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Abstract—It is widely observed that the poor event logs 

quality poses a significant challenge to the process mining 

project both in terms of choice of process mining algorithms 

and in terms of the quality of the discovered process model. 

Therefore, it is important to control the quality of event logs 

prior to conducting a process mining analysis. In this paper, we 

propose a qualitative model which aims to assess the quality of 

event logs before applying process mining algorithms. Our 

ultimate goal is to give process mining practitioners an 

overview of the quality of event logs which can help to indicate 

whether the event log quality is good enough to proceed to 

process mining and in this case, to suggest both the needed 

preprocessing steps and the process mining algorithm that is 

most tailored under such a circumstance. The qualitative 

model has been evaluated using both artificial and real-life case 

studies. 

Keywords—event logs; process mining; process mining 

algorithms; qualitative model. 

I. INTRODUCTION 

The process mining is a research field which provides a 
bridge between data mining and business process analysis 
[1], [2]. It aims at discovering, monitoring and improving 
operational processes by extracting knowledge from event 
logs collected manually or generated by a variety of software 
applications [3]. However, a general consensus among 
process mining practitioners is that poor quality event logs 
often lead to wrong discovered process models, since the 
event logs quality has an influence not only on the process 
mining results but also on the choice of process mining 
algorithm (e.g. applying alpha algorithm [4] to real-life event 
logs is unrealistic, or applying heuristic miner [5] to less 
structured event log can provides spaghetti-like models). A 
decision tree is proposed in [6] to help the practitioners to 
decide which mining algorithm is appropriateness for each 
circumstance. 

The importance of the event logs quality has been 
highlighted in several research studies. Indeed, according to 
[3], it is necessary to review the quality of event logs before 
proceeding in the process mining project, this suggestion was 
taken up by the process mining manifesto [2] which defines 
five event log maturity levels ranging from poor quality 

denoted by one star (★) to excellent quality denoted by five 

stars (★★★★★) in order, to judge in how far one can rely 

on the validity of event log data. However, no means was 
provided to assess the event logs quality in a concrete way. 
On similar lines, the authors, in [7], [8] have identified four 
classes of data quality issues arising in analyzing event logs 

in process mining, namely, (i), missing data (i.e. different 
information can be missing in event log although they are 
mandatory), (ii) incorrect data (i.e. some logged data within 
event log would be incorrect), (iii) imprecise data (i.e. some 
logged information within event log would be too coarse and 
imprecise), and (vi) irrelevant data (i.e. the logged 
information may be relevant for a particular context of 
analysis, but not for another). The authors have also strongly 
encouraged the process mining researchers to focus on 
techniques that address these quality issues. 

In addition to the importance of the event log quality 
emphasized by these authors, there exist some log-based 
process metrics proposed in the literature, which serves to 
achieve different goals. For instance, in the process mining 
book [3], the author provides two metrics to measure the 
diversity of a data set. In fact, entropy is used to measure the 
diversity, whereas the Gini index of diversity measures the 
“impurity” of a data set.  

Yang et al. [9], [10], [11] present a set of metrics and 
compare several estimators for evaluating the local and 
global completeness of event logs which is needed for the 
applicability of several process mining techniques [12], [13]. 
Finally, in [14] an approach to identify false traces in process 
event logs is proposed. The approach allows estimating the 
latent generation probabilities of observed traces by means of 
minimizing a distance function between the occurrence 
frequencies of traces and the occurrence probabilities of the 
traces respectively. 

However, the review of related work led us to the 
conclusion that despite these efforts, there are, to date, still 
rather few initiatives to assess the event log quality before 
the process discovery steps in an objective manner. In this 
paper, we propose a qualitative model which allows 
evaluating event logs quality before applying process mining 
algorithms, in order to help the practitioners to cope with 
needed preprocessing steps and choose an appropriate 
process mining algorithm according to the event log quality. 
The proposed qualitative model shall be composed of a set of 
quality dimensions, quality attributes and measurements. 

This paper is structured as follows: Section II provides 
some concepts needed to describe our approach. Then the 
proposed approach for assessing a quality of event logs is 
outlined in a step-wise manner in Section III. Section IV 
outlines some important metrics, used to evaluate different 
quality attributes, whereas Section V presents the realization 
of the proposed approach in the ProM plug-in. Section VI 
demonstrates the usefulness of our approach using a real-life 



 

 

case study and Section VII concludes the paper and outlines 
potential future work. 

