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Abstract—Feature Selective Neuroevolution of Augmenting
Topologies (FS-NEAT) and Feature Deselective Neuroevolution
of Augmenting Topologies (FD-NEAT) are two popular methods
for optimizing the topology and the weights of Artificial Neu-
ral Networks (ANNs) simultaneously with performing feature
selection. However, no study exists that systematically inves-
tigates their performance on the exclusive-or (XOR) problem
with increasing complexity. Moreover, it is unknown whether
the choice of a different initial topology of the ANNs would
influence the performance of the two algorithms. For this reasons,
this paper investigates the performance of FD-NEAT and FS-
NEAT in terms of accuracy, number of generations required
for their convergence to the optimal solution and their ability of
selecting the relevant features in artificial datasets with irrelevant
features. The comparisons are performed based on hypothesis
tests (Wilcoxon rank sum test, p<0.05). The results show that
the choice of the initial topology can affect the performance of the
two algorithms, resulting in higher accuracy, faster convergence
and better feature selection abilities.

I. INTRODUCTION

NeuroEvolution of Augmenting Topologies (NEAT) [1] is a
method that uses genetic algorithms (GAs) for learning both
the connection weights and the topology of Artificial Neural
Networks (ANNs). Its successor, called Feature Selective
NEAT (FS-NEAT) [2], performs feature selection simultane-
ously with the optimization of the topology and the connectiv-
ity of the underlying nodes. Feature Deselective NEAT (FD-
NEAT) [3] is an alternative feature selection method that has
shown great promise for classification tasks [3]-[5], although
NEAT and FS-NEAT stem from reinforcement learning.

Although a study exists that compares FD-NEAT and FS-
NEAT on artificial datasets [3], to our knowledge this is the
first time that FD-NEAT and FS-NEAT are systematically
compared on the simple, non linear XOR problem with multi-
ple dimensions (5, 10 and 20 inputs). In addition, there are no
studies that systematically investigate the effect of modifying
the initial topologies on these algorithms. The goals of this
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paper are to compare the performance of FS-NEAT and FD-
NEAT in the XOR problem with irrelevant features as well as
to investigate the effect of changing the initial topologies on
the classification of the samples, their feature selection abilities
and the time required for convergence.

This paper is organized as follows. Section II describes the
state of the art and the methods that will be compared. Section
III presents the experimental setup required for the comparison
of the existing methods as well as the experiments carried
out for investigating the importance of the initial topology.
Section IV presents and discusses the acquired results and
finally section V concludes this paper.

II. METHODS
A. Neuroevolution

Neuroevolution (NE) is a learning method that uses GAs
to optimize the parameters of ANNs. NE methods are dis-
tinguished based on the type of encoding the ANNs into the
genotype (direct or indirect) and whether they optimize only
the connection weights or both the connection weights and the
topology of the ANNs. NE started as a method to evolve only
the connection weights of fixed topology ANNs [6]-[10]. Later
Topological and Weight Evolving Artificial Neural Networks
(TWEANN:S) [1], [11]-[13] optimized both the weights and
the topology of the underlying nodes. TWEANNSs offered
significant advantages, as finding the optimal topology of
an ANN requires time-consuming evaluations of potential
architectures. Especially, in complex problems, the number
of neurons and connections that are required scales with the
complexity of the problem [14] and thus the manual definition
of the optimal topology is even more difficult. Moreover, the
topology defines the size of the search space; selecting a fixed
topology smaller than the optimal means that the search is
performed in a lower dimensionality and thus the optimal
solution will not be found. On the other hand, selecting a
bigger topology than the optimal one implies that the search is
performed in an unnecessarily high dimensionality. However,
in TWEANNs the problem of identifying the right ANN



topology is tackled by their ability to automatically discover
the optimal architecture.

B. NEAT

NEAT [1] belongs to the TWEANN methods enabling the
learning of the structure of ANNS at the same time it optimizes
their connectivity weights. It was found to outperform other
fixed topology methods on benchmark reinforcement learning
tasks [15]. The proficiency of the method is attributed to
its three main innovations for which ablation studies in [1]
showed that each of the introduced components is crucial to
its performance. These three main features are described in
the following subsections.

