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Abstract—In this article we investigate the effectiveness of a
stagnation avoidance routine devised for Fish School Search
algorithm, which is a novel nature inspired population based
search procedure effective for continuous optimization prob-
lems. Here we used and modified either Vanilla and a niching
version of the algorithm in order to improve their exploratory
ability with the introduction of a stochastic worsening al-
lowance behavior within the local search operator, originating
the stagnation avoidance routine. Two sets of multi-plateau
objective functions were defined in order to evaluate the
performance improvement in multi-plateau search spaces, a
common and challenging threat for Combinatorial Optimiza-
tion algorithms. The main goal was to improve the convergence
capability of the algorithm when solving very smooth or
plateau containing search spaces. Instances of the multi-plateau
functions as well as a set of benchmark test problems were
solved. Results show that the proposed modification for Fish
School Search is quite effective in abbreviating as well as
improving the convergence rate of the algorithm.

1. Introduction

A sizeable number of optimization problems from In-
dustry and Academia are of Combinatorial Optimization
nature [1]. Many of these problems are known to be NP-
Hard. Hence, different meta-heuristic procedures have been
studied in order to solve them in practical time [2]. Some of
the mentioned problems commonly tackled by researchers
include the travelling salesman problem [3], [4], the knap-
sack problem [5] and the job shop schedulling problem [6],
[7], among many others.

Combinatorial Optimization Problems consist in finding
an optimal solution from a finite search space [1], which
means that, in such type of problem, the search space is
composed by a finite number of different plateaus.

Fish School Search (FSS) algorithm, presented originally
in 2008 in the work of Bastos-Filho and Lima-Neto et al.
[8], is a population based continuous optimization technique
inspired in the behavior of fish schools while looking for
food. Each fish in the school represents a solution for a given

optimization problem and the algorithm utilizes information
of every fish to guide the search process to promising regions
in the search space as well as avoiding early convergence
in local optima.

Ever since the original version of FSS algorithm was
developed, many modifications were performed in order to
tackle different issues such as multi-objective optimization
[9], multi-solution optimization [10] and binary search [11].
Among those, a novel niching and multi-solution version
known as wFSS was recently proposed [12].

As it will be further detailed in the following sections,
FSS intrinsically uses accumulation of success during the
search instead of local information like other meta-heuristic
techniques such as PSO [13]. It means that the algorithm
depends on steady improvement of some fishes in the
population in order for them to better guide the search
process. This fact can become a disadvantage in the cases
of very smooth or plateau containing search spaces, which
is common when solving combinatorial problems utilizing
continuous search procedures, as can be seen in the work
of Hamta et al. [14].

To the best of the authors knowledge, the aforemen-
tioned issue regarding efficiency of FSS when trying to op-
timize smooth search spaces is still open. Hence, this paper
is intended to propose a seminal modification in the original
FSS intended to allow the algorithm to converge even when
trying to solve plateau containing objective functions. This
modification was also applied in wFSS and then a compar-
ison between original and proposed versions and Particle
Swarm Optimization (PSO) algorithm was performed in
multi-plateau objective functions as well as in well known
continuous optimization test problems.

This paper is organized as follows: section 2 provides an
overview of Fish School Search algorithm and its niching
version, wFSS. Section 3 introduces the proposed modifi-
cations in order to increase the exploration ability of the
technique, the Stagnation Avoidance Routine (SAR). Section
4 describes the multi-plateau objective functions utilized in
order to evaluate the convergence capacity of the algorithms
tested. Section 5 presents the tests performed and the results
achieved.



2. Fish School Search Algorithm: Vanilla and
w versions

2.1. FSS Vanilla

FSS is a population based search algorithm inspired in
the behavior of swimming fishes that expand and contract
while looking for food. Each fish n-dimensional location
represents a possible solution for the optimization problem.
The algorithm makes use of weights for all fishes which
represent cumulative account on how successful has been
the search for each fish in the school.

FSS is composed of feeding and movement operators,
the latter being divided into three sub-components, which
are:

1) Individual component of the movement: Every
fish in the school performs a local search looking
for promising regions in the search space. It is done
as represented by the following equation:

xi(t+ 1) = xi(t) + rand(-1,1)stepind, (1)

where xi(t) and xi(t + 1) represent the position
of fish i before and after the individual movement
operator, respectively. rand(-1,1) is an uniformly
distributed random numbers array with the same di-
mension as xi(t) and values varying from −1 up to
1. stepind is a parameter that defines the maximum
displacement for this movement. The new position
xi(t + 1) is only accepted if the fitness of fish i
improves with the position change. If it is not the
case, xi(t) remains the same and xi(t+ 1) = xi(t).