II. NOTATIONS 

In this section, we give a formal description of the 
concepts used to describe our approach for assessing the 
quality of event logs. 

A. Basic Definitions 

The event log represents the starting point for any 
process mining project. It consists of a set of traces 
representing the records executions of a process model. In 
fact, a trace is seen as a sequence of ordered events by 
timestamps and which reflect the result of the completion of 
a process instance.  

An event may also contains additional information or 
attributes like timestamp, cost, event type, resource, data 
elements, etc. The first attribute is required to analyze the 
performance related aspects of the process, whereas resource 
information such as the performer or originator which is 
involved in performing the activity is useful when analyzing 
the organizational perspective. 

For a more formal definition of event logs used in 
process mining, the reader is referred to [4], [5]. 

B. Definition 1 (event log) 

Let T be a finite set of tasks. T
+
 is a set of all non-empty 

finite sequences of tasks from T. An event log over T is a 
multiset of traces defined as: W = (E, C, A, ∂,  , Γ,  )   T

+
, 

where: 

 E represents a finite set of events, 

 C represents a finite set of cases, 

 A represents a finite set of additional information 
which can be partitioned into disjoint sets of 
timestamps S, cost O, resources R, event types I, and 
data elements D, 

 ∂: E → C represents a surjective function relating 
each event to a case, 

  : A → E represents a surjective function relating 
each additional information to an event,  

 Γ: E → T represents a function relating each event to 
task, 

     E   E represents a total ordering on the events in 
E. The ordered set of events belonging to a case is 
called “trace”. 

C. Definition 2 (trace) 

Let T be a finite set of tasks, T
+
 is a set of all non-empty 

finite sequences of tasks from T, and W = (E, C, A, ∂,  , Γ, 
 )   T

+
.  For all ordered events E relating to case c   C, we 

can define a trace as σc = {e| for all e   E, ∂ (e) = c}, the 
events in σc are totally ordered. Each trace corresponds to an 

execution of a process, and the same trace may appear 
multiple times in an event log. Henceforth, we denote a trace 
σ with σ = σ (1), σ (2), σ (3) … σ (n)   T

+
. |σ| represents the 

length of the trace σ. σ (i) is the i
th

 event in the trace and σ (i, 
j) = ‹ei… ej› is the subsequence of σ that starts at position i 
and ends at position j. 

D. Definition 3 (trace classes) 

Let T be a finite set of tasks, T
+
 is a set of all nonempty 

finite sequences of tasks from T, and W = (E, C, A, ∂,  , Γ, 
 )   T

+
. Let σ1\CLP (σ1, σ2), σ2\CLP (σ1, σ2)   T

+
 be two 

traces in event log. Let CLP (σ1, σ2) = (LS1   LS2) be a finite 
set of common loop patterns of both σ1 and σ2, where, LSi = 
{LRES1, LRES2… LRESn}    represents a finite set of loop 
sequences in σ (see. section IV.A.6). We say that σ1 and σ2 
are equivalent (σ1 ≡ σ2), iff: σ1(i) = σ2(j)   Γ(σ1(i)) = 
Γ(σ2(j))   |σ1| = |σ2| where 1  i   n 1    m. 

The trace σ1 and σ2 are equivalent, this means that each 
event of σ1 and σ2 refers to the same task and their lengths 
are equal.  

Our definition of trace classes is similar to that in [9], 
except that, the loops which may occur in the traces are not 
taken into consideration in the comparison, since they 
dramatically increase the number of trace classes, due to 
presence of recurring behavior without yielding any 
additional information as mentioned by [9]. 

III. EVENT LOG QUALITY MODEL 

As mentioned above, the availability of high-quality 
event logs is essential for a success of process mining. 
Indeed, the event data should be accurate, available and 
complete, otherwise we run the risk of drawing the wrong 
conclusions. Unfortunately the real-life event logs tend to be 
less structured, fine-granular, heterogeneous, noisy, 
imprecise, and/or voluminous.   

The proposed event log quality model comes very handy. 
It aims to evaluate the quality of event log addressed before 
proceeding with process mining. It shall be composed of a 
set of dimensions, where each dimension represents a facet 
of the quality of event log, a set of quality attributes and 
measurements classified on four hierarchical levels as shown 
in Fig. 1. 

