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Abstract—Botnets represent one of the most destructive cyber-
security threats. Given the evolution of the structures and
protocols botnets use, many machine learning approaches have
been proposed for botnet analysis and detection. In the literature,
intrusion and anomaly detection systems based on unsupervised
learning techniques showed promising performances. In this
paper, we investigate the capability of employing the Self-
Organizing Map (SOM), an unsupervised learning technique as
a data analytics system. In doing so, our aim is to understand
how far such an approach could be pushed to analyze unknown
traffic to detect botnets. To this end, we employed three different
unsupervised training schemes using publicly available botnet
data sets. Our results show that SOMs possess high potential
as a data analytics tool on unknown traffic. They can identify
the botnet and normal flows with high confidence approximately
99% of the time on the data sets employed in this work.

I. INTRODUCTION

There is a wide variety of network threats on the Internet,
with different aims and attack vectors. Among these, botnets
have become one of the most dangerous threats [1] [2].
Botnets consist of compromised machines, or bots, dominated
by attackers (the botmasters) through command and control
(CC) communication channels. Botnets are responsible for
many types of attacks these days, including but not limited to
spam spreading, distributed denial of service (DDoS) attacks,
distribution of malicious software, information harvesting and
identity theft.

A botnet maintains its virulence by evolving its structure
and protocols over time. One component of a botnet that has
been through many evolutions is CC channels. A botnet CC
channel accommodates communications between bots and bot
masters, which differentiate botnets from other malwares. The
communication channels provide botnets the ability of updat-
ing its malicious code and protocols, allow bots to perform
attacks simultaneously under the control of a botmaster. Thus
CC channel one of the targets of security researchers in order
to take botnets down. Earlier botnets use Internet Relay Chat
(IRC) as their CC protocol. Eventually, as this protocol and
botnet structures became obsolete and started to be detected
easily, botnets abused a wide range of other protocols from
HyperText Transfer Protocol (HTTP), HTTPS (secure HTTP)
to Peer-to-Peer (P2P), email, and social network [3][4].

In general, botnets have two main architectures, or CC in-
frastructures: Centralized and Decentralized. In the centralized

architecture, all bots establish their communication channel
with one or a few central control servers typically over IRC
and HTTP protocols. The obvious advantages of this topology
are speedy command propagation and synchronization. How-
ever, while most earlier botnets are centralized, decentralized
CC is increasingly employed in recent years to overcome
central point of failure problem. By utilizing P2P protocols
to allow each node in a botnet act as a client or a master,
decentralized CC provides great flexibility and robustness.
Moreover, a botnet topology can be a hybrid model of the
two architectures to combine advantages of both CC models.

Given the threats posed by botnets, botnet detection has
become a critical component in network security solutions.
Machine learning-based approaches are used for their ability to
learn underlying patterns of data and adaptation to the dynamic
nature of modern botnets. Moreover, to identify novel botnets
in particular, and malicious network activities in general,
anomaly detection systems based on unsupervised machine
learning methods are gaining more and more interest [5].

In this work, we assess the capability of an unsupervised
neural network technique, namely Kohonen’s Self Organizing
Map (SOM) [6], as an unsupervised learning approach for
traffic analysis to identify botnets. We study the effect of dif-
ferent training schemes under unsupervised learning paradigm
to identify (detect) botnet traffic. Specifically, we employ the
following three SOM training schemes: (i) using traffic flows
of both Normal and known Botnet behaviours, (ii) using traffic
flows of only Normal behaviours, and (iii) using traffic flows of
only known Botnet behaviours. Obtained results demonstrate
the promising capability of SOM in separating Normal and
Botnet behaviours, as well as in labelling unknown traffic for
further investigation.

The remainder of the paper is organized as follows. Sec-
tion II summarizes the related work on botnet detection and
applications of SOM in this field. Section III discusses the
methodology, whereas Section IV presents the evaluations and
results. Finally conclusions are drawn and the future work is
discussed in Section V.

