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Abstract—Most research in image classification has focused on
applications such as face, object, scene and character recogni-
tion. This paper examines a comparative study between deep
convolutional neural networks (CNNs) and bag of visual words
(BOW) variants for recognizing animals. We developed two
variants of the bag of visual words (BOW and HOG-BOW)
and examine the use of gray and color information as well
as different spatial pooling approaches. We combined the final
feature vectors extracted from these BOW variants with a
regularized L2 support vector machine (L2-SVM) to distinguish
between classes within our datasets. We modified existing deep
CNN architectures: AlexNet and GoogleNet, by reducing the
number of neurons in each layer of the fully connected layers
and last inception layer for both scratch and pre-trained versions.
Finally, we compared the existing CNN methods, our modified
CNN architectures and the proposed BOW variants on our novel
wild-animal dataset (Wild-Anim). The results show that the CNN
methods significantly outperform the BOW techniques.

I. INTRODUCTION

The field of computer vision has the aim to construct
intelligent systems that can recognize the semantic content
displayed on images. Most research in this field has focused
on recognizing faces, objects, scenes, and characters. In this
paper, we describe several techniques that use machine learn-
ing and pattern recognition methods to recognize wild animal
images, which has gained less attention from the community.
The concept of recognition of objects based on variations in
image content has gained attention over several decades now,
and has lately received an increased interest due to the advance
of deep learning techniques [1]. In this paper, we will focus on
methods from the computer vision community in which deep
CNNs, feature descriptors and machine learning algorithms
are used to predict labels of animal images.

Some approaches to animal, object and scene recognition
have concentrated on the use of color descriptors [2]–[4]. Also,
the authors in [5] investigated the combination of local and
global features for modelling a framework for memorability
prediction. In a quest to improve recognition performance, the
use of classical image descriptors such as the Bag-of-Visual-
Words (BOW) has been applied to different fields. BOW
involves the extraction of features [6], [7] and construction of a
codebook using an unsupervised learning algorithm such as K-
means clustering [8], spectral clustering [9], local constrained

linear coding for pooling clusters [10], and the use of the
fast minimum spanning tree [11]. Finally, the extraction of
feature vectors by the BOW approach can be achieved using
a soft assignment scheme [12] or sparse ensemble learning
methods [13]. Some recent works have used BOW as an input
to some hierarchical structures such as weakly supervised deep
metric learning [14] and robust structured subspace learning
[15]. Moreover, the combination of BOW with the histogram
of oriented gradients on grayscale datasets has obtained a very
good performance on both handwritten character recognition
[16] and face recognition [17]. In [18], the authors applied
BOW on text detection and character recognition on scene
images.

However, the concept of BOW has become old fashioned
by the recently emerging and successful area of deep learning
with neural networks. These learning techniques have been
successfully applied to many applications such as human face
recognition [19], [20], object recognition [21], handwritten
character recognition [22], [23] and medical image recognition
[24]. The use of deep learning to learn from large datasets has
led to the evolution of deep architectures like AlexNet [25],
GoogleNet [26] and Residual Networks (ResNets) [27].

The BOW method [6] has been a popular and widely
used method in the computer vision community. According to
[28], the BOW technique outperforms other feature learning
algorithms like autoencoders and restricted Boltzmann ma-
chines. In addition to the survey on the use of convolutional
neural networks, the authors in [29] showed that regions with
CNN (R-CNN) features outperform HOG-based deformable
part models and feature learning based methods on PASCAL
VOC datasets. Also, the authors in [30] demonstrated that
CNN augmentation with a support vector machine (SVM)
outperforms BOW and other local feature descriptors.

