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Abstract—A real-time dynamic hand gesture recognition sys-
tem with gesture spotting is discussed in this paper. The gesture
spotting detects the start and the end of the gesture frames. The
system consists of preprocessing, posture sequence generation,
and SOM-Hebb network. Feature vectors are computed by the
preprocessing from video frames taken by a USB camera in real
time, and these feature vectors are fed to the posture sequence
generation and a vector that represents the sequence of postures,
called a posture sequence vector, is generated. Then, gesture
classification and the gesture spotting are performed in the SOM-
Hebb network. Our gesture spotting function detects the end of
the gesture by using vector distance between the posture sequence
vector and the winner neuron’s weight vector. The gesture
recognition algorithm is implemented on a PC. A USB camera
was used to acquire live images. The real time experimental
results show that the system recognizes nine gestures with the
accuracy of 96.22%.

I. INTRODUCTION

Hand gesture is an attractive alternative to cumbersome

interface devices for human-computer interaction (HCI). Since

hand gestures are one of the most important communication

methods frequently used in daily human life, it can be used in

the same way as words. Thus, advances of using hands in HCI

would be a great benefit to users. In recent years, a number of

video-based hand gesture recognition have been proposed [1].

Hand gestures are divided into two kinds, i.e., hand postures

or dynamic gestures of hand. Hand postures are static hand

poses without any movements [2][3], and gestures are defined

as dynamic movement, which is a sequence of hand postures

[4][5].

Generally, gesture spotting that segments meaningful ges-

tures from the continuous sequence of hand motion, is required

for the hand gesture recognition. Therefore, the dynamic

gesture recognition system must detect the start or end of

the gesture. This paper proposes a real time dynamic gesture

recognition system that can perform the gesture spotting.

The proposed system consists of two self-organizing maps

(SOMs) [6] and a Hebbian learning network. The SOM is

an unsupervised neural network which has been used in

pattern recognition, data analysis and visualization, due to its

clustering properties. A main characteristic of SOM is making

a feature map, in which vectors having a similar feature are

� � �

Fig. 1. Gesture.

mapped to same neuron automatically. With this property, the

SOM performs vector quantization.

In the proposed system, feature vectors are computed from

RGB video frames that are taken by a USB camera in

real time. Then a posture sequence vector that represents

the current gesture, is generated using the SOM. The SOM

performs posture classification in each video frame, and its

results are stored to a shift register to form the posture

sequence vector, which represents a dynamic gesture. A SOM-

Hebb network [7] classifies and identifies the given gesture.

End of gesture frame is detected by observing vector distance

between input and weight vector of winner neuron since it

is minimized when the posture sequence vector completes at

the end of gesture. In the proposed system, the bottom in

the vector distance transition is detected as the end of the

gesture. The recognized gesture is outputted when the end of

the gesture is detected. This recognition algorithm has already

been tested by simulations [8]. This paper describes a real

time dynamic gesture recognition system with this algorithm.

Recognition accuracy of the proposed system was examined by

experiments, in which nine dynamic gestures were recognized

in real time.

This paper is organized as follows: The gesture recognition

system is described in section II. The gesture spotting function

is described in section III. The proposed system was tested by

real time experiments and its results are given in section IV.

Finally this paper is concluded in section V.

II. GESTURE RECOGNITION SYSTEM

As shown in Figure 1, a dynamic hand gesture is defined as

a sequence of static hand postures in video frames. Therefore,

the dynamic gesture recognition is carried out in two steps, i.e.,

posture recognition and posture sequence recognition. Fig. 2
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Fig. 2. Flow of gesture recognition.

Fig. 3. Binary image.

shows algorithm employed in the proposed gesture recogni-

tion system. The system is made of preprocessing, posture

sequence generation, followed by a SOM-Hebb network.

The input is a video footage taken from a USB camera in

real time. In this the system, a single gesture is defined by

F video frames. Since each frame contains different postures,

each dynamic gesture can be classified by using examining

postures in the F video frames.