II. RELATED WORK

Botnet detection approaches have evolved extensively and
expeditiously to cope with the development in botnet ar-



chitectures and protocols. Early researches and commercial
products, e.g. Snort [7], mainly based on comparing signatures
with packet content to identify malicious activities. Gu et
al. [8] used a botnet life-cycle model to develop BotHunter,
which correlates alerts generated using Snort to detect botnets.
Wurzinger et al. proposed a botnet detection model based on
the observable command and response patterns of the botnet
communications [9]. To build the patterns, their approach
identifies responses and inspects the preceding traffic. Their
results showed that the automatically extracted detection mod-
els could outperform BotHunter. Botminer, an approach based
on group behavior analysis, combines both packet payload and
network flow monitors for botnet detection [10]. The model
employs clustering approaches to find similar communication
behaviors, as well as network activities. Correlations between
the formed clusters is used to identify botnets and infected
hosts. Zhao et al. investigated a botnet detection system
based on packet header information and time intervals [11].
Decision Tree based machine learning algorithms were utilized
to generate detection models using network flow features of
traffic packets. On their generated data set focusing on P2P
botnets, their method achieved high accuracy with small time
windows. Recently, Haddadi et al. employed three machine
learning algorithms, namely C4.5 Decision tree, Bayesian
Networks and Genetic programming-based SBB, for building
detection models [12]. They achieved very high detection rates
both for HTTP and P2P based botnets.

While most of the machine learning approaches for bot-
net detection are based on supervised learning, unsupervised
learning approaches have also found their applications in the
field, especially in anomaly detection systems. Leung et al.
proposed a density-based and grid-based clustering algorithm
to discover the characteristics of the majority of connections
in network traffic [13]. They used these characteristics to
classify future connections. Evaluated using the 1999 KDD
Cup data set, the technique produced comparable results to
existing supervised approaches. Kayacik et al. proposed an
approach to network intrusion detection based on a hierarchy
of SOMs [14]. Using 1999 KDD Cup data set for training,
two hierarchical SOM architectures were proposed. The first
model uses only six basic features from the data set and
generates a three-layered SOM hierarchy, where the first
layer SOMs are used to generalize data from each feature
individually. Output of each first-level SOM is clustered to six
clusters for higher-layer training. The second model uses all
41 features to directly train a two-layer SOM model, which
is similar to the second and third layers in the first model.
Ippolity et al. developed a threshold based training process
for Adaptive Growing Hierarchical SOM for building an online
network intrusion detection system [15]. In their work, system
parameters are adjusted dynamically by using quantization
error feedback to adapt to the new training data. The results on
1999 KDD Cup data set show enhancement over performance
of previous approaches.

The approaches based on unsupervised learning in the
aforementioned works provided comparable results to that of

supervised learning approaches. Moreover, unsupervised learn-
ing methods enable an intrusion detection system to potentially
generalize the learned models (based on training) on novel
threats, i.e. anomaly detection. The fact that in practice either
there is no labelled data or there is very few labelled data
makes employing unsupervised learning approaches preferable
in these cases. To this end, an unsupervised approach with
visualization would be most supportive for a human expert to
analyze the data. Given that SOM has the ability to build a
topographic visualization for the data, we believe that it is a
good match.

Most of the previous works that employed unsupervised
learning techniques for network intrusion detection were tested
against outdated data sets (e.g. 1999 KDD Cup). Note that
KDD cup data set has many drawbacks [16], and is already
well-investigated by proposed detection models using packet
statistics. This raises the question about performance of such
systems on new publicly available data sets representing
modern botnets. Furthermore, since recent botnets also exploit
traffic encryption to hide their malicious activities, afore-
mentioned literature, which use packet payload for training,
became obsolete. Hence, an approach not utilizing encrypted
payload information may improve the state-of-the-art in using
unsupervised learning based traffic analysis.

III. METHODOLOGY

As discussed earlier, the goal of this work is to assess
the capability of using SOMs as an unsupervised machine
learning approach in botnet traffic analysis. Our hypothesis in
this work is that given sufficient resolution, the trained SOM
may form well-separated regions to differentiate distinct botnet
communication behaviours (based on the traffic analyzed),
each into one or more node regions in the map. While a similar
objective, using the SOM as a semi-supervised approach for
attack detection, was explored in the past [14], this work
focuses on the unsupervised training approach alone, in which
only one layer of SOM is used for data projection. We believe
that the approach can be applied to more scenarios, including
the emerging threats of new types of botnets. To this end, we
aim to study the effect of training data sets and their nature
on the capabilities of SOM as a data analytics tool for botnet
traffic analysis.