Indeed, the evaluation of the root level, also denoted as 
Event log Quality (EveLoQ), depends on the evaluation of 
quality dimensions lying on the subsequent level. These 
include Complexity, Accuracy, Consistency, and 
Completeness. Each quality dimension of second level is 
devoted to a set of quality attributes for their precise 
evaluation. Finally, at the lower level, are the metrics which 
aims to capture a specific aspect of a quality attributes. 

In the next paragraphs, different quality dimensions and 
corresponding attributes used in our event log quality model 
will be explained. 



 

 

A. Complexity 

In our proposed model, we define complexity as the 
degree to the simplicity with which the event log can be 
mined, and therefore the understandability of the model that 
would be discovered from the event log. In fact, there is a 
high correlation between event log complexity and the 
comprehensibility of discovered process model. This is 
partly due to highly complex real-life event logs exhibiting a 
large variety in process behavior. For this purpose, it would 
be convenient to measure the event log complexity prior to 
discovery steps because the calculation of process models is 
expensive when the resulting model is spaghetti-like. 

The quality dimension of complexity can be specified 
with two attributes, structural complexity and behavioral 
complexity.  

1) Structural Complexity: Structure is the syntactic 

means by which behavior can be specified in reference 

process model e.g. sequence, choice, parallelism, split, join, 

loop, etc. This can be reflected by the likely existence of 

loops, duplicate tasks, hidden tasks, a considerable amount 

of events and traces in a given event log. The structural 

complexity allows evaluating the presence of these elements 

in the event log. 

2) Behavioral Complexity: This attribute measures 

the complexity of behavior present in the event log which 

refers to the number and intricacy of events in each trace 

and a variety between all traces within the event log. 

B. Accuracy  

The accuracy dimension allows assessing the degree to 
which the event log data reflects the underlying reality. i.e. if 
it satisfies the requirements of its intended use by describing 
what has happened in the real-life in accurate manner, since 
any inaccuracy in the event data could jeopardize the 
analysis results and hinders the extraction of meaningful 
insights. 

The event log accuracy can be faced from different 
perspectives, precision, and trustworthiness which represent 
the attributes that can be part of this dimension. 

1) Precision: The precision attribute gauges the level 

of preciseness, or the state of exactness of event data present 

in the event log. The event data precision concerns events, 

traces, timestamps, and/or resources. 

2) Trustworthiness: According to [2], the events 

should be trustworthy, i.e., the recorded events have actually 

happened and that the attributes of events are correct. To 

evaluate the trustworthiness of event data, we need to 

answer questions like “Where did the event data come 

from? How trustworthy is the originator of event data 

(handle automatically or manually)? How many sources the 

event data come from? Are the original event data source 

trustworthy?”. 

C. Consistency  

The consistency dimension attempts to estimate some 
characteristics such as: noise, number of elusive traces, etc, 
in order to ensure the definition, the understandability and 

the integrity of event data in event log, even if they come 
from heterogeneous sources. 

To estimate the consistency of an event log, we propose 
some attributes that can be part of this dimension, namely, 
correctness, integrity, and structuredness. 

1) Correctness: The correctness attribute evaluates 

the degree to which the different information containing in 

the event log can be judged correct. (e.g. no outlier data in 

the event log). 

2) Integrity: The integrity attribute measures the 

validity of event data which can be compromised by human 

errors when data is entered, the heterogeneity of the data 

event sources or a hardware malfunctions. This attribute 

needs to ensure that each event refers to a case and each 

case consists of a sequence of well-ordered events. 

3) Structuredness: Structuredness means the event 

data need to be available in a structured form i.e no free text 

that first needs to be processed into structured data. 

D. Completeness 

The completeness is undoubtedly reckoned as one of the 
most important evaluation dimension of event log quality on 
the same level as the complexity dimension. It refers to the 
extent to which required information is not missing and is of 
sufficient breadth for process mining effort (i.e. is all the 
requisite information available? Are event data missing or 
incomplete?). The completeness of an event log relies on the 
objective of the exact process mining task and the type of 
information which is needed. For example, in some cases, 
missing data is irrelevant, but when the information that is 
missing is mandatory to specific types of process mining 
(e.g. performers or originators for organizational miner [15]), 
completeness becomes an issue. 

 To estimate the completeness of an event log, we 
propose three attributes that can be part of this dimension, 
namely, availability, local completeness, global 
completeness. 

 

Fig. 1. The event log quality model. 