2) Collective-instinctive component of the move-
ment: An average of displacements performed
within individual movements is calculated based on
the following:

I =

∑N
i=1 ∆xi∆fi∑N

i=1 ∆fi
. (2)

Vector I represents the weighted average of the dis-
placements of each fish. It means that fishes which
experienced a higher improvement will attract other
fishes into its current position.
After vector I computation, every fish will be en-
couraged to move according to:

xi(t+ 1) = xi(t) + I. (3)

3) Collective-volitive component of the movement:
This operator is used in order to regulate explo-
ration/exploitation abilities of the school during
the search process. First of all, barycenter B is
calculated based on the position xi and weight Wi

of each fish:

B(t) =

∑N
i=1 xi(t)Wi(t)∑N

i=1Wi(t)
, (4)

and then, if total weight given by the sum of
weights of all N fishes in the school

∑N
i=1Wi has

increased from last to current iteration, the fishes
are attracted to the barycenter according to equation
5. If the total school weight has not improved, fishes
are spread away from the barycenter according to
equation 6:

xi(t+ 1) = xi(t)− stepvolrand(0,1)∗
xi(t)− B(t)

distance(xi(t),B(t))
,

(5)

xi(t+ 1) = xi(t) + stepvolrand(0,1)∗
xi(t)− B(t)

distance(xi(t),B(t))
,

(6)

where stepvol defines the maximum displace-
ment performed with the use of this operator.
distance(xi(t),B(t)) is the euclidean distance be-
tween fish i position and the school barycenter.
rand(0,1) is an uniformly distributed random num-
bers array with the same dimension as B and values
varying from 0 up to 1.

Besides movement operators, it was also defined a feed-
ing operator used in order to update the weights of every
fish according to:

Wi(t+ 1) = Wi(t) +
∆fi

max(|∆fi|)
, (7)

where Wi(t) is the weight parameter for fish i, ∆fi is
the fitness variation between the last and new positions
and max(|∆fi|) represents the maximum absolute value of
fitness variation among all fishes in the school.

W is only allowed to vary from 1 up to Wscale, which is
a user defined attribute. Weights of all fishes are initialized
with the value Wscale/2.

The pseudo-code for FSS is the following:
1: Initialize user parameters
2: Initialize fishes positions randomly
3: while Stopping condition is not met do
4: Calculate fitness for each fish
5: Run individual operator movement
6: Calculate fitness for each fish
7: Run feeding operator
8: Run collective-instinctive movement operator
9: Run collective-volitive movement operator

10: end while
The parameters stepind and stepvol decay linearly ac-

cording to:

stepind(t+ 1) = stepind(t)− stepind(initial)

Itmax
, (8)

and similarly:

stepvol(t+ 1) = stepvol(t)−
stepvol(initial)

Itmax
, (9)



where stepind(initial) and stepvol(initial) are user defined
initial values for stepind and stepvol, respectively. Itmax is
the maximum number of iterations allowed in the search
process.

2.2. wFSS

Introduced in the work of Lima-Neto and Lacerda [12],
wFSS is a weight based niching version of FSS intended to
produce multiple solutions. The niching strategy is based on
a new operator called Link Formator used to define leaders
for the fishes in order to form sub-schools.

Link Formator operator works according to the follow-
ing: each fish a chooses randomly another fish b in the
school. If b is heavier than a, then a now has a link with b
and follows b (i.e. b leads a). Otherwise, nothing happens.
However, if a already has a leader c and the sum of the
weights of the followers of a is higher than the weight of
b, then a stops following c and starts following b. In each
iteration, if a becomes heavier than its leader, the link will
be broken.

