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Abstract— Intensity-based registration techniques have been 
increasingly used in multimodal image co-registration, which is a 
fundamental task in medical imaging, because it enables to 
integrate different images into a single representation such that 
complementary information can be easily accessed and fused.
These schemes usually require the optimization of some 
similarity metric (e.g., Mutual Information) calculated on the 
input images. Local optimization methods often do not obtain 
good results, possibly leading to premature convergence to local 
optima, especially with non-smooth fitness functions. In these 
cases, we can adopt global optimization methods, and Swarm 
Intelligence techniques represent a very effective and efficient 
solution. This paper focuses on biomedical image registration 
using Particle Swarm Optimization (PSO). Several literature 
approaches are critically reviewed, by investigating modifications 
and hybridizations with Evolutionary Strategies. Since 
biomedical image registration represents a challenging clinical 
task, the experimental findings encourage further research 
studies in the near future.
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I. INTRODUCTION

Image co-registration is a fundamental task in medical 
imaging because it enables to integrate different images into a 
single representation (i.e., the same reference system), allowing 
physicians and researchers to access at this complementary 
information more easily and accurately [1][2]. Fused image 
data can improve medical diagnosis, surgery planning and 
simulation as well as intra-operative navigation. The choice of 
the modality depends strongly on the medical task. In 
radiotherapy planning, for instance, dose calculation is based 
on the Computed Tomography (CT) data, while tumor 
delineation is often better performed on the corresponding 
Magnetic Resonance Imaging (MRI) scans, especially in soft 
tissue imaging (e.g., brain or prostate) [3]. The same 
anatomical district of the human body is often imaged with 
different modalities (Fig. 1). In particular, morphologic images, 
which define the anatomy of organs or pathological tissues, can 
be integrated with functional ones, which describe the cellular 
physiology or the metabolism (Positron Emission 
Tomography, PET). These images are used in a 
complementary fashion to gain additional insights into 
biological phenomena and pathologies. Even though
combining appropriately different modalities is definitely 

useful, multimodal images even concerning the same subject 
generally differ by local geometric differences. Therefore, in 
order to perform quantitative and precise evaluations on 
biomedical imaging data, such images have to be mapped into 
the same coordinate system by means of the alignment process, 
named biomedical image co-registration. Medical image 
registration algorithms can be conveniently applied in: (i) intra-
modality matching, for patient follow-up (e.g., tumor response 
assessment over the time); (ii) inter-modality matching, for 
comparisons and quantitative measurements concerning 
images acquired with different modalities.

The aim of this work is to provide to the reader an 
overview on biomedical image registration using Particle 
Swarm Optimization (PSO), which is a population-based 
stochastic optimization algorithm [4][5]. Notably, to the best of 
our knowledge, no other Swarm Intelligence techniques have
been applied to this problem so far. The different approaches 
proposed in the literature are examined, by thoroughly 
investigating various modifications and hybridizations with 
evolutionary strategies and genetic algorithms. This manuscript 
is organized as follows: section II explains the theoretical 
background regarding medical image co-registration as well as
the PSO technique; section III describes and reviews 
biomedical image registration approaches based on PSO; in 
section IV, the experimental findings obtained in the 
experiment trials by the different approaches are illustrated and 
discussed; some conclusive remarks are provided in section V.

II. THEORETICAL BACKGROUND

In this section, the theoretical framework underlying this 
study is presented. First, a detailed description of biomedical 
image registration is reported, with particular attention to 
intensity-based techniques. Afterwards, Particle Swarm 
Optimization (PSO) will be introduced.

A. Biomedical Image Registration
An image co-registration stage is mandatory to integrate 

and quantitatively compare biomedical imaging data 
originating from different modalities. As a matter of fact, 
image registration is able to bring the different medical 
datasets, concerning the same patient, into the same space. In 
this way, it will be possible to make quantitative and 
meaningful comparisons between the Regions of Interests 
(ROIs), such as organs and tumors, obtained by processing 
several image series from different scanners and modalities [6].