Contributions: In this paper, we evaluate the performance
of 16 different techniques on a novel wild-animal dataset. To
actualize this aim, the use of existing deep CNN architectures
(GoogleNet and AlexNet), our modified versions of the deep
CNN (Reduced Fine-tuned and Scratch versions of GoogleNet
and AlexNet) and variants of BOW techniques are applied
to our novel Wild-Anim dataset. The results show that our
modified CNN architectures are competitive when compared to



the original deep CNN architectures but require less computing
time. This is evident based on the significant decrease of the
computational time by 27% and 26% for both the fine-tuned
and scratch versions of the AlexNet architectures respectively.
Also, we compared the deep CNN architectures to different
variants of the BOW approach combined with an SVM with
major emphasis on two spatial pooling strategies as well as
the use of color information on our Wild-Animal dataset. The
results show that the GoogleNet CNN architectures perform
best. Furthermore, almost all CNN architectures significantly
outperform all BOW variants. The results also show that the
BOW method using color information with the max-pooling
strategy outperforms the HOG-BOW methods for both gray
and color image information on our dataset for both spatial
pooling strategies. This is contrary to the view that HOG-
BOW techniques outperform BOW methods, which was shown
before in character recognition [16] and facial recognition [17].

Paper Outline: This paper is organized in the following
way. Section II briefly explains the basic deep learning pro-
cesses. Section III describes the different learning techniques
we use in our wild animal recognition system. Section IV de-
scribes the Wild-Anim dataset that is used in the experiments.
The experimental results of the deep learning methods and bag
of visual words are presented in Section V. The conclusion is
presented in Section VI.

II. BASIC DEEP LEARNING PROCESSES

In order to understand the activities going on in each
stage of a deep neural network, below we briefly explain the
processes based on some mathematical principles.

Convolution Process: Convolutional layers employ learn-
able filters which are each convolved with the layer’s input to
produce feature maps. The feature map Zl(x, y, i) for neuron
i from each convolutional layer l can be computed as:

Zl(x, y, i) = Bli +X l−1(x, y, c) ∗Kl
i(x, y, c) (1)

The input to the convolutional neural network can be
represented as a tensor X l−1 from the previous layer with
elements X(x, y, c), denoting the value of the input unit
within channel c at row x and column y. The input to the
convolution is convolved with the tensor kernel using a bank
of filters Kl

i for the current layer with the same number of
channels present in X l−1. Each convolved feature map in a
given layer gets its corresponding bias Bli added.

Detector Process: This process involves the use of a non-
linear activation function such as the Rectified Linear Unit
(ReLU) [25] to compute activations of all convolved extracted
features. The ReLU is often assigned to the output of each
hidden unit in a convolutional layer and the fully connected
layers. The output of the ReLU P l(x, y, i) is calculated using
the expression:

P l(x, y, i) = max(0, Zl(x, y, i)) (2)

Normalization Process: In this process, local response
normalization is used for normalizing the output of the ReLU
[25], [31]. The role of the local response normalization is
assumed to yield better generalization and introduces non-
linearity that is absent in the right hand side of the ReLU
responses. The local response normalization [32] can be com-
puted as:

Ql(x, y, i) = P l(x, y, i)

γ + α
∑
j∈M l

(P l(x, y, j))2

−β (3)

where Ql(x, y, i) computes the response of the normalized
activity from the ReLU output P l(x, y, i). This is done
by multiplying the output with an inverse sum of squares
plus an offset γ for all ReLU outputs within a layer l. The
normalization is local over the feature map M l. We employed
the same hyper-parameter setting as in [25] with the following
constant variables: γ = 2, α = 10−4 and β = 0.75.

Spatial Pooling Process: In this process, two spatial pool-
ing approaches are employed in the two CNN architectures
used in the experiments.

1) Max-Pooling: The max-pooling operator computes the
maximum response of each feature channel obtained
from the normalized output. A max-pooling operator can
be expressed as:

Rl(x̄, ȳ, i) = maxx,y∈M(x̄,ȳ,l)Q
l(x, y, i) (4)

Where (x̄, ȳ) is the mean image position of the positions
(x, y) inside M(x̄, ȳ, l) that denotes the shape of the
pooling layer, and Rl(x, y, i) is the result of the spatial
pooling of the convolutional layers.