The pseudo-code for wFSS is:
1: Initialize user parameters
2: Initialize fishes positions randomly
3: while Stopping condition is not met do
4: Run link formation operator
5: Calculate fitness for each fish
6: Run individual operator movement
7: Calculate fitness for each fish
8: Run feeding operator
9: Run collective-instinctive movement operator

10: Run collective-volitive movement operator
11: end while

Besides Link Formator operator inclusion, some mod-
ifications were performed in the movement operators.
Collective-instinctive component of the movement becomes:

xi(t+ 1) = xi(t) + ρI, (10)

with:

I =
(∆xi∆fi + L∆xl∆fl)

∆fi + L∆fl
, (11)

where L is 1 if the fish i has a leader and 0 otherwise. ∆xl

and ∆fl are the displacement and fitness variation of the
leader of fish i. Further:

ρ =
currentiteration

Itmax
. (12)

Collective-volitive component of the movement is also
modified in a sense that the barycenter is now calculated
for each fish with relation to its leader. If the fish does not
have a leader, its barycenter will be its actual position. The
aforementioned is shown in equation 13:

B(t) =
xi(t)Wi(t) + Lxl(t)Wl(t)

Wi(t) + LWl(t)
. (13)

3. Stagnation Avoidance Routine

As mentioned before, a modification was proposed in
original FSS in order to make it to improve its exploration
ability. In the original version of the algorithm, Individual
movement component is only allowed to move a fish when
its fitness improves. However, in a very smooth search space,
there would be many moving trials with no success and the
algorithm could fail to converge.

Further, Collective-volitive movement was designed to
regulate exploration/exploitation ability of the algorithm
along the search process, however, in order to do so, this
behavior depends on the possibility of the school total
weight to reduce. If it does not happen, only equation 5
will be utilized in this operator. This means that the ability
of attracting fishes to school barycenter in order to exploit
the search space will always predominate with relation to
the ability of spreading the school away from the barycenter
in order to allow exploration.

To solve these issues, we introduced a parameter α for
which 0 ≤ α ≤ 1 in the Individual component of the
movement. α decays exponentially along with the iterations
and measures a probability for a worsening allowance for
each fish. It means that, every time a fish tries to move to a
position that does not improve its fitness, a random number
is chosen and if it is smaller than α the movement is allowed.
However, only fishes which presented improvement in their
fitnesses within the Individual component of the movement
can contribute to I calculation utilized within Collective
instinctive movement. In this case, I will be calculated
according to:

I =

∑
i∈N ∆xi∆fi∑

i∈N ∆fi
, (14)

where N is the set of all fishes which improved their
fitnesses in the last Individual movement performed.

This modification is intended to improve the algorithm
exploration ability by allowing stochastic worsening move-
ments. However, as parameter α decays exponentially along
the iterations, this effect is intense only in the beginning
of the search process and becomes irrelevant after some
iterations.

4. L-Shape and C-Shape Step-Plateau func-
tions

Two sets of functions containing plateaus were defined
in order to evaluate the exploration ability of FSS, FSS-SAR
and PSO. The first one, the L-Shape set of functions, can
be defined as:

y = 10

⌈
max(|xi|)

l

⌉
, (15)

where max(|xi|) is the maximum absolute value among the
coordinates of position vector xi and l is the width of the
interval separating two consecutive plateaus given by l =



xupperbound

d . d is the number of plateaus and xupperbound is
the maximum value possible for every dimension.

These functions are composed by a number d of square
steps centered in the origin. Figure 1 shows the surface
defined in [0; 100]2 for L-Shape with 8 disks. The second

Figure 1. L-Shape function with d = 8

set of functions defined was C-Shape which can be defined
as:

y = 10

⌈
radius(xi)

l

⌉
, (16)

where radius(xi) is the euclidean distance between position
vector xi and the origin of the search space. l is the width
of the interval separating two consecutive plateaus, given by
l =

xupperbound

d . d is the number of plateaus and xupperbound
is the maximum value possible for every dimension. C-
Shape is composed by a number d of circular steps centered
in the origin. Figure 2 shows the surface defined in [0; 100]2

for C-Shape with 8 disks.

Figure 2. C-Shape function with d = 8

5. Tests and Results

In order to evaluate the performance of the three al-
gorithms in the multi-plateaus search spaces, tests were
performed in [−100; 100]5. For these tests, the initialization
of all particles/fishes was made randomly but always in the

last plateau. For SAR versions, α parameter was set to decay
according to α = 0.8e−0.007∗currentIteration.

The PSO version chosen for comparison is defined as in
the work of Clerc and Kennedy [15]:

xi(t+ 1) = xi(t) + χ[vi + c1r1(pbi − xi(t))+

c2r2(gbi − xi(t))],
(17)

where χ = 2

|2−(c1+c2)−
√

(c1+c2)(c1+c2−4)|
is known as

constriction factor. For this version of PSO c1 and c2 values
must be chosen satisfying c1 + c2 ≥ 4 [15]. r1 and r2 are
uniformly distributed random numbers in the interval [0; 1].