The preprocessing computes the feature vector. Then, the

posture sequence generation module generates a posture se-

quence vector. The subsequent SOM-Hebb network identifies

the gesture class from the posture sequence vector. The gesture

spotting function is implemented in this network.

A. Preprocessing

Each video frame from USB camera is P×Q pixels in RGB

color format. Each video frame is fed to the preprocessing,

which generates D dimensional feature vector
−→
X . A binary

quantization, two horizontal and vertical projection histogram

calculations, and two discrete fourier transforms (DFTs) con-

stitute the preprocessing.

1) Binary Quantization: First, the input color image taken

by the USB camera is converted to a binary image as shown

in Fig. 3. The system requires its users to wear a red glove as
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Fig. 4. Histogram of (A) horizontal, (B) vertical projection.

shown in Fig. 1 so that the removal of the background image

including the arm as well as the extraction of finger segments

are made easier. The extraction and binary quantization of the

image are carried out by the following equation.

I(x, y) = g(R(x, y), G(x, y) +B(x, y)) · g(R(x, y), ρ) (1)

g(x, θ) =

{

1 (x ≥ θ)
0 (otherwise)

(2)

where, I(x, y) is a binary pixel value at (x, y) coordinate,

while R(x, y), G(x, y), B(x, y) are red, green and blue

color levels at (x, y) coordinate, respectively. ρ is a threshold

parameter and g(·) is a threshold function.

2) Histogram calculations: Then horizontal and vertical

histograms, PH(y) and PV (x) of I(x, y) are calculated using

the following equations.

PH(y) =

P−1
∑

x=0

I(x, y) (3)

PV (x) =

Q−1
∑

y=0

I(x, y) (4)

Figs. 4 (A) and (B) show examples of the horizontal and

vertical projection histogram, respectively.
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Fig. 5. Frequency spectrum, (A) horizontal, (B) vertical projection.

3) Discrete Fourier Transforms (DFT): After the histogram

calculations, DFTs are carried out on the projection his-

tograms.

AH(k) =

Q−1
∑

n=0

PH(n) · cos(
2πnk

Q
) (5)

BH(k) =

Q−1
∑

n=0

PH(n) · sin(
2πnk

Q
) (6)

AV (k) =

P−1
∑

n=0

PV (n) · cos(
2πnk

P
) (7)

BV (k) =

P−1
∑

n=0

PV (n) · sin(
2πnk

P
) (8)

AH(k), BH(k) and AV (k) , BV (k) are real part and imag-

inary parts of DFT in horizontal and vertical projection,

respectively. Then, FH(n) and FV (n), i.e., the magnitude

spectra of PH(y) and PV (x) are computed as follows,

FH(k) =

√

A2

H(k) +B2

H(k)

Q
(9)

FV (k) =

√

A2

V (k) +B2

V (k)

P
(10)
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Fig. 6. Posture sequence generation.

FH(n) and FV (n) of the same hand posture image placed in

different positions are identical because they are the magnitude

spectrum lacking the phase information related to the hand

posture position. As a result, the hand posture identification is

very robust against the position change of the hand posture.

Figs. 5 (A) and (B) show magnitude spectra of PH(y) and

PV (x) that are computed from the histograms shown in

Figs. 4 (A) and (B), respectively. As shown in the these

figures, lower frequency components represent the majority

of image’s feature information, thus these lower frequency

components are used as a feature vector of the input image. A

D dimensional feature vector
−→
X is defined by the following

equation.

−→
X i =

{

FH(i + 1) (0 ≤ i ≤ D
2
)

FV (i+ 1− D
2
) (D

2
≤ i ≤ D)

(11)

The feature vector
−→
X is fed to SOM in the posture sequence

generation process.