The network traffic data used to build the SOM is exported
as flows, which are statistics based on the header information
but not the payload of traffic packets. A flow is defined as
an artificial logical equivalent to a call or connection, which
connects a pair of terminals and contains a group of features
[17]. A flow is commonly identified by a set of five different
attributes (5-tuples), including source and destination Internet
Protocol (IP) addresses, source and destination port numbers,
and the protocol, over a predetermined duration.

A. Traffic employed

To ensure a wide range of behaviours and botnet categories,
five publicly available botnet traffic traces from CTU13 set



provided by Malware Capture Facility Project of Czech Tech-
nical University [18], and ISOT data set provided by Univer-
sity of Victoria (UVIC) [11] are chosen. The traces contain
botnet captures with a wide variety of malicious behaviours
and protocols, as well as different botnet architectures and
attack targets. By choosing such a diverse set of botnet traffic
traces (data sets), we intend to explore the performance of the
SOM as an unsupervised learning technique under different
scenarios and determine how well the approach is in terms of
generalization.

The CTU13 botnet traffic data sets were captured in 2011.
The goal was to have a large database of real botnet traffic
mixed with normal traffic and background (unknown) traffic.
These data sets consist of thirteen traffic traces of different bot-
net samples. Under each scenario (botnet sample), a specific
malware was executed where each of them established con-
nections on several protocols and performed different actions.
Four chosen traces in CTU13 data sets include Murlo, Neris,
Rbot, Virut. These are referred to as captures 8, 9, 10, and
13 respectively. The Murlo trace (capture 8) contains mainly
port scans as malicious behaviour, with proprietary command
and control protocol, Net-BIOS and STUN traffic. Neris botnet
found in capture 9 contains Spam spreading, ClickFraud and
Port scanning, while Rbot sample found in capture 10 contains
UDP DDoS attack traffic. Both of them are based on IRC
protocol. On the other hand, Virut botnet found in capture 13
contains mainly Spam spreading and port scanning actions,
which are based on HTTP protocol.

Garcı́a et al. discuss in [18] that the labelling process in
CTU13 ensures that all flows labelled as normal and botnet are
definitely normal / botnet, while flows labelled as Background
may contain traffic from both types. This means that in each
CTU13 data set, there is an unlabelled portion for further
exploration. We refer to this portion (background) as the
unknown portion of the data.

On the other hand, ISOT data set is the combination
of several publicly available malicious and non-malicious
data sets, including Lawrence Berkeley National Laboratory’s
traffic traces for legitimate [19], and background traffic and
Storm and Waledac botnet traffic from the French chapter of
honeynet project [20]. Both botnets in ISOT data set employ
decentralized architectures, while Waledac is a P2P based
botnet, Storm utilizes HTTP and Fast-flux techniques based
on the DNS protocol. These botnets generate SMTP Spam and
UDP traffic. It is also noteworthy that most of botnets in this
work exploit traffic encryption for hiding malicious actions.
Hence, the analysis and detection of such traffic behaviours is
not trivial.

From the given flow records for the CTU13 data set [21],
we employ all numerical features, as well as protocol and
protocol dependent state fields. The features are: the duration,
port numbers, the direction, source and destination types of
services, the number of packets, the number of bytes, the
number of source bytes in numerical format, and the protocol,
connection states in binary format. By using only the provided
basic flow characteristics, we intend to test the performance of

our proposed approach using minimum a priori information.
By minimizing the a priori information, we aim to minimize
the blind sights and not to miss the new (unknown) malicious
behaviours. On the other hand, we employ all numerical
features, extracted from ISOT data set using Tranalyzer with
default configuration [22]. It is also noteworthy that our
approach does not use IP addresses or port numbers as input
attributes to build the SOM.