The parameters chosen for each algorithm are shown in
table 1 based on the values utilized in the works of Bastos-
Filho et al. [8] and Lima-Neto and Lacerda [12]. FSS Vanilla
and original wFSS are referred to as FSS-V and wFSS.

TABLE 1. PARAMETERS

Wscale Stepind Stepvol
FSS-V 104 10 0.1

FSS-SAR 104 10 0.1
wFSS 500 10 0.1

wFSS-SAR 500 10 0.1
PSO Version defined in [15] c1 = c2 = 2.05

Figures 3, 4, 5 and 6 represent the convergence curves
for L-Shape and C-Shape functions with d = 4 and d = 8.

Figure 3. Convergence curves for L-Shape function with d = 4

Figure 4. Convergence curves for L-Shape function with d = 8



From figure 3, it can be seen that PSO and FSS-V were
trapped and could not achieve optimum values of fitness
when solving L-Shape-4. SAR versions and wFSS were
able to converge to optimum fitness values, however wFSS
showed slow convergence. In the case of L-Shape-8 shown
in figure 4, FSS-V was able to converge due to the reduction
of plateaus width. This search space feature also had effect
on the convergence of FSS-SAR, wFSS and wFSS-SAR.
They all presented faster convergence than when solving L-
Shape-4. PSO was not able to converge to optimum solutions
in L-Shape-8.

Figure 5. Convergence curves for C-Shape function with d = 4

Figure 6. Convergence curves for C-Shape function with d = 8

For C-Shape functions, the convergence curves for C-
Shape-4 in figure 5 show fast fitness improvement for both
FSS-SAR and wFSS-SAR. However, FSS-SAR had fishes
trapped in local optima is some of the test runs. Once more
FSS-V and PSO could not improve in any test run and wFSS
was able to optimally converge but in a slow manner

C-Shape-8 convergence analysis presented in figure 6
shows a similar behavior when compared to figure 5. PSO
and FSS-V did not present fitness improvement, wFSS has
shown slow convergence and FSS-SAR and wFSS-SAR
were to find the global optima. However, FSS-SAR did not
achieve the optimum values in all test runs as wFSS-SAR
did.

TABLE 2. RESULTS FOR L-SHAPE AND C-SHAPE FOR d = 4 AND d = 8

Algorithm Mean Std Dev Max Min
FSS-V 40 0 40 40

FSS-SAR 26 12.9943 40 10
C-Shape-4 wFSS 10 0 10 10

wFSS-SAR 10 0 10 10
PSO 40 0 40 40

FSS-V 34 7.7013 40 10
FSS-SAR 10 0 10 10

L-Shape-4 wFSS 10 0 10 10
wFSS-SAR 10 0 10 10

PSO 40 0 40 40
FSS-V 80 0 80 80

FSS-SAR 16.6667 20.3983 80 10
C-Shape-8 wFSS 10 0 10 10

wFSS-SAR 10 0 10 10
PSO 80 0 80 80

FSS-V 10 0 10 10
FSS-SAR 10 0 10 10

L-Shape-8 wFSS 10 0 10 10
wFSS-SAR 10 0 10 10

PSO 80 0 80 80

From table 2 it is possible to notice that FSS-V was
only able to achieve optimum fitness values in L-Shape-
8 and in some runs of L-Shape-4. FSS-SAR was able to
reach minimum fitness in test functions, but had the fishes
trapped in some runs in both C-Shape-4 and C-Shape-
8. wFSS reached minimum fitness in all the cases tested,
however the convergence analysis show that its convergence
has occurred in a slow manner. wFSS-SAR presented the
best results within the test functions considered. This al-
gorithm has achieved optimum fitness in all the test runs
and the convergence figures show a fast fitness improvement
process.

Furthermore, tests were performed in functions Sphere,
Rastrigin, Rosenbrock and Sum of Different Powers in order
to demonstrate the performance of Stagnation Avoidance
Routine versions on these benchmarking problems. The idea
was to check if modifications proposed in FSS Vanilla and
wFSS diminished their performance in functions different of
the multi-plateau ones. The search spaces chosen are shown
in table 3 and the parameters used are those presented in
table 4. Stepind and Stepvol are defined as percentages of
the search space width. Table 5 registers the results achieved
in 30 runs for each combination of function/algorithm.