Fig. 1. Examples of different medical image modalities concerning the same subject affected by brain tumor: (a) Magnetic Resonance Imaging; (b) Computed 
Tomography; (c) Positron Emission Tomography.

Registration approaches can be principally distinguished in 
feature-based and intensity-based schemes [2]:

Feature-based techniques find correspondences 
between geometrical image features (e.g., points, lines, 
contours, surfaces) or landmarks (external or 
anatomical). Either image features or landmarks are 
first extracted from the input images, and then a 
transformation is established according to the 
correspondence between the found features. However, 
segmenting and finding correspondences are very 
difficult tasks.

Intensity-based techniques directly exploit image 
intensities to compute the transformation that 
maximizes a similarity metric by searching in a certain 
space of transformations and comparing intensity 
patterns. The main advantage of these schemes is that 
explicit image segmentation or feature extraction is not 
required.

This review is focused on intensity-based registration 
techniques, since they are the most suitable for applying 
Swarm Intelligence approaches. Fig. 2 shows the overall flow
diagram of the biomedical image registration process, by using 
an intensity-based technique.

From an algorithmic perspective, image co-registration 
involves finding the parameters, i.e., a geometric 
transformation matrix T , which either maximize or minimize 
some objective function, a.k.a. fitness function )(f .
Therefore, image co-registration can be modeled as an iterative 
procedure by successive refinements. In each iteration, the 
current estimate of the transformation T̂ is used to calculate a 
similarity measure. Afterwards, the optimization algorithm 
makes another (hopefully better) estimate of the 
transformation, evaluates the similarity measure again and 
continues to iterate until the convergence condition is achieved 
(i.e., no transformation can improve the value of the similarity 
metric above a preset tolerance threshold or the number of 
possible iterations is achieved). The multimodal registration 
process starts from two images A and B probably 
characterized by different Fields of View (FOVs): A is used as
source image (floating) while B is the reference image 
(target). The reference imaging modality is usually selected 
according to the higher spatial resolution and image content. 
For instance, in PET/MRI registration, MR images are chosen 

as target images because they convey more anatomical 
information than PET images. 

The geometric transformation T is defined only in the 
region of overlap of the image FOVs, and must take into 
account image sampling and resolution. It is also important to 
note that the images are discrete. The discretization is 
determined by the sampling grids, which are different when 
FOVs are not the same [7]. Even if images A and B have 
exactly the same sampling grid, the grid points will not 
normally coincide in the volume of overlap and an 
interpolation step is therefore necessary. Realignment and 
reslicing operations are mandatory to get a one-to-one mapping 
between different modality slices. Especially, in iterative 
registration algorithms, an accurate interpolation method is 
required [3][6] (e.g., B-Spline interpolation).

In intensity-based registration techniques, the three core 
components are: (i) the search space (parameter space); (ii) the 
similarity metric (objective function); (iii) the search strategy 
(optimization algorithm).

1. Search Space
The search space is the set of potential transformations 

used to align the images. Each point in the parameter space 
corresponds to a different estimate of the transformation.
Accordingly, the parameter space can be thought as a high-
dimensionality function in which the value of each location 
corresponds to the value of the similarity measure for that 
transformation estimate. Geometric transformations may be 
rigid, affine, and elastic.

Fig. 2. Flow diagram of the biomedical image registration process, by using 
an intensity-based technique.

Three dimensional (3D) rigid-body registration has six 
degrees of freedom, regarding:

(a) (b) (c)



translations along the three axes of the reference 
system x , y and z , denoted by the displacements xt ,

yt and zt , respectively;

rotations around the x , y and z axes, denoted by the 
angles , and , respectively.

In 3D rigid-body registration, the mapping of the 
coordinates TzyxAp into the transformed coordinates 

TzyxAp can be suitably formulated as a matrix 
multiplication in homogeneous coordinates with the geometric 
transformation matrix T .