1) Historical markings: NEAT encodes the ANNs with
a set of connection genes and a set of node genes. The
ANNSs’ structure is evolved over the generations by mutation
and crossover operations. The evolution starts minimally with
simple networks whose structure becomes gradually more
complicated over generations. A new gene is introduced in
the genome by structural mutations that add a new connection
or a new node in the network. The connection weights can also
be changed by mutation operators. To perform crossover, the
system must line up matching genes between the individuals
of the population. NEAT facilitates this with historical mark-
ings, i.e by assigning an incrementally increasing innovation
number when a new gene is added to the genome thus func-
tioning as a chronological parameter. The innovation number
is inherited by the offspring through crossover maintaining the
historical origin throughout evolution.

2) Speciation: The introduction of a new structure initially
reduces the fitness of a network. Without speciation the new
individual would compete with the entire population and there
is a high probability that it would be replaced before it is
given time to be optimized. NEAT protects topological inno-
vations through speciation by allowing individuals to compete
within their own niche instead of the entire population. The
population is divided into species based on their topological
similarity. This is measured based on a distance function
defined on the number of excess and disjoint genes and
the average differences of weights in the matching genes.
Excess, disjoint and matching genes are defined based on
the genome alignment that is facilitated with the historical
markings discussed in the previous subsection.

3) Search space minimization: NEAT starts the evolution
with a population of minimal structures, i.e. with a population
of ANNs with no hidden layers and fully connected input and
output layers with random weights. It gradually evolves more
complex networks by introducing new nodes and connections
through structural mutations. These topological innovations are
maintained only if they are found to increase the network’s
performance, i.e. NEAT tends to discover small networks
without unnecessary structure.

C. FS-NEAT

FS-NEAT [2] is a NE method that extends NEAT in
performing feature selection simultaneously with learning the

ANNs topology and weights. The selection of the right set
of features is performed without requiring human expertise
and without relying on metalearning or labeled data. It fol-
lows the three basic principles of NEAT described in section
II-B; historical markings, speciation and starting with minimal
structure with the exception that it starts the evolution even
more minimally than NEAT. The initial ANNSs’ topologies in
NEAT consist of an input and an output layer with all the
inputs directly connected to the output nodes. The evolvable
topologies in FS-NEAT start also from networks with no
hidden layers but only with one random input connected to one
random output node. In the course of generations more inputs
will be connected but only the connections that come from
the useful (relevant) inputs will tend to survive, performing in
this way implicit feature section.

D. FD-NEAT

FD-NEAT [3] is an extension to original NEAT, i.e. it
follows the basic principles of NEAT of historical markings,
speciation and minimal starting of the topology. It functions
similarly to FS-NEAT in terms of performing implicit feature
selection simultaneously with topology and weight learning.
The main difference between FS-NEAT and FD-NEAT lies
in the way that feature selection is performed. FD-NEAT
starts with the same minimal topologies as NEAT and drops
irrelevant inputs throughout the evolution. This is done by a
new mutation operator that functions only in the input layer.
Only the inputs that result in increasing the performance of the
individual tend to survive and in this way FD-NEAT performs
implicit feature selection.

III. EXPERIMENTAL SET-UP
A. Dataset

The artificial datasets that we construct are based on the
XOR dataset. The XOR problem is the simplest representative
of a non-linearly separable hypothesis space and constitutes
one of the first datasets a researcher would consider to verify
the success of their approach [1], [3], [16]. The original XOR
dataset consists of two inputs (known also as attributes or
features), one output and 4 samples with values 00, 01, 10 and
11 and outputs O, 1, 1, O respectively, i.e. the output is true
when an odd number of attributes is true and false otherwise.
In order to be able to investigate the feature selection and
classification abilities of FS-NEAT and FD-NEAT we need
to construct an artificial 2 out of k dataset (referring to as
2/k), where k € {5,10,20}. The 2 inputs will be the relevant
features and the remaining £ — 2 inputs will be assigned to
irrelevant booleans. In order to include these irrelevant features
and investigate the classification and feature selection abilities
of these machine learning methods, we need to increase the
number of samples to avoid imposing any bias, as the larger
the dataset the less probable it is that there is an underlying
correlation between the randomly generated data and the
output. The resulting dataset is a challenging task for a feature
selection algorithm, because it is constructed in such a way in