2) Average-Pooling: The average-pooling operator com-
putes the mean response of each feature channel ob-
tained from the normalized output. An average-pooling
operator can be expressed as:

Rl(x̄, ȳ, i) =

∑
x,y∈M(x̄,ȳ,l)Q

l(x, y, i)

|M(x̄, ȳ, l)|
(5)

Regularization Process: In order to reduce over-fitting
in the network, the use of the dropout [25] regularization
scheme is applied to the output of the spatial pooling layer.

Classification Process: In this process, the probability of
the class labels from the output of the fully connected layer is
computed using the softmax activation function. The softmax
activation function [33] computes the probabilities of the
multi-class labels using the sum of weighted inputs from the
previous layer and is used in the learning process:

yd =
exp(xd)∑D
d=1 exp(xd)

(6)

where yd is the output of the softmax activation function for
class d, xd is the summed input of output unit d in the final



output layer of the fully connected network and D is the total
number of classes.

Often, the classification process employs the use of the top-
K classification error for computing the errors on the testset.
The top-K loss is zero if target class d is within the top K
ranked scores [31]:

L(y, d) = 0[|{k : yk ≥ yd}| < K] (7)

The top-K loss is one for an example, if:

L(y, d) = 1[|{k : yk ≥ yd}| ≥ K] (8)

Where yd are the final outputs of the CNN. We report results
of the top-1 error accuracy in all our experiments.

III. LEARNING METHODS

We study both deep learning using convolutional neural
networks (CNNs) and variants of bag of visual words com-
bined with a Support Vector Machine (SVM) to deal with
our wild animal dataset. We will make use of two deep CNN
architectures, AlexNet and GoogleNet, and modify them. We
will now explain these architectures and our modifications,
resulting in 8 different deep learning architectures.

A. AlexNet Architecture
The AlexNet model, initially proposed in [25],

outperformed the non-deep learning methods for the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) in 2012.
AlexNet consists of five convolution layers, three pooling
layers, and three fully connected layers with approximately
60 million trainable parameters. In this paper, we explore the
use of both original and reduced versions of both scratch and
fine-tuned AlexNet models on our Wild-Anim dataset. Our
experimental procedure is similar to that of [25], that applied
the stochastic gradient descent update rule with momentum,
which is expressed as:

ui+1 = µui −
(
αL

[
δWi +

∂L

∂Wi

])
Di

(9)

Wi+1 = Wi + ui+1 (10)

where Wi are the weights of the CNN, ui is the weight
change, L is the softmax loss function, µ is the momentum
term, αL is the learning rate, δ is the value for weight decay,
i is the iteration number, Di is the batch over index iteration
i and

(
∂L
∂Wi

)
computes the mean over the ith batch Di of

the derivative in the objective function with respect to Wi.
We will now briefly explain the AlexNet architecture models.

Scratch AlexNet: We will first train the AlexNet
architecture from scratch on the train-validation sets based on
5 different random shuffles of our dataset in order to obtain
models that can be used to evaluate on our test sets. The
experimental settings are as follows; crop size 227 × 227,
momentum 0.9, weight decay 5 × 10−4, test iteration of
the solver is 10, batch size of training 10, test interval 100,

base learning rate 1 × 10−3, learning policy is step with a
step-size of 3 × 104, a dropout of 0.5, gamma 0.1, with a
maximum number of iterations of 30000 (30 epochs) for
1000 snapshots. In this architecture only the max-pooling
strategy is used in the spatial pooling layers. This setting is
for the Original Scratch AlexNet (OS-AlexNet) model which
has 4096 neurons in each of the fully-connected layers (FC6
and FC7) except in the last layer FC8 in which the number
of output neurons is equal to the number of classes within
our dataset. We modified the OS-AlexNet model by reducing
the number of neurons per fully-connected layer (FC6 and
FC7) to 512, since this modification results in less demand
on the computer memory usage and speeds up the use of
this architecture. The block diagram in Fig. 1 illustrates the
modified version of the AlexNet architecture. The choice of

Fig. 1. Block Diagram of Modified AlexNet Architecture with Reduction in
Neurons in the Fully Connected Layers.