Some registration algorithms increase the number of 
degrees of freedom by allowing for anisotropic scaling (giving 
nine degrees of freedom) and skews (giving twelve degrees of 
freedom). A transformation that includes scaling and shearing 
as well as the rigid-body parameters is referred to as affine, and 
has the important characteristics that it can be described in 
matrix form and that all points, straight lines and planes are 
preserved. Rigid-body registration is widely used in medical 
applications where the structures of interest are either bony or 
are enclosed in bones (e.g., head, neck, pelvis, leg or spine),
but the errors are likely to be larger. The use of an affine 
transformation rather than a rigid-body one does not greatly 
increase the applicability of image registration, as there are not 
many organs that only stretch or shear. Tissues usually deform 
in more complicated ways. However, errors introduced by the 
scanner may occur, resulting in scaling or skew terms, and 
affine transformations are sometimes used to overcome these 
problems [7]. For most organs in the body, many more degrees 
of freedom are necessary to describe the tissue deformation 
with adequate accuracy, thus elastic or non-rigid methods are 
required to cope with local differences between the images.

However, for global elastic transformation, the number of 
parameters to be optimized is generally too large (often many 
thousands) to be feasible in practice. Therefore, two-step 
intensity-based registration approaches are used. In the first 
step, the global affine medical image registration is used to 
establish a one-to-one mapping between the two images to be 
registered. Afterwards, the images are registered up to small 
local elastic deformation.

2. Similarity metric
The similarity metric is an indicator that quantifies the 

degree of closeness between features or intensity values of 
two images. The Sum of Squared intensity Differences (SSD), 
correlation coefficient, ratio image uniformity are often 
utilized in intra-modality registration [7]. Because of the 
similarity of the intensities in the images being registered, 
these subtraction, correlation and ratio techniques are pretty 
intuitive. With inter-modality registration, the situation is 
quite different: there is, in general, no simple relationship 
between the intensities in the images A and B [6].

Mutual Information (MI) ),( BAI is an information 
theoretic concept for estimating the degree of dependence of 
the random variables A and B , with marginal probability 
distributions )(apA and )(bpB , by measuring the distance 

between the joint distribution ),( bapAB and the distribution 
associated to the case of complete statistical independence 

)()( bpap BA [3][8]:
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Let the random variables A and B represent the image 
intensity values a and b concerning the pairs of voxels in the 
two images to be registered, respectively. Estimations for the 
joint distribution and the marginal distributions can be simply
obtained by normalizing the joint and marginal histograms of 
the overlapping parts of both images. In general, the input 
images are also smoothed slightly, by means of their 
histogram. This makes the cost function (i.e., similarity metric) 
as smooth as possible to give faster convergence and less 
chance of being trapped in local minima.

The intensities a and b are related through the geometric 
transformation T . The MI registration criterion states that the 
images A and B are geometrically aligned by the 
transformation T for which ),( BAI is maximal. Therefore, 
the objective of intensity-based registration is to find an 
estimation of the transformation T that best aligns the source 
image A against the reference image B :

)),((maxargˆ BAI TT
T

.

The results presented by Maes et al. [3] proved that sub-
voxel registration differences with respect to the stereotactic 
reference solution can be obtained for CT/MRI and PET/MRI 
matching without using any prior knowledge about the gray-
value content of both images and the correspondence between 
them. As a matter of fact, MI is the most intensively 
investigated criterion for registration of intra-individual human 
brain images [1]. Normalized Mutual Information (NMI) is also 
frequently used as the cost function to be optimized [9].
Especially, when misalignment can be large with respect to the 
imaged FOVs, a criterion invariant to image overlap statistics 
should be used:

.
),(
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where )(H and ),(H are the marginal and the joint 
entropies, respectively.

3. Optimization of Similarity Metrics
Intensity-based registration techniques determine the 

registration transformation T by optimizing a certain voxel 
similarity measure. Unfortunately, parameter spaces for image 
registration are frequently not so simple. There are often 
multiple optima within the parameter space, and the 
registration can fail if the optimization algorithm converges to 
the wrong optimum. Some of these optima may be very small, 
caused either by interpolation artifacts or a local good match 
between features or intensities [7]. As explained previously, 
these small optima can often be removed from the parameter 
space by smoothing the images before the registration.