B. Posture Sequence Generation

Fig. 6 shows the posture sequence generation process, which

is made of SOM and a shift register. The SOM quantizes the

input feature vectors, and quantized results are given by winner

neuron’s coordinates. The coordinates of the winner neuron

are stored sequentially in the shift register. The contents of

the shift register is used as the posture sequence vector, which

is fed to the next SOM-Hebb network.

The SOM includes M × M neurons. A D-dimensional

vector, −→mi called weight vector, is assigned to each neuron.

−→mi = {µi1, µi2, · · · , µiD} ∈ ℜD (12)

The operation of SOM is divided into two phases, the learning

phase and the recall phase. The weight map is trained with a

set of input vectors in the learning phase. After that, the map

is used in the recall phase. In the learning phase, the distances

between the input vector and all weight vectors are calculated

by the following equation.

V (i) = ~X − ~mi (13)
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Fig. 7. SOM-Hebb network with gesture spotting.

Then the winner neuronc that has the weight vector which is

the nearest to the input vector is determined.

c = argmin
i

‖ V (i) ‖ (14)

The weight vectors of the winner neuron and its neighborhood

neurons are adapted toward the input vector with the following

equation.

−→mi(t+ 1) = −→mi(t) + hci(t) · [ ~X(t)− ~mi(t)] (15)

where, t is time index. A neighborhood function hci, is defined

as

hci = α(t) exp

(

−
‖−→r c −−→r i‖

2σ2(t)

)

(16)

where, α(t) is a learning coefficient (0 < α(t) < 1). ~rc and

~ri are the coordinate vectors of the winning neuron c and

neuron i. σ(t) represents the neighborhood radius, and weight

vectors within the radius from the winner neuron are updated.

After the learning phase, the weights of the map remain

unchanged and the map is used in the recall phase. In the recall

phase, winner neuron is searched, but the weight adaptation is

not carried out. Then, the coordinates of the winner neuron for

each input frame are saved in the shift register sequentially.

Contents of the shift register is the posture sequence vector
−→
G that is a 2F -dimensional vector. ξ is defined as follows:

−→
G = {ξ0, ξ1, · · · , ξ2F−1} (17)

ξi =

{

Wx(f − i) (0 ≤ i < F )
Wy(f − i+ F ) (F ≤ i < 2F )

(18)

where F is the number of frames, included in a single gesture.

Wx(n) and Wy(n) are X and Y coordinates of the winner

neuron at time n. When all F postures belonging to a gesture

are processed, the posture sequence vector
−→
G can be treated

as a sequence vector that represents the current input gesture.

As mentioned before, since F = 10 in our system, vector

dimension of
−→
G is 20. The vector is fed into SOM-Hebb

network described in next section as the input vector.

C. SOM-Hebb Network for Gesture Classification

From the gesture sequence vector
−→
G , the SOM-Hebb net-

work identities the given gesture. The network is depicted

in Fig. 7, which includes the gesture spotting function. The

gesture spotting is implemented in this network. This SOM

is trained in the same way as the SOM used in the previous

module.

In the SOM, the winner neuron for each input vector
−→
G is

determined, and from the winner neuron, the class to which

the input vector belongs can be identified. The Hebb network

converts the winner neuron number to the corresponding

gesture number, which is the recognition result. The different

neurons may become winner by the same dynamic gesture

inputs because of variation of hand postures in the given

gestures. Therefore, all those neurons belonging to the same

class must be associated with that class. This selection is

done by the Hebb network that is a simple layer feedforward

network.

Training vectors and teaching data, τ1,τ2,· · ·,τP , that indi-

cate the class of the given vectors are sequentially fed to the

network during the learning phase. If a training vector belongs

to j, then only τj = 1 and the other τ ′s are zero. P represents

the number of the class to recognize. If a strong correlation

between the training vectors in class j and a winner neuron

is found, that neuron is assigned to the class τj . During the

training phase, simultaneous activations of the neurons i and

τj are counted. Then neuron i is associated to class j if the
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Fig. 8. The number of input frames and vector distance.

count exceeds a threshold THebb. By doing this, input gesture

is recognized as class j gesture if neuron i wins in the recall

phase. Due to the variation of the training vectors, multiple

neurons may be associated to a single gesture class.