512 neurons in each of the fully connected layers is because it
gives the best results after several experiments with different
numbers of neurons on our dataset.

Fine-tuned AlexNet: This version of the architecture relies
on the weights that are initialized by a pre-trained network.
The pre-trained network is trained on a subset of Ima-
geNet (ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC)) [25]. This version of the dataset consists of a
minimum of 1000 images for each of the 1000 classes. The
dataset is roughly divided into 1.2 million training images,
50,000 validation images, and 150,000 testing images. Al-
though the ILSVRC ImageNet dataset has some categories of
images which also occur in our dataset, the datasets contain
different images.

The Original Fined-tuned AlexNet (OFT-AlexNet) and
Reduced Fine-tuned AlexNet (RFT-AlexNet) require a pre-
trained CNN architecture model. The pre-trained network of
the AlexNet architecture was constructed by training on the
ILSVRC ImageNet dataset. We maintain the same experi-
mental settings as discussed earlier. One exception is that



the maximum number of iterations is reduced to 10000 (10
epochs) with a step size of 10000 using a fixed learning rate
of 0.001. We note that all our experiments were carried out
using the Caffe platform on a Ge-Force GTX 960 GPU model.

B. GoogleNet Architecture
The GoogleNet deep learning architecture, proposed in

[26], is one of the most powerful deep CNN models. This
method is inspired from the incorporation of a new module
known as inception which allows the concatenation of filters
of different dimensions and sizes into a single new filter
[24]. GoogleNet consists of two outer convolutional layers,
two outer pooling layers, three sets of top-1 and top-5 loss-
functions for three classifiers with a regularization dropout
of 0.7, 0.7 and 0.4 respectively for the three classifiers and
nine inception layers. In each inception layer, there exist six
convolution layers and one pooling layer. Our experimental
procedure is similar to that of [26] that employs gradient
descent and the momentum update rule. We will briefly
explain the four GoogleNet architectures that we will use in
our experiments.

Scratch GoogleNet: The Scratch GoogleNet architecture
does not rely on any pre-trained CNN model. The experimental
settings are as follows; crop size 224 × 224, momentum 0.9,
weight decay 2 × 10−4, test iteration 10, batch size 10, test
interval 100, base learning rate 1×10−3, step-size of 3×104,
interval display 40, average loss 40, power 0.5, gamma 0.1
and a maximum number of iterations of 30000 (30 epochs)
for 1000 snapshots. The number of output neurons in the three
classifiers of this architecture is equal to the number of classes
present in our dataset. The GoogleNet architecture uses both
the max-pooling and average pooling strategies in different
spatial pooling layers.

This setting is for Original Scratch GoogleNet (OS-
GoogleNet) with the last inception layer which contains a
max-pooling layer and six convolutional layers. The number
of output neurons in each layer within the last inception layer
is as follows: 384, 192, 384, 48, 128 and 128 respectively.
In the Reduced Scratch GoogleNet (RS-GoogleNet) the last
inception layer of the OS-GoogleNet is modified to contain
the following numbers of neurons in each layer in the last
inception layer: 24, 24, 24, 16 and 16 respectively, except for
the first layer which has 384 neurons. The block diagram in
Fig. 2 illustrates the GoogleNet architecture.

Fine-tuned GoogleNet: The Original Fined-tuned
GoogleNet (OFT-GoogleNet) and Reduced Fine-tuned
GoogleNet (RFT-GoogleNet) require a pre-trained CNN
architecture model. The pre-trained network of the GoogleNet
relies on the ILSVRC dataset that was explained in the
paragraph about the AlexNet architecture. We maintain the
same experimental settings as discussed earlier, except that
the maximum number of iterations is reduced to 10000 (10
epochs) with a step size of 10000. We used a fixed learning
rate of 1× 10−3.