 

 

1) Availability: The availability attribute refers to the 

degree of the availability of required event data in the event 

log. Indeed, missing events, missing cases, missing task 

names, missing timestamps, or missing resources, entails a 

result which do not match with the real execution of the 

cases, even worse, an inability to apply certain specific 

types of analysis such as organizational miner [15] and the 

social network miner [16].  

For this purpose, it would be convenient to measure the 
event log completeness to determine which types of process 
mining could be envisaged and estimate the amount of 
available information in the given event log. 

2) Local completeness: This attribute measures the 

local completeness of the given event log, i.e. whether all 

direct succession relations between tasks are recorded in the 

event log. This requirement is essential to applied  the alpha 

algorithm [4], [17]. 

3) Global completeness: This attribute measures the 

degree of the occurrence of all possible behaviour of the 

process model in event log [9]. The global completeness of 

event logs is required for the application of some process 

mining algorithms as mentioned in [4], [17]. 

IV. METRICS FOR EVENT LOG QUALITY ASSESSMENT 

When evaluating the quality of event logs, appropriate 
metrics need to be at hand although the measurement of 
some quality attributes as "trustworthiness (i.e. answer all the 
questions raised in section III.B.2)" are more difficult than 
others as "correctness". Due to the page number limitation, 
we outline some metrics proposed in our framework, used to 
evaluate different quality attributes. 

A. Structural complexity measurements 

The measurement of the structural complexity attribute 
can be done by using some straightforward metrics such as: 
event log length (L), number of process (NP), number of 
cases (NC), number of events (NE), number of resources 
(NR), number of trace classes (NTC), number of event 
classes (NEC) and average of loops per trace (ALT). 

1) Event log length (L): The event log length L 

relates to the number of traces within an event log W [9]. It 

is defined as follows: 

  ∑  
     

                                     

 

2) Number of events (NE):The number of events 

within an event log W represents the number of elements in 

E. 

 

 𝐸  ∑  
     

                                 

 

3) Number of resources (NR): The number of 

resources in the event log W refers to the number of 

elements in R   A: 

 

 𝑅  ∑ 𝑟
     

                                    3  

 

4) Number of trace classes (NTC): NTC expresses 

the number of trace equivalences or trace classes as follows: 

 

 𝑇𝐶  ∑ ∑   𝑖 ≡  𝑗  |  𝑖,  𝑗  𝑊
 

     
                   4  

 

   
 

 

5) Number of event classes (NEC): The number of 

distinct events or event classes within an event log W is 

defined as: 

 𝐸𝐶  𝑛 𝐸                                  5  
 

6) Average of loops per trace (ALT): The loops are 

manifested as the repeated occurrence of one or more events 

in one or several traces. To determine the set of the loop 

sequences of each trace, we retrieve what we have called the 

“Longest Repeated Event Subsequence (LRES)” of a trace 

that occurs at least twice, and which following the same 

principle to find the “Longest Repeated Substring” [19].  

We can efficiently find LRES in σ in linear time (O (n) 
where n = |σ|) by building a suffix trees based on the 
Ukkonen's algorithm [20]. We define a loop sequence as:   

Let LS    be a finite set of loop sequences in σ where: 
LS = {LRES1, LRES2… LRESn} /    LRESk   LS, LRESk = σ 
(i, j), 1    n with i   j. 

The formula (6) defines the average of loops per trace in 
a given event log W, as follows: 

𝐴 𝑇  
 

 
  ∑ | 𝑆|

     

                              6  

B. Behavioral complexity measurements 

We can evaluate the behavioral complexity by measuring 
some metrics such as: average trace length (ATL), average 
trace size (ATS), density (Dn), traces heterogeneity rate 
(THR), traces similarity rate (TSR), and complexity factor 
(CF). 

1) Average trace length (ATL): The average trace 

length is defined as: 

𝐴𝑇  
 

 
 ∑ | |

 

   
                             7  

 
where L be the event log length, as in (1) and | | represents 
the number of events per trace.  

This metric is simple but could bias our judgment on the 
event log complexity, if it is not associated with other 
metrics. Indeed, a long trace does not mean that the event log 
is complex, since this may due to recurring behavior caused 
by loops. 

2) Average trace size (ATS): The average trace size 

represents the average number of event classes per trace. It 

is defined as follows: 

 



 

 

𝐴𝑇𝑆  
 

 
 ∑ | 𝑛  𝑖  |

 

   
                      8  

 
where L be the event log length and | n(ei) | represents the 
number of event classes per trace. 

