amount of images to be mosaicked. For
the case of the TetraCam sensor at 60m, the same conclusions
are not applicable, which motivates further improvement of
these models.

TABLE II
MEAN RESULTS OBTAINED WHEN GENERALISING PREVIOUSLY TRAINED
MODELS WITH DATA ASSOCIATED TO OTHER IMAGES (SAME LOCATION

BUT DIFFERENT HEIGHT). THE “TRAIN” ROW INDICATES THE HEIGHT AT
WHICH THE MODEL WAS TRAINED. THE “TEST” ROW REFERS TO THE

HEIGHT OF THE IMAGE THAT IS USED FOR GENERALISING THE MODEL.

Train 30m 60m 100m
Test 60m 100m 30m 100m 30m 60m

MAE Olympus 0.117 0.148 0.102 0.129 0.170 0.146
MAE TetraCam 0.124 0.124 0.331 0.402 0.189 0.193

IV. CONCLUSIONS

This paper presents a novel computational approach for
weed monitoring in sunflower using unmanned aerial vehicles,
with the main purpose of designing site-specific weed control
treatments in early post-emergence. One of the main difficul-
ties for this objective is the spectral similitude between crop
and weeds pixels, thus needing a more sophisticated method
for providing an accurate prediction. This system makes use
of the Hough transform (HT) for detecting crop rows in order
to complement this spectral data and increase its robustness
and precision. Several machine learning paradigms are ex-
plored (unsupervised, semi-supervised and supervised) with
the purpose of minimise the intervention of the final user. The
results show that both supervised and semi-supervised methods
perform considerably well (even when only a very small subset
of labelled training patterns is available). Furthermore, this
work validates some hypotheses in the literature concerning
factors such as the flight height and the sensor. Finally, an
additional experiment shows that it is possible to train a model
at a lower height in a subplot of the experimental field and
apply it successfully to the rest of the field using a flight

height of 100m, which could simplify the process and the
computational time to apply this system in the practice.

Concerning future work, firstly, although the classical HT
was initially designed to detect lines, this technique has been
also extended to arbitrary shapes, this improvement could be
used to allow more degrees of freedom in the row detection.
Other crops (apart from sunflower) could be considered,
such as wheat (which is a narrow-row crop) to explore the
applicability of the proposal to other scenarios. The use of
object-based analysis would be of special interest, to avoid the
well-known salt-and-pepper effect.Finally, the applicability of
a model (trained in a specific experimental field) to a different
field (e.g. other location) should be analysed, as it could
highly reduce the required computational time. However, it is
an ambitious objective, since experimental fields could have
very different characteristics. Because of this, the paradigm
of incremental learning could be used. Under this setting, a
learnt model could be slightly modified to better fit new data
at the expense of a low computational load.
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