Fig. 2. Block Diagram of RS-GoogleNet Architecture Showing also the 3
Softmax Classifiers.

C. Variants of Bag of Visual Words (BOW) with SVM
In this subsection, we describe two major kinds of BOW

models.

Bag of Visual Words with Image Pixel Intensity: This
technique uses the extraction of patches from the training data
based on the image pixel intensities to construct a codebook
[8] using K-means clustering. The steps involved in setting
up BOW consist of three processes which we will explain now.

Extracting Patches from the Training Data: The images
are divided into a set of sub-image patches X that is
extracted randomly from unlabelled training images,
X = {x1, x2, x3, ...xN} where N is the number of random
patches and xk ∈ <t is some patch extracted from the training
images. The size of the patches is described with t = p × p
pixels. In our experiment, we used p = 9, which implies that
81 pixels were used in a patch.

Construction of the codebook : The codebook is constructed
by applying K-means clustering on the feature vectors
consisting of pixel intensity information which is contained
in each patch. This is achieved by clustering the vectors
obtained from the random selection of the patches. Let
C = {c1, c2, c3, ...ck}, with ci ∈ <t represent the codebook
[8], where k is the number of centroids. In our preliminary
experiments, we used randomly selected patches to compute
the codebook. Our final choice was the use of 100,000
patches, because this extracts most information from our
animal dataset and has a good trade-off in computational time
when compared to a larger number of patches.

Feature Extraction: the soft assignment coding method from
[28] is used to create the feature vectors for both training and



testing images. The activity of each cluster given all feature
vectors xt from all patches in an image is computed using the
equation:

ik(x) =
∑
t

max{0, µ(xt)− qk(xt)} (11)

where qk(xt) = ||xt − ck||2 and µ(xt) is the mean of the
elements of this distance measure over the centroids ck [28].
We consider two spatial pooling approaches. An image is
divided into four quadrants and the activities of each cluster for
each patch in a quadrant are summed up. The spatial pooling
approach that is described in Equation 11 is referred to as Sum-
Pooling. While the second pooling approach, Max-Pooling,
is the computation of the maximum cluster activity given a
feature vector xt from all patches which are in an image and
can be described using the expression:

ik(x) = max
t
{max{0, µ(xt)− qk(xt)}} (12)

The patches of testing and training images are extracted
using a sliding window. Because we use a stride of 1 pixel,
the window size of 9×9 pixels and the used image resolution
is 250× 250 pixels, the method extracts 58564 patches from
each image. These patches, with the initial random patch
extraction and the number of clusters are used for computing
the cluster activations using Equation 11 or Equation 12. The
feature vector size is K × 4 and since we chose K to be
600 clusters, the feature vector of BOW has 2,400 dimensions.

Bag of Visual Words with Histogram of Oriented
Gradients (HOG-BOW): The HOG-BOW method is used
to compute feature vectors from patches based on the HOG
descriptor [34]. The patches are given to the Histogram of
Oriented Gradients (HOG) descriptor and the extracted feature
vectors are used to calculate the codebook as well as the
cluster activities. In order to compute the HOG feature vector
[35], [36], the HOG descriptor divides each patch into smaller
regions known as blocks, η×η. The HOG descriptor computes
two gradients (horizontal gradient hx and vertical gradient hy)
with respect to every coordinate x, y of an image using and
a simple edge detector (kernel gradient detector) [37]. The
gradients are computed using:

hx = W (x+ 1, y)−W (x− 1, y) (13)

hy = W (x, y + 1)−W (x, y − 1) (14)

where W (x, y) is the intensity value of the coordinate x, y.
The magnitude A(x, y) and the orientation α(x, y) are com-
puted as:

A(x, y) =
√
h2
x + h2

y (15)

α(x, y) = tan−1

(
hy
hx

)
(16)