3) Density (Dn):The density expresses the average of 

the number of event classes over traces, as in (8) to the 

average of the number of events over traces, as in (7) : 

 

𝐷𝑛  
𝐴𝑇𝑆

𝐴𝑇 
                                           9  

 
The density is used to indicate whether the average trace 

length arises from unique behavior or from recurring 
behavior. Indeed, when the metric value is close to 1, this 
means that the traces mostly contain a unique behavior, 
otherwise, when the metric value is close to 0, this means 
that the traces contain a recurring behavior caused by loops. 

4) Traces heterogeneity rate (THR): The traces 

heterogeneity rate relates to the ratio of the number of trace 

classes, as in (4) to the number of traces within the event log 

L, as in (1). The traces heterogeneity rate is defined as 

follows: 

 

𝑇𝐻𝑅   
𝑙𝑛  𝑇𝐶 

𝑙𝑛    
                                  0  

 
The metric is close to 1, this means that the event log 

contains a high diversity of behaviors, whereas, when the 
metric value is close to 0, this means that the event log 
contains a low diversity of behaviors. 

5) Traces similarity rate (TSR): The traces similarity 

rate allows measuring the discrepancy that might occur 

between different traces within the event log by taking into 

account the different trace lengths. The metric can be 

defined as follows: 

 

𝑇𝑆𝑅  
 

 𝑇𝐶 ∗   𝑇𝐶 −   
 ∑ ∑

𝑚𝑎𝑥 | 𝑖|, | 𝑗| −  𝐷  𝑖,  𝑗 

𝑚𝑎𝑥 | 𝑖|, | 𝑗| 

   

     

   

   
 

      
 

where LD( i,   ) called also Levenshtein Distance allows to 
measure a distance between two traces σi and σj [21] and 
NTC represents the number of trace classes, as in(4). 

The choice of the Levenshtein Distance which is a 
specific case of the generic edit distance is justified by the 
fact that the metric is able to compare two strings with 
different length. 

The metric value can be interpreted as the mean extent of 
modifications necessary to transform any trace class σi   W 
to a trace class σj   W within the event log, which is in fact, a 
quite useful metric to express event log complexity. 

6) Complexity factor (CF): The complexity factor metric 

investigated the degree of the understandability of the future 

model mined from the given event log W. Indeed, more the 

complexity factor value is high; more the discovered model 

will be complex. The metric can be computed as: 

 
𝐶𝐹   ln  𝑇𝐶              𝐴𝑇𝑆                      

 
where 1 - TSR represents the traces dissimilarity rate, NTC is 
the number of trace classes, as in (4), Dn is a density, as in 
(9), and ATS is the average trace size, as in (8). 

The CF is a numerical score that corresponds to a 
description of the complexity of the discovered model which 
has been established and refined through several 
experimentations using both artificial and real-life case event 
logs. These descriptions are given in Tab. 1 below.  

TABLE I.  THE COMPLEXITY FACTOR DESCRIPTIONS 

Complexity Factor 

Numeric value 
Description 

0 – 30 Simple 

30 – 53 Somewhat Complex 

53 – 75 Complex 

75 – 95 Very Complex 

95 or higher Highly Complex 

C. Precision measurements 

The precision can be evaluated with measurements such 
as: erroneous timestamps rate (ETR). 

1) Erroneous timestamps rate (ETR): The erroneous 

timestamps rate evaluates too coarse or imprecise 

timestamps within the event log. This metric is defined as 

follows: 

 

𝐸𝑇𝑅  
∑ ¬𝑚𝑎𝑡𝑐ℎ 𝑡  𝑖 , 𝑃 
  
   

 𝐸
 / 𝑡  𝑆,   𝐸        3  

 
where P = “YYYY-MM-DD’T’HH:MM:SS[.fraction]” is a 
pattern which represents a required timestamp format for 
each event, recall that NE is the number of elements in E and 
t(ei)  𝑆 |  𝑆  𝐴 represents the timestamp relating to each 
event    . 

D. Availability measurements 

Availability can be measured by detecting the number of 
missing timestamps, and missing resources. The following 
metrics can be used to achieve that goal:  timestamps 
availability rate (TAR), and resources availability rate 
(RAR). 