B. Self-Organizing Maps

Self-organizing map, or Kohonen’s map is one of the
most popular unsupervised neural network models [6]. The
algorithm is based on unsupervised, competitive learning to
produce a d1 × d2 two-dimensional map (grid) projection of
multi-dimensional input space. Basically a SOM consists of
components called nodes or neurons. Each node has a weight
vector with the same number of dimensions as the input vector,
as well as a fixed a position in the map plane, which is
typically a hexagonal or a rectangular grid. Then for each
training vector, the algorithm calculates distances between
input vectors and SOM nodes to choose the best-matching
unit (BMU), and updates the weight vectors of the BMU (the
hit) and its neighbours accordingly for the training process.
The basic iterative learning procedure can be summarized as
follows:

1) Assign a weight vector to each map node (unit) wij

randomly or linearly.
2) At each training step, a random input vector x is pre-

sented to the lattice. Distances, typically Euclidean, be-
tween x and all the nodes in the SOM are computed.

3) The winning node wc is identified by minimum distance
to the input vector. d(wc, x) = min(||x − wij ||), where
||.|| is the Euclidean norm.

4) Weight vectors of the winning neuron and its neighbors
are adjusted according to the input vector: wij(t+ 1) =
wij(t) + hcij(t)(x − wij(t)), where hcij is a non-
increasing neighborhood function around the winner wc.
In case of Gaussian neighborhood:

hcij(t) = α(t).exp
−
||wij(t)−wc||

2

2σ(t)2 ,

where learning rate function α(t) is a decreasing function
of time and σ(t) is the neighborhood radius.

5) Repeat steps (2) - (4) by a predetermined number of
iterations or until the convergence criterion is satisfied.

In practice, the SOM training process usually consists of two
phases: coarse training, during which the topographic order
of the SOM is formed, and fine training, for obtaining a more
accurate final state with the same total number of training steps
as original training procedure.

The trained SOM preserves the topological properties of the
input space, and therefore can be used as a data analytics tool
to visualize and analyze the high-dimensional data. Moreover,
SOM has the ability to generalize data from the training set.
Characteristics of each new input can be derived by identifying
its BMU and quantization error.



C. Data Analytics on Traffic Flows

While supervised machine learning-based approaches have
found success in botnet detection applications [3][12], in
this work, we explore the utility of employing SOMs, an
unsupervised learning approach, to analyze unknown / botnet
behaviours as the emerging novel threats. Moreover, though
SOM’s capabilities have been proven in malicious detection
applications [14][15][23], it was utilized mostly as semi-
supervised approach. In this research, we employ SOMs in an
unsupervised manner to enable the approach to suite better to
unidentified threats. Hence, we apply only one layer of SOM
for data projection with minimum labelling information.

Botnet masters are employing more and more sophisticated
techniques to hide botnet’s fingerprints. This results in the
botnet traffic becoming more and more similar to legitimate
traffic, making the identification established in previous works
blurry. Hence, to shed light into this phenomena and to analyze
it, we train our SOMs using three different schemes based on
the chosen training data:

(i) use both known normal / legitimate and known malicious
traffic for training purposes, as done in the previous
supervised learning approaches [14][15];

(ii) use only normal / legitimate traffic for training purposes
as done in the previous unsupervised learning (anomaly
detection) approaches [13];

(iii) use only malicious (botnet / CC) traffic for training
purposes as done in some of the one-class classifier
approaches [24].

In all schemes, only the well-identified flows, for which
the ground-truth is known, are used for training. In doing
so, we are able to indentify with certainty the input data
for constructing the SOMs. Then we examine the capability
of the trained SOMs in separating Normal, Botnet, and CC
traffic in the testing portions containing labelled flows before
using them to assess the unseen data for which the ground-
truth is unknown. This not only represents the real-life security
conditions for us but also sheds light into understanding the
performance gains / losses under different types / amounts
of labelling information, i.e. ground-truth. For example, using
honeypots are usually for collecting only malicious data. On
the other hand, in idealistic cases of networks where there are
no attacks, the data collected contains only legitimate traffic.
Moreover, even when a threat is discovered in the collected
traffic, we are generally not able to fully identify the extension
of it and label the data for training.