Local methods, such as Powell’s direction set method, 
Nelder-Mead simplex algorithm, conjugate gradient, 



Levenberg-Marquardt algorithm, are usually employed in 
image registration [10]. Because many similarity metrics (i.e.,
functions of transformation parameters) are generally irregular 
and rough, especially in multimodal image registration, local 
methods are more accurate when the initial orientation is very 
close to the transformation that yields the best registration [11].
These strategies are also susceptible to premature convergence 
to local optima, especially for non-smooth functions. An
approach to address this issue is to apply multiresolution 
techniques, whereby images are aligned at increasing 
resolutions with initial orientations from the previous (lower) 
resolution registration result. However, these hierarchical 
methods frequently become trapped in local optima, as the 
global optimum may not be present in lower resolutions [7].
Global optimization is often required for dealing with the most 
general and tricky situations. Such global approaches include 
simulated annealing, tabu search, genetic algorithms and 
evolutionary strategies. Efficiency is the primary reason that 
local techniques are preferred for registration. Efficient global 
optimization may gain acceptance if a significant improvement 
in accuracy can be demonstrated.

For intensity-based registration, the problem is even more 
complicated. The desired optimum when registering images 
using voxel similarity measures is not often the global 
optimum, but it is one among the local optima [7]. A solution 
to this problem is to start the algorithm in the proximity of the 
correct optimum, which is within the portion of the parameter 
space in which the algorithm is more likely to converge to the 
correct optimum than the incorrect global one. In practical 
terms, this requires that the starting estimate of the registration 
transformation is reasonably close to the correct solution.

B. Particle Swarm Optimization
Swarm Intelligence (SI) studies the collective behavior of 

decentralized, self-organized natural or artificial systems. SI
models consist typically in a population of simple agents 
interacting locally each other and with their environment. The 
agents follow very simple rules and, although there is no 
centralized control structure dictating how individual agents 
should behave, local interactions between such agents, often 
affected by a certain degree of randomness, lead to a complex 
intelligent emergent global behavior, with effects that would 
not have been expected by each individual.

Particle Swarm Optimization (PSO) is a population-based 
stochastic optimization algorithm, introduced in 1995 by 
Kennedy & Eberhart [5], which searches for an optimal 
solution in the computable search space [4]. This technique 
results in a metaheuristic for solving non-linear optimization 
problems. Generally, such problems cannot be solved exactly 
by an explicit method because in practice the mathematical 
expression of the objective function, also called fitness 
function, :f is not available. Instead of computing the 
optimum position *x , a sufficiently good not necessarily 
optimal point x̂ , called sub-optimal solution, is obtained
by a metaheuristic in the given search space . PSO can also 
be seen as an evolutionary technique which, in contrast to 
Genetic Algorithms (GAs) and traditional Evolutionary 
Strategies (ESs) that use the competitive characteristics of 

biological survival, exploits cooperative and social aspects. 
Starting from a widely diffused population (swarm), individual 
components (particles) tend to move through the search space, 
eventually clustering in regions where minima are identified. 
Briefly, PSO simulates natural movement evolution for 
searching a solution with higher quality.

Computationally, a swarm consists of N artificial 
particles. The ith particle Nii ,,1,x , moves on the basis of
a velocity vector iv , which is a function of the best position 

ip found by the particle (i.e., local best solution) and of the
global best position g found so far among all particles (i.e.,
global best solution). ix , iv , ip and g are n-dimensional 
vectors, according to the space dimension. At iteration t , the 
position of the ith particle is updated as follows:
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where )(tw is the inertia weight, cogc and socc are respectively
the cognitive and the social acceleration constants; 

ti
r

,1 and 

ti
r

,2 are two uniformly distributed random numbers in the 
interval ]1,0[ . These parameters are set empirically, so 
representing the heuristic knowledge associated to the specific 
problem. Moreover, to keep ix values within reasonable 
bounds, velocities are clamped into a symmetric range defined 
by a preset maximum velocity maxv : maxmax , vvvi .