1) Timestamps availability rate (TAR): The timestamps 

availability rate relates to the ratio of the events without 

timestamps to the total number of events. 
 

𝑇𝐴𝑅   − 
∑  ′ 𝑡  𝑖  
  
   

 𝐸
                          4  

where NE is the number of elements in E, and        
  |    ,     i   ,  (   i )     is a partial function 



 

 

which is regarded as undefined on those events which do not 
have timestamps. 

2) Resources availability rate (RAR): The resources 

availability rate relates to the ratio of the events without 

resources to its total number of events. 

 

𝑅𝐴𝑅   − 
∑  ′ 𝑟  𝑖  
  
   

 𝐸
                          5  

 
where NE is the number of elements in E, and        
  |    ,     i   , (   i )     is a partial function 

which is regarded as undefined on those events which do not 
have resources. 

To measure the local and global completeness, we have 
used the set of estimators proposed by Yang et al. [9], [10] 
and [11]. 

V. IMPLEMENTATION 

The concepts discussed in this paper have been 
implemented as the event logs quality assessment plug-in in 
the ProM

1
 tool. Indeed, the ProM is an extensible plug-in 

that provides a wide range of plug-ins for many different 
mining algorithms, as well as analysis, preprocessing 
operations, conversion, and export modules.  

The event logs quality assessment plug-in implements the 
proposed qualitative model which consists of several quality 
dimensions, quality attributes and more than one hundred 
metrics. Through the interface presented in Fig. 2, the plug-
in displays for each of the quality dimensions, the associated 
quality attributes and metrics according to our classification 
model in the form of a tree. 

This plug-in starts with an event log and computes the 
different metric values. Then, the interpreter module 
compares each metric value with the corresponding threshold 
value indicating for what specific value the measures quality 
begins to decline. This is done in two stages. Firstly, a 
weighted sum is used to achieve the final score of each 
attribute quality. Indeed, the interpreter computes for each 
quality attribute Ak the sum δk of the associated metric values 
computed previously as follows: 

   
 

 
 ∑  𝑖 

 𝑖

 

   
                         6  

where    ∑  𝑖
 
    represents the sum of all assigned 

weights to the metrics,  𝑖 is weight of each metric (e.g. the 

weight of the CF metric is more important than the weight 

of the OHR metric in the assessment of the behavioral 

complexity attribute), and  𝑖 is the metrics values. 
After computing the weighted sum, the interpreter 

computes for the attribute quality Ak the sum δ’k of the 
metrics thresholds values using the same method. Finally, the 
comparison between δk and δ’k provides an assessment (high, 
medium or low) of the quality attribute Ak. 

                                                           
1 http://www.promtools.org/ 

In the same way, and according to the quality attributes 
associated with the metrics, the interpreter gives an 
evaluation of the quality dimensions and therefore, the global 
quality of the event log based on a "bottom-up" evaluation. 

This comparison is being conducted by using Drools
2
, 

which is a business logic platform providing an integrated 
unified platform for rules, workflow, and event processing. 
We make use of it to write quality expert rules as well as 
rules to automate the quality assessment report generation. 

Indeed, the plug-in describes in a report the information 
relating to the duration, the behavior, the accuracy, the 
consistency, and the completeness of event log. It allows also 
indicating whether the quality of event log we have as input 
is good enough to proceed in the process mining and in this 
case, the required preprocessing steps if necessary and 
suggests an appropriate process mining algorithm according 
to the quality assessment results (see. Tab. 2).  

TABLE II.  AN EXAMPLE OF A PREPROCESSING SUGGESTION RULE 

rule "unlabelledEvents" 

dialect "mvel" 

when 

 eval ((NumberUtil.parseDouble(MetricsRepository 

  

.getInstance().getByMetricName("ENA").getValue()))>0 

then 

 processing.put("ue","Remove the unlabeled event(s) 

by using plug-in name :\""+ 

PreProcessing.INDUCTIVE_VISUAL_MINER.getName() + 

"\"."); 

end  

The plug-in supports visualization of the significant 
variation of the different metrics through a set of charts and 
allows saving the generated report for further analysis. 

VI. CASE STUDY 

To validate the approach discussed in this paper, we have 
performed several artificial and real-life case studies. This 
section explains one of them in detail. The case study uses a 
process log from the “BPI Challenge 2012”. It contains 
events related to the application process for a personal loan 
within a Dutch financial institute

3
. 