We employ three different trained SOMs (based on the
aforementioned training schemes) for exploring the unknown /
unlabelled (Background) traffic present in the aforementioned
data sets. By analyzing the distribution of the background
traffic on the trained SOMs, we intend to investigate the ability
of the different training schemes on inspecting / analyzing
unknown traffic for different attack and normal (legitimate)
behaviours. This is the basic step toward an unsupervised
system for automatically detecting anomalous behaviours in
everyday traffic. It is noteworthy that our aim is to help

the human expert to analyze the unknown traffic, but not to
guarantee what is inside the unknown traffic. In our system
the final decision will be made by the human expert.

IV. EVALUATIONS AND RESULTS

A. Parameters and Performance metrics
Table I shows the distribution of classes in each data

set. Since there are too few CC flows in Rbot capture, the
malicious flows in this set are considered to be the sum of
botnet / CC. In each set, 40% of the labelled data is used for
training and the remaining 60% is used for testing. Given that
the nature of SOM is based on distances between data vectors
and nodes, traffic features are normalized with zero means and
unit variance before they are used for training.

TABLE I
DATA SPECIFICATIONS

Data Set Number of Flows

CTU13

Normal CC Botnet Background
8 - Murlo 72822 1074 5053 2875281
9 - Neris 43340 5099 179880 2525565
10 - Rbot 15874 37 106375 1187592
13 - Virut 31939 1202 38791 1853217

ISOT Normal Storm Waledac
212203 18721 33598

The model is built based on SOMToolbox from Aalto
University, Finland, which is developed and recommended by
the authors of SOM [25][26]. Learning parameters of SOM
are summarized in Table II. With training scheme using both
legitimate and botnet traffic, the map size is 30×30; otherwise
the parameter is set to 20×20. These map sizes are determined
empirically. SOMs are trained by a two-phase batch-training
process, including coarse training and fine tuning, over 500
iterations per phase. The neighborhood radius is decreased
linearly from the initial to final value. Finally, for each training
scheme, a threshold α is applied for determining a set of
important map units, which account for at least α percent of
training samples, for each training class. The sets of important
units are then used to label unseen flows as Normal, Botnet, or
Anomaly. The threshold is set to 99%, 92%, and 90%, when
both normal and botnet traffic, or just normal traffic, or just
botnet traffic is used for training, respectively.

TABLE II
SOM TRAINING PARAMETERS

Parameter Value
Map size 20× 20 or 30× 30
Lattice Hexagonal
# of iterations 1000
Training neighborhood radius 8 to 2
Neighbornood function Gaussian

The performance of our approach is quantified by True
positive rate (TPR) per class to overcome the unbalanced
nature of the data sets. TPR for each class is calculated as
TPR = TP/(TP + FN), where TP (FN ), True Positive
(False Negative), denotes the number of test instances of the
class correctly (incorrectly) identified.



Fig. 1. Hit histogram of the SOM trained using scheme (i) on capture 8
of CTU13 data set. The background color denotes SOM Umatrix, where the
color bar on the right shows the distance range.

B. Results

Table III presents the performance of the SOM training
schemes, which is obtained on the test partitions of the data
sets. As expected, SOM training scheme using both normal
and botnet traffic gives the highest results. This scheme
achieves high performance with a clear separation between
non-overlapping groups of BMUs of traffic classes on the
trained SOM. For example, in Figures 1 and 2, which visualize
data distribution of different traffic classes in capture 8 and
capture 10 on the SOMs, it is clear that the different classes
are either separated by lighter area in SOM Umatrix1, which
indicates large inter-node distances, or empty nodes. Moreover,
in all cases, most of the incorrectly classified botnet (CC)
traffic is still labelled as CC (botnet). This supports our
hypothesis on the ability of the SOM in separating malicious
traffic from normal traffic. On ISOT data set, if we consider
there are only 2 classes (legitimate and botnet), the TPRs
are 98.67% and 98.29% for legitimate and botnet traffic,
respectively. The figures are comparable to the results in
[11], where the detection rates of REPTree classifier with
reduced subset were 97.9% and 98.1%. It is noteworthy that
our approach does not use any labels for SOM training,
while in [11], a supervised learning approach was employed
which requires labels for training purposes. Moreover, the high
performance of the approach on unseen test sets shows that it
successfully avoided overfitting problem.