The image gradient orientations within each block are
weighted into a specified number of orientation bins β, making

up the histogram. Finally, L2 normalization is applied to the
sum of bin values of the HOG feature vectors [34]. In our
preliminary experiments, we found the best HOG parameters
to use are 25 rectangular blocks (η = 5) and 8 orientation
bins to compute the feature vectors from each patch. In the
HOG-BOW experiment the best found patch size is 15 × 15
pixels. We also modified the HOG-BOW algorithm such that
it can process both gray and color information from the
patches in our dataset. In both BOW and HOG-BOW the
color information from the patches of an image is computed
by concatenation of each of the three channels that makes up
the RGB color space for each of the extracted patches. In
the same vein as in BOW, HOG-BOW employs 600 centroids
and both sum-pooling and max-pooling were applied to the
four quadrants on the codebook based on either gray or color
images in our dataset. The HOG-BOW method results in 2,400
dimensional feature vectors.

Finally, the final feature vector from both BOW and HOG-
BOW are fed into the regularized linear L2-SVM classifier
which predicts the class labels of our Wild-Anim images. We
adopted the one-vs-all approach. In a linear multi-class SVM,
the output zk(x) of the k-th class is computed as:

zk(x) = wTk i(x) + bk (17)

where i(x) ∈ <n are the input vectors constructed by the
BOW variants from an image x. The linear classifier for class
k is trained to output a weight vector wk with a bias value bk.

The predicted output class label for an image x [38] is
computed using:

argmax
k

(zk(x)) (18)

We use the regularized L2-SVM [39] for which the primal
objective function is given by:

min
w

1

2
wTw + C

n∑
i=1

(max (0, 1− yizk(x)))
2 (19)

where yi = {1,−1}, yi = 1 if xi belongs to the target class
of the k-th classifier, and yi = −1 if xi does not belong to
the target class. C is the penalty parameter.

IV. ANIMAL DATASET AND PRE-PROCESSING

In this section our novel dataset and preprocessing steps for
the experiments will be described.

A. Wild-Anim Dataset
We collected our novel dataset by downloading images

of animals from Flicker. Our dataset is called Wild-Anim
derived from wild animals. This dataset consists of a total
of 5,000 images and consists of 5 classes, namely; Bear,
Elephant, Leopard, Lion, and Wolf. Our dataset is processed
by automatic labelling and then was normalized to 250 ×
250 pixels introducing slightly anamorphic distortions. All
images in this dataset are in RGB color space. A sample of
the images in our dataset is shown in Fig. 3. After collecting
our dataset, we noticed that ImageNet also contains the same



Fig. 3. Samples of the Images in the Wild-Anim Dataset, from left column
to right column: lion, wolf, bear, elephant and leopard.

classes. Therefore, before carrying out our experiments we
carefully examined that there is no image overlap between
our dataset and that of the ILSVRC ImageNet dataset. So,
although the ILSVRC ImageNet dataset has some categories
of images which are used in our dataset, it contains different
images. We initially trained on the entire dataset with the use
of a local feature descriptor (HOG-BOW). We recorded a good
performance, but the drawback was that it took approximately
two days to complete the computation. In order to mitigate
this computational time challenge, we used Deep-CNN which
turns-out to be very viable, because it requires less computing
time to produce an outstanding result since it runs on a
GPU. This is evident based on the small sample experiment
conducted on a 20% subset of our dataset which contains
1000 images. We conducted two kinds of experiments on the
1000 images; 1) On BOW variants, the subsets are randomly
partitioned into two basic entities in the ratio 0.9:0.1 for
the training set and testing set, respectively. 2) In the CNN
approach, we partitioned the dataset into the ratio 0.8:0.1:0.1
for the training set, validation set and testing set respectively.
The Deep CNN techniques use an overall computing time for
the complete experiment with 5 runs between 0.22 ≤ t ≤ 2.1
hours. Of course, this reduction is mainly caused by the used
software, where the Caffe framework uses GPU computing,
and does not imply that deep CNNs are in general faster
than the BOW method. The exact duration depends on the
experimental settings of either fine-tuned or scratched versions
of the CNN architectures under study. AlexNet is also faster
than GoogleNet. For the BOW variants the computing time
for an entire experiment is between 0.65 ≤ t ≤ 26 hours. In
the experiments, five different random shuffles of this subset
of 1000 images are used to carry out 5 random-fold cross
validation.