TABLE 3. SEARCH SPACES

Function Search Space
Sphere [−100; 100]30

Diff. Powers [−100; 100]30

Rastrigin [−5.12; 5.12]30

Rosenbrock [−100; 100]30



TABLE 4. PARAMETERS SET FOR BENCHMARKING FUNCTIONS TESTS

Wscale Stepind Stepvol
FSS-V 105 1% 0.05%

FSS-SAR 105 1% 0.05%
wFSS 500 1% 0.05%

wFSS-SAR 500 1% 0.05%
PSO Version defined in [15] c1 = c2 = 2.05

TABLE 5. TESTS IN OTHER OBJECTIVE FUNCTIONS

Algorithm Function Mean Std Dev Min Max
FSS-V Sphere 0.9378 1.8681 0.0047 8.6538

FSS-SAR Sphere 0.0006 0.0006 0.0000 0.0028
wFSS Sphere 0.0050 0.0037 0.0000 0.0112

wFSS-SAR Sphere 0.0067 0.0031 0.0000 0.0120
FSS-V Diff. Power 2.8042 4.6763 0.0047 19.6687

FSS-SAR Diff. Power 0.0012 0.0009 0.0001 0.0030
wFSS Diff. Power 0.0015 0.0026 0.0000 0.0073

wFSS-SAR Diff. Power 0.0034 0.0030 0.0000 0.0081
FSS-V Rastrigin 222.6397 53.8456 116.6709 310.1582

FSS-SAR Rastrigin 109.5423 17.1978 75.6461 139.3514
wFSS Rastrigin 300.3256 21.8623 245.0616 338.4539

wFSS-SAR Rastrigin 292.8820 23.3048 244.4116 342.5037
FSS-V Rosenbrock 1490.4000 2351.1000 29.0758 10291.0000

FSS-SAR Rosenbrock 31.7654 21.9400 23.8386 146.4889
wFSS Rosenbrock 28.7706 0.0742 28.4032 28.8553

wFSS-SAR Rosenbrock 28.7263 0.1906 27.9412 28.8385

From results presented in table 5 one could note that
the Stagnation Avoidance Routine introduced in FSS did
not have a negative impact in its ability to converge in
search spaces other than multi-plateau ones, proposed in
this paper. Further, the performance of FSS algorithm in
Rosenbrock function, a valley-containing problem, and in
Rastrigin funtion which has a multi-modal solution feature,
also improved with the modification. The same could be
observed with the bowl-shaped objective functions Sphere
and Sum of Different Powers. In these functions, the perfor-
mance of FSS-SAR was superior when compared to FSS-V.
SAR modification did not presented neither a positive nor a
negative impact in the niching FSS performance within the
tests performed in the problems different of multi-plateaus.

6. Conclusion

Some classes of optimization problems such as integer
and combinatorial programming originate very smooth and
plateau containing search spaces. Many approaches try to
use continuous metaheuristic procedures in order to tackle
the aforementioned problems. In that case, the exploratory
components of the search procedure utilized should be able
to play a relevant role during the search process. Taking this
fact into account, this work provided: (i) a set of functions
which could be used for evaluating new techniques; (ii) a
variation of the Fish School Search algorithm improving its
exploratory ability.

The first contribution in this paper is the definition
of new multi-plateau sets of functions. L-Shape and C-
Shape functions can be used in order to evaluate algo-
rithms performance in search spaces with a finite number
of different levels. This kind of search space is common in

Combinatorial Optimization family of problems, so that the
functions proposed could be used for evaluating algorithms
performance before trying to solve this sort of problem.

Furthermore, two new versions of Fish School Search
algorithm were proposed with the introduction of the Stag-
nation Avoidance Routine in the individual component of
the movement operator, the one responsible to promote a
local search.

This modification was intended to increase the ex-
ploratory ability of the algorithm in the beginning of the
search process. FSS-SAR and wFSS-SAR showed to be
effective once these versions were able to quickly have
fishes scaping from the highest plateau of multi-plateau
functions, permitting faster convergence. PSO algorithm was
not able to improve within the tests performed in multi-
plateau functions.

Tests were performed in standard benchmark functions
in order to check whether the modifications proposed dimin-
ished the performance of FSS in search spaces different from
the plateau containing ones. The results showed that there
is no performance reduction with the exploratory behavior
introduced. On the contrary, this modification showed to be
effective also in some of these test cases.

For future works, variations of the multi-plateau set
of functions should be investigated. A multi-modal feature
could be introduced in order to better simulate Combina-
torial Optimization search spaces. Regarding modifications
proposed in this paper in FSS algorithm, studies should be
performed in order to evaluate the performance influence of
the decay mode of the α parameter in SAR versions.
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