Among the two remaining training schemes, the results on
CTU13 data sets are generally better with the scheme using
Normal data only. Using 92% threshold to assign Normal label
to map units, TPRs of bot flows are in the range from 80%

1Umatrix is a graphic display to illustrate the degree of clustering tendency
on the SOM via distances between SOM nodes [26]. Longer distances indicate
less similarity between the data points.

Fig. 2. Hit histogram of the SOM trained using scheme (i) on the capture 10
of CTU13 data set.

to 95%. On the other hand, the training scheme using only
Botnet traffic observes poor performance on captures 8, 9 and
13 of CTU13 data set. Using 90% threshold, only 62%, 5%
and 8% of Legitimate flows are correctly classified. However,
the results are fairly good on Rbot trace (capture 10) with all
training schemes, suggesting that Rbot botnet is considerably
easier to detect.

On ISOT data set, the trend is reversed, where SOM training
by only botnet flows gives far better result than SOM trained
by normal data only. However, considering that ISOT data set
is a combination of a legitimate / normal data set provided by
LBL and malicious data captured using Honeypots [11], the
results are based on data captured at different locations under
(potentially) different topologies and conditions. This might
be the reason why the trend is reversed. On CTU13 data sets,
normal and botnet traffic were captured on the same network
at the same time, and our results also indicate this condition.

One other interesting observation from the experiments is
that CC flows and Botnet flows in the CTU13 data sets are
relatively different, Figure 1. This may come from the essence
of these two traffic types. While Botnet flows represent attacks
and malicious activities, CC traffic is for maintaining the
botnet and issuing attack orders. This seems to cause the
CC flows to be more similar to normal data than Botnet
flows. When only normal data is used for training, CC flows
are more likely to be misclassified as Normal than Botnet
flows. In particular, while only 3%, 7% and 14% of Botnet
flows in Murlo, Neris, and Virut traces are misclassified as
Normal, the rates of CC flows are 99%, 87%, and 76%,
Table IV. This supports the fact that Botmasters make use
of typical protocols such as HTTP, P2P for concealing botnet
communications. This observation suggests that independent
detection strategies for Botnet and CC traffic may improve
the classification performance.



TABLE III
CLASSIFICATION PERFORMANCE (TPRS) OF THREE SOM TRAINING SCHEMES UNDER THE TEST PARTITION

Data set Training scheme (i) Training scheme (ii) Training scheme (iii)

ISOT Legitimate Storm Waledac Legitimate Botnet Legitimate Botnet
98.67 94.19 96.96 91.94 27.68 94.97 89.87
Legitimate CC Botnet

Murlo 99.89 99.55 99.78 91.81 79.56 61.60 89.82
Neris 99.77 99.19 97.43 91.85 92.41 4.67 92.50
Rbot 99.84 98.99 91.01 95.39 100 89.56
Virut 99.75 98.30 96.71 91.84 85.44 8.04 89.90

TABLE IV
PERCENTAGE OF BOTNET AND CC TRAFFIC MISCLASSIFIED AS NORMAL

BY SOMS TRAINED USING SCHEME (II)

Data set Misclassified percentage
Botnet CC

Murlo 3.47 99.55
Neris 6.69 87.25
Virut 13.56 75.63

In the second set of experiments, we analyze the distribution
of Background (unlabelled / unknown) data in CTU13 on
trained SOMs from the first set of experiments, Table V. Based
on the promising results obtained by using both Legitimate
and Botnet flows for training, we employed the SOM trained
using scheme (i) to analyze the ”background” data portion
of the CTU13 data sets. Note that there is no ground-truth
provided by CTU for this portion of the data sets. Our results
show that most of the Background flows are Legitimate (61%-
79%, depending on the CTU13 data set analyzed). However,
the rest of the Background traffic flows seem to be very
different (confirmed by the BMU quantization error) from
both Legitimate and Botnet/CC. So we suggest to label most
of these as anomalies for further investigation. Our SOM
based data analytics system labels only a small fraction as
botnet/CC. Manually inspecting the background flows labelled
as Anomaly, we found that many of them have unfamiliar
protocols that were not seen in the training data, for example
ARP, RTCP, RTP, and IGMP.