The update rule in (3) combines three different trends of 
movement:

the inertia movement )1()( ttw iv , where )(tw is the 
inertia weight and controls the influence of the move 
direction on the future motion;
the cognitive movement )1()1(

,1cog ttrc iiti
xp ,

where ]2,0[cogc is a constant that controls the particle 
cognitive behavior with probability ]1,0[

,1 ti
r , which is a 

scalar drawn at random for the ith particle at each 
iteration;
the social movement )1()1(

,2soc ttrc iti
xg , where 

]2,0[socc is a constant that controls the particle social 
skill with probability ]1,0[

,2 ti
r , which is a scalar drawn 

at random for the ith particle at each iteration.

Summarizing, the particle is able to memorize its own best 
position ip from the past, thus creating a kind of “nostalgia” to 
return there. When the fitness function )(f is to be 
maximized, if )1())(( ttf ii px , then )()( tt ii xp ,
otherwise the previous individual best position )1(tip is 
kept. On the other hand, the particle ix has also a social 



behavior, because it follows the swarm in its global best 
position )((maxarg)(

)(
tft i

ti

pg
p

.

Similarly to all other metaheuristics, PSO is highly 
dependent on the parameter settings: the number of particles 
N ; the inertia weight )(tw ; the acceleration constants cogc
and socc ; the maximum number of iterations maxT . Moreover,
the initial distribution of the population on the search space
must be assigned. A suitable value for the inertia weight w
usually provides balance between global and local exploration 
abilities, resulting consequently in a reduction of the number of 
iterations required to find the optimal solution. However, 
experimental results indicated that it is better to initially set w
to a large value, in order to promote global exploration of the 
search space, and gradually decrease it to get more refined 
solutions [12]. Accordingly, a variable inertia weight )(tw is 
usually defined as a monotonically decreasing function of the 
iteration t , such as in [11].

In addition to the basic PSO algorithm, several 
modifications are possible in order to enhance the achieved 
results:

the best position in a neighborhood of each particle ix
could be considered, named ip , instead of the global best
position g [13]. Therefore, ip has to be substituted for g
in the updating rules (3);
evolution strategies can also be integrated, giving rise to a 
hybrid PSO. GA operators, such as mutation and crossover, 
can be used to preserve exploration capability in the various 
iterations, especially in the later stage of the evolution 
process [14]. Such a case could occur even at the early 
stage for a particle that is very close to the global best 
position g , and the velocity will tend to zero. To avoid 
premature convergence and stagnation, after the particle 
positions updating, pairs of particles are selected for 
crossover with probability cp , which is a random number 
generated uniformly in the interval ]1,0[ . For each pair, two 
child particles are generated by a crossover rule and replace 
their parents, maintaining the population size N constant
[11]. The authors of [15] proposed the following crossover 
rule for parents ix and jx , with ji :

.
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The velocities iv and jv are also updated from the 
velocities of the parents Vii vv , Vjj vv , where:

jijiV vvvv )( .

grouping the particles into subpopulations is a further 
alternative. Any clustering method can be used to perform 
this subdivision. Another random number 

cspp is specified 

to represent the probability of intra-population crossover. 
Crossover among different subpopulations occurs with 
probability 

cspp1 ;

a constriction coefficient was also introduced to control 
the movement of ix , by balancing both convergence and 
explosive particle movements [16]:
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III. MULTIMODAL BIOMEDICAL IMAGE REGISTRATION 
APPROACHES BASED ON PSO

In this section, multimodal medical image registration 
approaches that use PSO as searching strategy are described 
and critically reviewed. First, the introduction of an initial 
orientation term in the PSO formulation is explained. Then, the 
different PSO modifications are described.

A. Introduction of an Initial Position in the Standard PSO 
Formulation
In a large amount of the optimization techniques, such as 

PSO, standard test functions are employed for benchmark 
testing and continuous optimization algorithms assessment. In 
these cases, the initial set of parameters has little importance. 
However, in many practical applications, there is usually at 
least some knowledge of the characteristics of *x for which 

*)(xf is the global optimum [11]. This situation is certainly 
true in biomedical image registration, since the users of clinical 
imaging systems are generally skilled physicians. These 
clinicians can supply a trustworthy indication of the correct 
orientation, by choosing an accurate initial transformation. 
Although co-registration is required because of both medical 
image complexity and human subjectivity or error, registration 
algorithms can definitely benefit from an accurate initial guess.