V. EXPERIMENTAL RESULTS

All results in this section are based on 5-fold cross val-
idation. We compute both the mean precision and standard
deviation for evaluating the test performance of the Deep CNN
architectures and the variants of BOW on our dataset.

A. Evaluation of the Wild-Anim Dataset

The MATLAB programming platform is used to carry out
experiments with the BOW variants. We initially adopt a
grid search approach to fine-tune the C parameter in order
to determine the best choice of C in the linear L2-SVM
algorithm. We finally used C = 16 for both kinds of local
feature descriptors (BOW and HOG-BOW) on our Wild-
Anim dataset. The results in Table I show the classification
performances obtained from the combination of L2-SVM with
local feature descriptors and the results of the deep CNN
approaches on our dataset. The results show that the BOW and
HOG-BOW methods perform much worse when compared to
some scratch and all fine-tuned versions of the deep CNN
techniques.

TABLE I
PERFORMANCES OF THE 16 DIFFERENT TECHNIQUES ON OUR DATASET

Methods Test Accuracy
OFT-GoogleNet (Top-1) 99.93±0.14
OFT-AlexNet (Top-1) 96.80±2.13
OS-GoogleNet (Top-1) 90.00±3.41
OS-AlexNet (Top-1) 82.40±4.92
RFT-GoogleNet (Top-1) 99.93±0.14
RFT-AlexNet (Top-1) 97.40±2.15
RS-GoogleNet (Top-1) 89.00±4.05
RS-AlexNet (Top-1) 83.40±5.84
BOW-Color with Max-Pooling 84.00±2.19
BOW-Color with Sum-Pooling 82.40±1.62
BOW-Gray with Max-Pooling 82.00±3.58
BOW-Gray with Sum-Pooling 81.40±2.24
HOG-BOW-Gray with Sum-Pooling 82.60±1.74
HOG-BOW-Gray with Max-Pooling 78.40±1.74
HOG-BOW-Color with Sum-Pooling 73.20±3.37
HOG-BOW-Color with Max-Pooling 63.60±3.01

Fig. 4. Performance Evaluation of Our Modified Versions of Deep CNN
Architectures and the BOW Variants on 5 Test Sets.

The performances on the five different test sets obtained
from the proposed deep CNN and the BOW variants applied
on our dataset are shown in Fig 4. This figure shows that the



results on different test sets are fairly consistent. It also shows
the quartile ranges between (Q1 to Q3). From the results in
Table I, it can be seen that both RFT-GoogleNet and OFT-
GoogleNet outperform every other method with a Top-1 loss
rate of 0.07%. Next to it, the best performances are obtained
with RFT-AlexNet and OFT-AlexNet with a Top-1 loss rate
of 2.6% and 3.2% respectively. These results uncover the high
level of performance. Although the ImageNet dataset contains
different images of animals as those present in our dataset,
the use of having more images and image labels significantly
contributes to the outstanding performances of the pre-trained
models of AlexNet and GoogleNet. The pre-trained models
provide a big advantage to the evaluation of the performances
on our dataset. One can therefore argue that the fairest results
are from the scratch versions of the GoogleNet architectures
which also outperform all the BOW methods.