SOMs trained by only Normal data (scheme (ii)) show
very similar Background data distributions to scheme (i). On
average, 86% of the Background flows labelled as Normal
by the SOMs trained using scheme (ii) are also labelled as
Normal by the SOMs trained using scheme (i). On the other
hand, SOMs trained by only Botnet/CC data (scheme (iii))
label most of the Background flows as Botnet.

To further investigate the Background traffic, we calculate
the average quantization error for each identified class (Nor-
mal, Botnet, Anomaly) of the Background traffic. Quantiza-
tion error of each data instance is defined as the distance
to its BMU, hence quantifies the differentness between the
instance and the SOM [6]. The average quantization errors
of flows labelled as Normal is 0.69 (sd 1.90), while the
figure of flows labelled as Botnet is 1.13 (sd 1.33). These
low quantization errors demonstrate that SOMs trained using
scheme (i) label the Background traffic as Normal and Botnet

Fig. 3. Hit histogram of Background flows on the SOM trained using scheme
(i) on capture 10 of CTU13 data set.

with high confidence, considering that they are calculated
over 47 features, which results in overall average quantization
error of 1.80 (sd 5.31) and 99% quantile of 44.25. On the
other hand, for the flows labelled as Anomaly, the average
quantization error is 4.32 (sd 8.40). This higher value confirms
our observation that anomaly traffic contains very different
behaviours / patterns that were not present in the training
data. This is further confirmed by our manual analysis of these
flows and the different protocols we identified as a result of
this analysis. Similarly, SOMs trained using scheme (ii) give
average quantization errors of 1.18 (sd 2.53) and 5.89 (sd 7.16)
for flows classified as Normal and Anomaly. On the other
hand, training scheme (iii) produces SOMs with much higher
quantization errors when applied on the Background traffic.
On average, the Background flows are classified as Botnet
and Not Botnet with quantization error values of 14 (sd 5.52)
and 22 (sd 22.16), respectively. These very high error values
indicate that SOMs trained using scheme (iii) are not suitable
for Background / unknown data analysis.

V. CONCLUSION

Our main objective in this work w to investigate the
capability of SOMs as an unsupervised data analytics sys-
tem for analyzing unknown / unlabelled traffic. Using three



TABLE V
DISTRIBUTION OF BACKGROUND TRAFFIC FLOWS ON THE TEST PARTITION FOR THE THREE SOM TRAINING SCHEMES

Data set Training scheme (i) Training scheme (ii) Training scheme (iii)
% of Normal
Flows

% of Anoma-
lous Flows

% of Malicious
(Botnet) Flows

% of Normal
Flows

% of Malicious
(Botnet) Flows

Murlo 61.86 34.74 3.40 71.89 60.76
Neris 68.56 29.57 1.85 65.99 92.34
Rbot 78.30 18.88 1.20 76.81 55.08
Virut 62.29 35.14 2.41 62.64 81.72

different SOM training schemes, we analyzed and evaluated
the capabilities of this SOM based approach on publicly
available data sets of modern botnets. The obtained results are
comparable to that of previous supervised machine learning-
based approaches, even though our approach is based on
unsupervised learning paradigm. Detection rates of Botnet and
Normal classes are up to 99.78% and 99.89% with training
scheme using both classes. Moreover the technique showed
its potential for building a strong data analytics system for
unknown traffic analysis.

Our data analytics results on unknown traffic suggest that
when a complete set of training data is not available, SOMs
can be trained on normal data only and still achieve a
high performance, given that the data is diverse enough to
cover most part of the legitimate traffic. However, for higher
accuracies, data analytics systems trained on both malicious
and normal behaviours should be preferred.

Future work will investigate the ability of filters based on
both SOM hit counts and quantization errors in reducing the
noise in data and increasing the accuracy. Moreover, self-
growing SOMs could also be employed to automate the pro-
cess of tuning SOM training parameters. Finally, performance
of an SOM-based data analytics system can be studied against
other data sets, to examine its potential of detecting other types
of network attacks and malicious activities.
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