In this way, the Hebb network finds the association between

neurons and gesture classes. However, there are some neu-

rons which may have no connections to any gesture class.

Obviously, the selection of these neurons as the winner in the

recognition phase causes false recognition. In order to avoid

situations where such neurons are selected, these neurons are

culled. The culling replaces weight vectors of those neurons

with a huge vectors so that they will not win.

III. GESTURE SPOTTING BY USING VECTOR DISTANCE

Gesture spotting is one of the most important functions in

gesture recognition, which detects the end of the posture. As

Fig. 7 shows, the gesture spotting is implemented in this

network. This network performs the recognitions for every

input frames, but output is given only if the end of gesture is

detected. In the proposed system, the gesture spotting is based

on sequence of the vector distance between the input vector

and the winner neuron’s weight vector. Fig. 8 shows transitions

of shift registers containing the posture sequence vector
−→
G
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Fig. 9. Transition of vector distance, (A) actual vector distance, (B) moving
average of vector distance.

and corresponding vector distances to winner neuron’s weight

vectors. f is the frame number, and the question marks

indicate the information of the previous gesture. As the gesture

proceeds toward its end, the vector distance gets shorter. Since

each gesture is made of 10 frames, the vector distance is

minimized when f = 9, at which the shift register is filled with

all vector elements belonging to the current gesture. After that,

distance increases because new vector elements belonging to

next gesture are stored in the shift register. At some point the

distance decreases again and it will hit another bottom at the

end of next gesture. Therefore the end of the gesture can be

detected by searching the bottom of the distance transition.

The gesture spotting module detects the bottom of transition

when the vector distance transition is “dip → dip → dip

→ rise → rise → rise”. When the end of the posture, i.e.,

the bottom of the distance transition is detected, the gesture

spotting module outputs current recognition result of the SOM-

Hebb network as system’s recognition result.

However, the actual distance transition which resulted in

the SOM-Hebb network is not as smooth as shown in Fig. 8.

Fig. 9 (A) shows actual vector distance in the real time gesture

recognition. In this example, the vector distance takes the



Fig. 10. Real time gesture recognition system.

minimum value at Frame = 34, which must be the end of the

gesture. However, the distance transition after that is not “rise

→ rise → rise”, and this posture end is not properly detected.

As shown in this example, the transition goes up and down

frequently, which makes it difficult to find the bottom and

causes false detections of the bottom. In order to solve this

problem, moving average of the vector distance is employed.

The moving average Vma(n) is computed as,

Vma(n) =
1

Nr

Nr
∑

i=1

V (n− i+ 1) (19)

where, V (n) is the vector distance between the input vector
−→
G and the winner neuron’s weight vector at time index n.

Nr is the number of samples which is used to compute the

average of vector distance.

Fig. 9 (B) shows the moving averaged vector distance

transition computed from Fig. 9 (A), where Nr = 4. The

transition in Fig. 9 (B) is smoother than Fig. 9 (A). Thus,

by using the moving averaged vector distance transition, it

becomes easier for the system to find the bottoms accurately.

Due to the moving average, the bottom is two frames delayed.

The bottom in Fig. 9 (A) is given at Frame = 34, while

the bottom of Fig. 9 (B) is at Frame = 36 Therefore, the

recognition result obtained at two frames before the bottom is

adopted.