TABLE I
PARAMETERS FOR FS-NEAT AND FD-NEAT
Parameter Value | Meaning
Population Size 150 The number of individuals in the population
P,-(add node) 0.03 The probability that a new node will be
added
P (add link) 0.05 The probability that a new connection will
be added
P, (mutate weight) 0.9 The probability that the weight of a connec-

tion will change

P, (remove input connection) | 0.1 The probability that connections from the

input layer will be removed (in FD-NEAT)

Coefficient 1 1.0 Compatibility coefficient of excess genes
Coefficient 2 1.0 Compatibility coefficient of disjoint genes
Coefficient 3 0.4 Compatibility coefficient of average weight
difference
Compatibility threshold 3.0 Compatibility threshold for speciation
250 The max number of allowed generations in:

the 2/5 2/10 XOR
450 the 2/20 XOR

Crossover percentage 0.8

Max generations

The portion of individuals in the population
to participate in crossover

P (crossover interspecies) 0.001 The probability that the two parents of
crossover will belong to different species
P;-(multipoint crossover) 0.6 The 1-P, that the weights of the offspring

are the average weights of the parents

order each of its individual attributes to be equally informative
for predicting the output.

B. Experiments

The purpose of the experiments described in this section is
to compare the performance of FD-NEAT and FS-NEAT in
different settings of initial topologies. Each experiment is run
as ten fold cross validation, it is repeated for ten times and
the results are averaged over the independent runs.

1) Genetic Algorithms Settings: The fitness function of FD-
NEAT and FS-NEAT is the same as the one used in NEAT
at the XOR problem [1]. Its definition is based on the error
between the output of the ANN and the correct output of the
training set and is shown in equation 1.

N
Fitness:(N—Z|Oi—Ti\)2 (D

i=1

where N is the size of the training dataset, O; the output of
the ANN on the i*" pattern of the training set and 7} the real
output that corresponds to the i*" pattern of the training set.
The sum of the error between the network’s output and the real
output is subtracted from the number of training samples N
so that higher fitness would indicate better network structure.
Finally, this difference is squared in order for the fitness to
get proportionally a higher value as the network approaches
the solution. The evolution in FD-NEAT and FS-NEAT stops
when the fitness gets its highest value, i.e. when all the input
patterns of the training set are classified correctly or when the
maximum allowed number of generations is reached.

The parameters used for the setting of FD-NEAT and FS-
NEAT are presented in Table I.

2) Measures for evaluation of the performance : The
performance of FD-NEAT and FS-NEAT is evaluated based
on the following criteria:

o Accuracy on the test set: it measures how successful the
method is in finding the right relationship between input
and output.

o Number of generations: it measures how fast the algo-
rithm converges to the solution.

For the evaluation of the feature selection abilities of each
method we employ the measures of frequency and sum of
absolute weights that were also employed in [3] and the
thresholded frequency described below.

o Frequency: the fraction of individuals in the population
that include the correct set of features. The relevant
features are expected to be selected with higher fre-
quency than the irrelevant ones. For the calculation of
this measure, every input that has a connection initiating
from it with a weight of absolute value greater than O is
considered selected.

o Thresholded frequency: the fraction of individuals in the
population that include the correct set of features. For this
measure an input is selected only if the absolute weight
that initiates from it is greater than a predefined threshold.
Here we choose a threshold equal to 0.5. The value
of this threshold is found experimentally by examining
the weights of the connections of the ANNs that are
learned by the two algorithms. The difference between
the frequency of the relevant inputs and the frequency of
irrelevant ones is expected to be higher, as the successful
algorithms are expected to assign higher weights to the
relevant inputs compared to the irrelevant ones.

o Sum of absolute weights: the summation of the absolute
weights of the connections that initiate from each input
node. This measure is calculated on the best network of
the final population and not on the whole population like
the (un)thresholded frequency. The connections that ini-
tiate from the relevant inputs are expected to have higher
weights compared to the connections of the irrelevant
inputs, thus their absolute sum is expected to be higher.

The algorithms can be considered as having a feature
selection ability when there is a statistical difference between
the values of frequency or of sum of absolute weights between
relevant and irrelevant inputs.

3) Comparison of conventional FD-NEAT and FS-NEAT:
The purpose of the initial experiments is to investigate the
behaviour of conventional FD-NEAT and FS-NEAT in the 2/5
XOR problem. We repeat the experiments for an XOR dataset
of increasing number of samples from 4 to 100 with a step of
4 and then from 100 to 1000 with a step of 100. From these
experiments we want to identify the ideal number of samples
for which the accuracy on the test set is higher, the number of
generations is lower and the frequency of the relevant features
is higher than the frequency of the irrelevant ones.