The application of the heuristic miner algorithm on the 
“BPI Challenge 2012” event log without any prior overview 
of the quality gives us an incomprehensible spaghetti-like 
process model. This result is the logical consequence of 
carrying out a process mining project without any overview 
of the quality of event log, since this would amount to 
exploring an unknown country without a roadmap. 

Having analyzed the “BPI Challenge 2012” with our 
plug-in (see Fig. 2), it was felt that the event log contained 
13 087 cases, 848 trace classes, 262 200 events distributed 
over 36 tasks and 69 distinct resources. 

The traces length vary between 3 and 20 event classes, 
the average of events per case was to ATL = 20.035 

                                                           
2 http://www.drools.org/ 
3
 https://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-

75976070e91f 



 

 

and the average of the different events per case was to ATS = 
8.1765. 

According to the average trace length and the event 
density, the plug-in concluded that the cases contained a 
recurring behavior caused by loops. 

The total duration of the "BPI Challenge 2012" event log 
is 5 months 2 weeks 26 minutes 10 seconds 135 
milliseconds. The average duration of each trace in the event 
log is 1 week 1 day 14 hours 58 minutes 20 seconds 95 
milliseconds and the average duration of each event is 11 
hours 31 minutes 13 seconds 323 milliseconds.  

The number of loop patterns in the event log was to 
40571 with an average of 3.10 per case. The average of 
traces frequency in the event log was to 15.43 and the 
average of events frequency was to 10 925. The plug-in 
concluded that the event log complexity seemed to be 
complex. Indeed, the traces are little similar and 
heterogeneous, which partly explains the initial results. 

As regards the accuracy information, the plug-in shown 
that the "BPI Challenge 2012" event log shown that there 
exist 0,1091% of incorrect event timestamps values and there 
exist 3 end events which appear also as suspicious seeing 
their frequency. 

The plug-in cautioned us about the presence of 0.0059% 
of noise, 38.26% of traces that are not ordered by 
timestamps, and no trace with the duplicate events (i.e. the 
events with the same attributes). 

Overall, all of event names and event timestamps are 
available, but resource information availability rate is 
93.13%. Indeed, there are 18 009 events of 3528 traces that 
have missing resource information, i.e., 6:87% of events and 
26:98% of the traces have partially missing resource 
information. There are 1 042 traces where association 
between start and complete events of tasks are. The global 
completeness of the event log was high (i.e. tune of 88.71%). 

Based on this analysis, the plug-in concluded that global 
quality of "BPI Challenge 2012" event log was medium, 
which will allow us to carry out our process mining project 
successfully. Indeed, the event log is complex (tune of 
46.66%). The accuracy of the events and the traces was 
medium (tune of 60%). The consistency was medium (tune 
of 63.33%) and the completeness of the event log was high 
(tune of 76.66%). It suggested us also to applying several 
preprocessing steps, namely, filter the events with incorrect 
event timestamps values, filter the traces with an abnormal 
behavior, etc. 

It’s also advocated us to use fuzzy miner algorithm [22], 
which was appeared as the most tailored under this 
circumstance 

During the various experiments conducted with our plug-
in as raised previously, we have observed a limitation 
concerning the computation time. That the computation of 
the trace classes and the traces similarity rate takes a 
quadratic time O(n^2). In other words, the computation time 
increase with the scalability of the event log size. This 
requires the use of alternate techniques explained in the 
conclusion. 

 

Fig. 2. The Event Logs Quality Assessment Plug-in. 



 

 

VII. CONCLUSION 

The event logs quality is an important concern for any 
process mining project. However, despite its importance, 
there is currently very little work in assessing event logs 
quality before applying process mining algorithms. In this 
paper we have presented a qualitative model involving a set 
of quality dimensions refined in several quality attributes and 
measurements. We have also described some important 
metrics, used to evaluate different quality attributes.  

Our approach has been fully implemented in the context 
of the ProM plug-in and evaluated using both real and 
synthetic event logs. It is noteworthy that our proposed event 
logs quality model is not exhaustive and can be enriched by 
empirical research. 

As a future work, we intend to address current limitations 
of our proposal, namely use the sampling approach to speed-
up the process of assessment, which is actually 
computationally expensive in the case of voluminous event 
logs. We wish also to gain more experience in how the 
metric values scale by conducting more comprehensive case 
studies in order to make the measurement process more 
reliable. 
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