IV. EXPERIMENT

Real time gesture recognition experiment was conducted

to examine the performance of the system. The recognition

system described in the previous section is implemented in

software that runs on a PC equipped with a USB camera

for the live image acquisition, and the system performs the

real time recognition. Fig. 10 is one of the captured images

of the real time recognition system. Training of the SOMs

and Hebbian learning network were performed off-line by

using pre-captured gesture images. Then after the training, the

A

B

C

D

E

F

G

H

I

Posture sequence

Fig. 11. Gestures used in the experiment.

recognition system classified dynamic gestures in real-time by

using the weight vectors obtained by the training. During the

recognition process, SOMs were in recall mode.

The real time experiment was performed using the same

gestures defined in Cambridge-Hand-Gesture Data Set [9].

Nine gestures used in the experiment are shown in Fig. 11.

Note that A and B, D and E, G and H are gestures of reverse

order, respectively. System parameters were set as follows:

• The size of frame was P ×Q = 128× 128.

• The feature vector dimension was D = 32.

• The dimension of the posture sequence vector was 20

(F = 10).

• The number of neurons in SOM used in the posture

recognition and gesture recognition were both M ×M =
16× 16 = 256.

• For the moving average in Equ.(19), Nr = 4.

• The number of classes was H = 9.

Table I shows the recognition accuracies of 9 dynamic gestures

by the proposed system. The experiment was carried out at

100 times for each gesture by the same person who provides

the training data set. The number of training data for the

off-line training was 50 gestures for each class. The average

recognition rate of the proposed method for this 9 gestures

was 96.22%.

In order to show the advantage of the proposed algo-



TABLE I
RECOGNITION ACCURACIES.

Gesture Accuracy

A 86.00%

B 93.00%

C 100.00%

D 96.00%

E 96.00%

F 100.00%

G 99.00%

H 96.00%

I 100.00%

Average 96.22%

rithm. Tab. II shows recognition performance of other 8

algorithms[9]. The algorithms in the table are, tensor canonical

correlation analysis (TCAA) method [10], simple canonical

correlation analysis (CAA) method [11], probabilistic latent

semantic analysis (pLSA) with space-time descriptors [12],

motion gradient orientation with relevance vector machine

(MGO/RVM) or support vector machine (MGO/SVM) [13],

nearest neighbor (NN) classifier in the sense of Euclidean

distance (NN-ED) or normalized correlation (NN-NC) of

video vectors, and SVM of the video vectors.

It seems that the comparison in this table reveals the

advantage of the proposed system in terms of recognition

accuracy. However it should be noted that experimental setups

were different. Our system and the algorithms in the table

used the same gestures but different data set. The proposed

system was trained and tested by video frames taken in the

same illumination setting, while training and test data used in

the algorithms in the table were different in their illumination

settings. The difference between the training and test data

makes the recognition harder. Therefore, we assess actual

performance advantage of our system is not as much shown

in the table. In addition, the proposed system requires users to

wear the red glove to segment hand portion from background.

Even though the contribution of the red globe to the system’s

performance is fairly large, it is annoying for users. Thus, our

recognition system needs to be modified so that no glove is

required.

V. CONCLUSION

This paper has proposed a real-time dynamic hand gesture

recognition system with the gesture spotting function using

vector distance. Using the sequential vector distances for

gesture classification, this system can perform the gesture

spotting that provides realistic recognition to the system. The

feasibility of the proposed gesture recognition system has been

tested by real time experiments. The experimental results show

that the system can recognize 9 gestures with the accuracy

of 96.22%, which is better than other recognition algorithms.

However our system uses a red glove to extract the feature

TABLE II
ACCURACY COMPARISON.

Method Accuracy

proposed 96.22%

TCCA 86%

CCA 69%

pLSA 71%

MGO/RVM 44%

MGO/SVM 30%

NN-ED 29.44%

NN-NC 29.03%

SVM 41.25%

vector from the hand image easily, which may have improved

the recognition accuracy compared to other systems.

Our future research objective is the development of a

hardware gesture recognition system that can provide much

faster recognition speed with smaller hardware compared to

the PC used in this paper. Development of efficient hardware

implementation and a new feature extraction method without

the red glove, are left for future research.
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