This may also occur with PSO, as maxv and constriction 
coefficient only prevent particle straying from the region of 
feasible solutions. However, if the particles ix were arranged 
according the user’s initial orientation, while swarming, they 
may have a higher probability of discovering a region that 
contains *x . Briefly, in addition to the swarming effect around 
the current global best g and each particle recollection of its 
personal best ip , the initial orientation initx can be also 
introduced into the velocity iv of each particle [11]. The 
formulation in (3) is modified to (6):
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where retc is the acceleration constant for returning to the 
initial orientation and 

ti
r

,3 is a uniformly distributed random 
number in ]1,0[ . Eq. (5) is also revised accordingly.

Stochastic and evolutionary global optimization techniques, 
including PSO, can generally discover the promising region or 
the “basin of attraction” in the search landscape. However, they 
typically exhibit slow convergence to *x , even though the 
complexity of similarity metric computation needs fast 
convergence. For these reasons, a local method is applied to 
the best point in the promising region found by the PSO [11].
Powell’s direction set algorithm is very appropriate for this 
purpose, because it does not require derivative computation
[10].

B. Versions of Biomedical Image Registration Approaches 
using PSO
Several literature works have addressed the issues related to

biomedical image registration using PSO. For simplicity and 
compactness, the pseudo-code of the biomedical image 
registration process based on the standard PSO technique, 
using a rigid-body model, is reported in Algorithm I box. In 
addition to the “traditional” plain PSO, other versions, 
including initial orientation knowledge and/or ESs, have been 
proposed in the literature. These more advanced registration 
approaches aim to balance between exploration and 
exploitation, avoiding premature convergence.

In [11], three main variants of biomedical image 
registration based on PSO are described and compared: (i)
Hybrid PSO with crossover operators for positions and 
velocities updating [15]. However, for normal velocity updates, 
(5) is exploited. Convergence criteria are 20NoImproveT

iterations in which there is no improvement in )(gf , or 
reaching the maximum number of iterations maxT . After the 
PSO convergence, Powell’s local optimization method is 
applied to the best point in the swarm; (ii) Hybrid PSO with 
crossover and subpopulations, analogous to the previous one 
except that five subpopulations were initially determined with 
the K-Means clustering algorithm. Additionally, after 
convergence, Powell’s method is applied to the best points in 
each subpopulation, resulting in the final registration 
transformation; (iii) PSO with constriction coefficient and 
relaxed convergence criteria is the most “controlled” of the 
three techniques. A “loose” local optimization with Powell’s 
method is applied to initx , resulting in initx around which 
particles are generated. PSO with constriction factor is 
applied, the velocities are updated according to (6) combined 
with (5) and convergence criteria are more relaxed. If in some 
iteration )()( gx ff i , then g is set to ix , but if gxi

the iteration is still considered to be a non-improving iteration. 
Convergence is faster, as the iteration counter is not reset to 
zero for improving points very close to g . Powell’s local 
optimization is applied to g after the convergence (a function 
value change less than 0.005).

Although the constriction coefficient prevents the particles 
from straying out of the space of feasible solutions, the 

particles have a greater probability of being drawn out of local 
optima by the additional term.

ALGORITHM I. PSEUDO-CODE OF THE BIOMEDICAL IMAGE 
REGISTRATION PROCEDURE USING PLAIN PSO. RIGID-BODY 
TRANSFORMATIONS AND MUTUAL INFORMATION (MI) SIMILARITY METRIC 
WERE EMPLOYED.