The scratch versions for both architectures obtain a Top-
1 loss rate of 10% for OS-GoogleNet and 11% for RS-
GoogleNet, while the results on the scratch AlexNet archi-
tecture are much lower. It can be seen from Table I that
RFT-AlexNet outperforms the OFT-AlexNet by 0.6% and the
RS-AlexNet outperforms OS-AlexNet by 1%. However, the
OS-GoogleNet outperforms the RS-GoogleNet by 1%. These
differences are all not significant, however. We also expected a
performance improvement in the final accuracy of the reduced
versions, since the training set is not very large. It seems that
the used dropout regularization performs very well in this case
to prevent overfitting.

The most competitive local descriptor is BOW-color with
the max-pooling strategy which outperforms OS-AlexNet by
1.6%, RS-AlexNet by 0.6% and HOG-BOW-gray with sum-
pooling. This may be because there is a rich preservation of
color image information from our animal images with the
use of BOW-color using max-pooling. However, when we
compare the performance of the best BOW variant to the
CNN results, its performance is much worse. The second best
local descriptor is HOG-BOW-gray with sum-pooling which
is better than the other BOW variants.

The worst performing method of our comparison is HOG-
BOW-color for both kinds of spatial pooling strategies. HOG-
BOW-color obtains the lowest performance with a high com-
puting time between 23 < t ≤ 26 hours compared to CNN
methods that use less than t ≤ 2.1 hours for the overall
computation. HOG-BOW-color with both spatial approaches
is poor in handling high color resolution feature vectors and
requires lots of computing time. From all BOW results, we
can see that BOW outperforms the HOG-BOW technique.

Also, the modified CNN architectures are competitive when
compared to the original deep CNN architectures but require
less computing time. This is evident based on the significant
decrease in time by 27% and 26% for both the fine-tuned
and scratch versions of the AlexNet architectures. There is no
significant improvement in the computing time of the modified
version of the GoogleNet architecture compared to the original
GoogleNet architecture.

We further carried out an additional performance evaluation

using the reduced versions of the Deep CNN on another set of
1000 images from our original dataset. This time all the 1000
images were used as testing set with 10× the images present
in the earlier testing set. We ensure that the new testing set
is not overlapping with images present in the previous subset
that contains 1000 images from our original dataset. This is
achieved by performing a fixed split partitioning. In our later
experiments, the new testing set is fixed and it is evaluated
using 5 different train-validation models generated based on
the earlier experimental settings. We computed the mean of 5
runs from our test evaluation, which is reported in Table II.
The results are fairly consistent compared to the earlier results
reported in Table I. This implies that the reduced Deep CNN
architectures have an outstanding generalization.

TABLE II
PERFORMANCE EVALUATION OF REDUCED CNN ON ANOTHER TEST SET

Methods RFT-GoogleNet RFT-AlexNet RS-GoogleNet RS-AlexNet
Test Accuracy 99.38±0.44 96.72±0.21 89.74±0.85 84.82±1.16

VI. CONCLUSION

In this paper, we have compared many different image
recognition techniques on a novel dataset consisting of wild
animals. From the results, we conclude that the performance
of almost all CNN architectures is much better than the
performance of the different bag-of-words techniques. The
pre-trained GoogleNet and AlexNet architectures perform ex-
ceptionally well, but being trained on ImageNet that contains
the same classes, but different images, this does not come
to a big surprise. When we compare the performances of
GoogleNet and AlexNet when trained from scratch, then
GoogleNet performs much better. It is remarkable that the
recognition accuracy is still very high even for the used small
dataset.

We have also been able to demonstrate that the reduction
in the number of neurons in the last inception layer of the
GoogleNet and fully connected layers in AlexNet have shown
to be competitive when compared to the original GoogleNet
and AlexNet architectures. The merit of this approach is that
it can significantly decrease the computing power usage. In
addition to the contributions to deep learning, we report that
the effect of color on BOW with the max-pooling strategy is
relatively competitive compared to the AlexNet architecture
when trained from scratch. Finally, the BOW technique out-
performs the HOG-BOW method.

We recommend that future work should involve the appli-
cation of segmentation and data augmentation techniques on
our dataset. We also want to study the effect of different color
spaces using deep learning architectures.
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