4) Investigation of the importance of the initial topology:
Using this selected number of samples we perform the second
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Fig. 1. Results of the comparison of conventional FD-NEAT and FS-NEAT
for increasing number of samples in the 2/5 XOR problem

set of experiments in order to investigate the importance of the
initial topology. The choice of the starting topology is very
important and according to our knowledge it has not been
studied in a systematic manner. As it was already mentioned,
both FS-NEAT and FD-NEAT start minimally. However, all
non-trivial, real-life problems are characterized by a non-linear
decision boundary and thus require at least one additional
layer. This means that the network that needs to be evolved
will have at least one additional hidden layer. For this purpose,
we include one hidden layer in the initial topology and we
vary the number of hidden nodes from 1 to 10, following an
approach used with NEAT in [17].

The goals of these experiments are: 1) We want to ex-
amine the influence of the choice of the initial topology on
the performance of FD-NEAT and FS-NEAT. Towards this
purpose, we perform hypothesis tests (Wilcoxon rank sum test,
p<0.05) to investigate if there is a statistical difference for
the values of accuracy and number of generations required
for convergence among the topologies of different number
of hidden nodes, i.e. we want to examine if there is a
good topology for starting the evolution that results in better
performing networks compared to starting the evolution with
a different topological setting. 2) We want to examine the
feature selection ability of each of the two algorithms for
each different chosen initial topology. This means that we
perform hypothesis tests (Wilcoxon rank sum test, p<0.05)
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Fig. 2. Results of accuracy for FD-NEAT and FS-NEAT for the 2/5, 2/10
and 2/20 XOR problems

to investigate if there is a statistical difference between the
relevant and irrelevant features for the values of frequency
(unthresholded and thresholded) and of the sum of absolute
weights. 3) We want to compare the performance of FD-NEAT
and FS-NEAT for problems of increasing complexity, so we
perform hypothesis tests (Wilcoxon rank sum test, p<0.05) to
examine if there is a statistical difference in the performance
between the two algorithms. This comparison concerns the
values of all the measures (accuracy, number of generations,
(un)thresholded frequency and sum of absolute weights).

IV. RESULTS AND DISCUSSION

The results of the experiments shown in Figures 1-5 show
the mean values and the standard deviations calculated over
the independent runs.

A. Results on comparing conventional FD-NEAT, FS-NEAT

From the results shown in Figure 1, it is observed that the
best accuracy on the test set (mean=1, std=0) is accomplished
for FD-NEAT for samples=400, 500 and 700 and for FS-
NEAT for samples=700. By taking into account the number
of generations and the frequency of selected features in these
sample values, we choose the sample size=700 to perform
the further experiments. For this sample size the number of
generations required for convergence is 68.08+9.79 for FD-
NEAT and 78.02£11.76 for FS-NEAT.

B. Results on the investigation of the initial topology

1) Accuracy: In Figure 2 we present the results of accuracy
for both FD-NEAT and FS-NEAT for the 2 out 5, 10 and 20
XOR problem. For the 2/5 XOR problem FD-NEAT and FS-
NEAT are able to solve the problem with accuracy (1£0) for
initial topologies of 0, 9 and 10 hidden nodes and O hidden
nodes respectively. Comparing FD-NEAT and FS-NEAT, FD-
NEAT seems to perform better but a statistical difference
only exists for 8-10 initial hidden nodes. For the 2/10 XOR
problem, FD-NEAT performs better for initial topologies of
0 and 1 hidden nodes (0.8740.06). For FS-NEAT the worst
topology is the one of 9 initial hidden nodes, whereas the
topology of 6 hidden nodes seems to bring better results.
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Comparing FD-NEAT and FS-NEAT, we can observe that FS-
NEAT tends to solve the problem with higher accuracy than
FD-NEAT, but the two algorithms are statistically different
only for the initial topology of 6 hidden nodes. Finally, at the
2/20 XOR problem, FD-NEAT performs better for an initial
topology of 0 hidden nodes (0.801+0.03), while this topology
is the worst for FS-NEAT (0.7240.03). For FS-NEAT, the
topologies of 10 hidden nodes are better (0.79+0.06) than
most of the other topologies. Comparing the performance of
the two algorithms, FS-NEAT is better than FD-NEAT for
topologies of 2 to 10 initial hidden nodes.