Input: Source (floating) image: A
Reference (fixed) image: B

Output: Estimation of the best transformation:
)),((maxargˆ BAI TT

T

Image A aligned with the image B : )(ˆ AT
Parameters: Parameter vector to be estimated:

),,,,,( zyx tttx
Inertia weight: w
Acceleration constants: soccog , cc

Total number of particles: N
Min improvement in MI between two consecutive 
iterations: 
Max number of iterations: maxT

1. /* Initialization of the population */
2. for each particle },,2,1{ Ni do
3. Set particle position )0(ix at random;
4. Set particle velocity )0(iv at random;
5. )0()0( ii xp ;
6. end for
7. )0((maxarg)0(

)0(
if

i

pg
p

;

8. /* Iterate until the convergence condition is achieved */
9. while( ))2(())1(( tftf gg and maxTt ) do
10. for each particle },,2,1{ Ni do
11. /* Velocity and position updating */

12.
)1()1(

)1()1()1()(
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ti

ti
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;

13. )()1()( ttt iii vxx ;
14. /* Particle movement and fitness evaluation */
15. if )1())(( ttf ii px then
16. /* Better solution according to MI maximization */
17. /* Update the current particle best solution */
18. )()( tt ii xp ;
19. else
20. /* Keep the previous particle best solution */
21. )1()( tt ii pp ;
22. end if
23. end for
24. /* Global best position updating */
25. )((maxarg)(

)(
tft i

ti

pg
p

;

26. /* Iteration counter increment */
27. 1tt ;
28. end while



The authors of [11] stated that the modifications were designed 
ad hoc for image registration and this term improved 
registration accuracy. In other applications, however, there 
may be no prior knowledge of the location of the global 
optimum. In these cases, the last version may prevent particles 
from moving towards the global optimum, and (3) should be 
used for velocity update. If a feasible region, wherein the 
correct transformation likely lies, cannot be identified, then the 
other PSO hybridizations (i.e., the use of crossover and 
subpopulations) are recommended.

Some knowledge of the correct orientation can greatly 
improve the search. Both the initial orientation term and the 
constriction coefficient prevent the search from straying too far 
from the global optimum. Hybridization with ES operators 
appears to improve accuracy by diversifying particle locations. 
As shown in the last version, convergence criteria during the 
global search can be relaxed, as local optimization can find the 
global optimum if a particle is sufficiently close to it.

The authors of [17] investigated four different plain PSO
versions for the registration of the images, without integrating 
other optimization approaches: (i) Standard PSO corresponds 
to the standard PSO introduced in 2007 by Bratton & Kennedy
[18]; (ii) Standard PSO with variable inertia weight represents 
a modification of the earlier described standard PSO based on
[11], where the inertia weight )(tw monotonically decreases 
during the iterations; (iii) Standard PSO with initial 
orientation, relaxed convergence criteria and constriction 
coefficient is another alteration presented by Wachowiak et al.
[11]. This version includes the initial orientation of the 
volumes to one another, according to (6) and (5); (iv) PSO with 
constriction coefficient, relaxed convergence criteria and 
variable influence of the initial orientation is a modification of 
the previous version. Since the involvement of the initial 
orientation can prevent the convergence of the swarm, the 
influence of the component initx in (6) should decrease in each 
iteration:
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Chen et al. [19][20] investigated an extension of the PSO to 
a Hybrid Particle Swarm Optimizer (HPSO), by integrating 
two methods from the GAs into the standard PSO. The authors 
argued that classical PSO is convenient for 2D-2D registration, 
but is less efficient for 3D-3D alignment. They solved this 
problem by using a hybrid algorithm. The chosen optimization 
metric is again MI.

An alternative non-linear 2D-2D affine registration
technique for MR and CT modality images of human brain
sections was presented in [21], using a correlation function as 
objective function. Both GA and PSO schemes were 
considered in a multiresolution domain (using Haar wavelet 
transform) to decrease the sensitivity of the registration 
procedure to local maxima and achieve an idea of the initial

orientation of the images to be registered. A comparative study 
analyzed the results.

IV. EXPERIMENTAL FINDINGS

An accurate and fair comparison among the different 
literature approaches is not so straightforward because different 
medical datasets were used in experimental trials, due to the 
unavailability of public medical benchmarks for intensity-
based image registration. In addition, all the approaches used a
small number of images for 2D or 3D registration tests, making 
the experimental findings much less significant.

As first experimental evidence, in Das & Bhattacharya 
[21], PSO approach resulted more accurate and efficient for 
biomedical image registration than GA and other evolutionary 
techniques, considering the correlation value. As a matter of 
fact, PSO in its basic form is best suited for continuous
variables, allowing to evaluate more precisely the objective 
function, while GAs work better in discrete search spaces. 
Consequently, PSO outperforms GAs in image registration
application. Moreover, the considerable adaptability due to
stochastic exploration and exploitation of the swarm 
strengthens PSO over other robust optimization techniques. 
Good convergence result has been obtained with a population 
size of 20N particles using both optimization techniques.

In Wachowiak et al. [11], experiments consisted in 
registering single 2D slice biomedical images to 3D volumes. 
This 2D-to-3D medical image registration can be useful for 
real-time monitoring, when an intra-treatment slice has to be 
aligned with a pre-treatment 3D dataset. Unfortunately, only 
three clinical instances, including also synthesized MRI and 
ultrasound images, were considered: three 3D volumes, and 
four 2D images to be registered with each volume. In these 
experimental trials, a population size of 35N particles was 
used. It was shown that incorporating the initial position into 
the velocity update equation increased registration accuracy 
significantly. Moreover, hybrid PSO-ES and PSO
incorporating the constriction coefficient produced the highest 
percentage of correct registrations among all the tested PSO
techniques. In comparisons, the PSO methods were noticeably 
more accurate than the other ES techniques.

The authors of [17] developed plain PSO in four different 
modifications for the registration of the images, without the 
influence of another optimization method. The prior presented 
test results showed that the classical PSO versions reach their 
limits for the given optimization problem. On the other hand, 
the two PSO versions with influence of the initial orientation 
reported much better results.

In the experiments performed in [19][20], standard PSO
and hybrid PSO were compared against conventional gradient 
descent method as well as a GA. The optimization methods 
were used for rigid registration of 3D image data. HPSO
achieved the best results among the approaches for both rigid 
and non-rigid registrations. PSO outperformed the gradient 
descent procedure and the GA. However, exact quantities and 
parameters used during the trials are not reported.

Opposing findings and opinions have been found in the 
literature, especially in [19][20] and [17]. Chen et al. claimed 



in their articles [19][20] that plain PSO is just convenient for 
2D-2D registration, while for higher dimensions a hybrid 
method should be used. The results obtained in [17]
contradicted the ones in [19], because it was shown that the 
alignment of 3D data was possible using the plain PSO without 
combining other optimization methods. Regarding 
performance speed-up, both plain PSO and hybrid PSO with 
ESs are inherently parallel, and the computation times can be 
greatly improved by using either distributed or shared memory 
architectures. Finally, both accuracy and efficiency of the PSO
methods could be further improved by additional 
modifications, such as more sophisticated swarm initialization 
strategies [22].

V. DISCUSSION AND CONCLUSIONS

In this paper a critical review of the literature works 
concerning biomedical image registration approaches using 
Particle Swarm Optimization was presented.

Swarm Intelligence techniques have been shown to be very 
efficient and powerful in a wide variety of computer science 
areas. Depending on the problem nature, continuous or discrete 
search spaces can be properly defined. Accordingly, the 
different SI approaches, such as PSO, may provide more 
efficient solution encoding either in continuous or discrete 
optimization problems. However, although each optimization 
technique was first designed for a particular purpose, the 
majority of evolutionary algorithms were adapted from 
continuous to discrete search space, and vice versa. The Bat 
Algorithm (BA) [23] can be seen as a hybridization of PSO and 
a local search. BA achieves better results with respect to PSO
when a large number of parameters must be estimated [24].
Elastic registration problem could be properly treated with BA
because of the thousands of parameters to be optimized. 
However, no literature work has addressed yet this challenging 
issue using SI techniques.

In conclusion, although more accurate comparisons must be 
made with other global and local optimization paradigms, 
Particle Swarm Optimization achieves encouraging results in 
biomedical image registration. This approach deserves 
certainly further study and represents a promising open 
research issue for multimodal medical image registration.
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