From the above results we observe that the ability of the
algorithms to solve the problem decreases as the complexity of
the problem increases, e.g. the accuracies in the 2/20 problem
are much lower than the accuracies in the 2/10 which are lower
than the ones of the 2/5. Overall, FS-NEAT seems to perform
better than FD-NEAT for most of the chosen initial topologies.
FD-NEAT shows its best performance for an initial topology
of 0 hidden nodes. On the other hand, a conclusion on FS-
NEAT’s optimal size of the hidden layer cannot be drawn as
it depends on the problem at hand, e.g. in the 2/10 problem
a large hidden layer yields the worst performance whereas in
the 2/20 problem it results in a good one.

2) Number of generations: Figure 3 shows the number of
generations required by FD-NEAT and FS-NEAT to converge
to the solution, or the number of generations that they were
allowed to evolve. At the 2/5 XOR problem, FD-NEAT
converges in statistically more generations for topologies of
few hidden nodes (0-3), whereas FS-NEAT requires more
generations for bigger initial topologies (8-10 hidden nodes).
Comparing the two algorithms, FD-NEAT requires fewer
generations than FS-NEAT. As the number of hidden nodes
in the initial topology increases, the number of generations
required for the convergence of FS-NEAT increases whereas
the number of generations required for FD-NEAT remains
almost the same, or slightly decreases. Indeed, a hypothesis
test confirms that FS-NEAT converges in more generations
than FD-NEAT for an initial topology of 5-10 hidden nodes.
At the 2/10 XOR problem, as the initial number of hidden
nodes increases, FD-NEAT is not able to converge as it reaches

the limit of 250 generations. In fact, the topologies of 0 and 1
initial hidden nodes are statistically better. On the other hand,
FS-NEAT is able to converge independently of the choice of
the initial topology. In general, it converges in statistically
fewer generations than FD-NEAT for almost all the chosen
initial topologies (2-10 hidden nodes). Finally, at the 2/20
inputs problem, the topology of 0 hidden nodes is the best for
FD-NEAT and the worst for FS-NEAT. In general, FD-NEAT
cannot converge within the predefined limit of 450 generations,
whereas FS-NEAT converges for most topologies.

From the above analysis we can observe that the harder the
problem, the more generations are required for convergence
to the optimal solution. For most of the topologies in the 2/10
and 2/20 inputs problems, FD-NEAT was not able to converge
within the predefined maximum number of generations. This
can also explain why the accuracy of FD-NEAT in these cases
is lower than the accuracy of FS-NEAT (Figure 2).

3) Frequency: In Figure 4 we present the results of thresh-
olded and unthresholded frequency. At the 2/5 XOR problem
(Figures 4a, 4d, 4g, 4j), FD-NEAT’s ability in distinguishing
between relevant and irrelevant inputs is better for topologies
of 1-2 hidden nodes, while the topologies of 0 and 9 hidden
nodes are the worst for FS-NEAT. In the 2/10 inputs problem
(Figures 4b, 4e, 4h, 4k) the initial topology which results
in higher difference between relevant and irrelevant features
is the one of 1 hidden nodes for FD-NEAT, whereas the
topologies of few hidden nodes (0-2 nodes) are the worst
for FS-NEAT and the topology of 6 hidden nodes seems to
provide better results. At the 2/20 inputs problem (Figures 4c,
4f, 41, 41), FD-NEAT performs better for topologies of 0 and 1
hidden nodes (Figures 4c, 4i). For FS-NEAT different results
are obtained between frequency and thresholded frequencys;
on the one hand by taking into account the results of the
unthresholded frequency (Figure 4f), the topology of 10 hidden
nodes yields better results than most other topologies and on
the other hand topologies of few hidden nodes (0-2) yield
better results (Figure 41).

From the results in Figures 4a, 4b, 4c, 4g, 4h, 4i we observe
that as the number of hidden nodes increases, FD-NEAT is
not able any more to distinguish between the relevant and the
irrelevant inputs, as the frequency of all the inputs converges
to 1 (i.e. all the inputs are selected by all the networks in the
final population). This is not the case for FS-NEAT that has a
better ability in distinguishing between relevant and irrelevant
inputs, as the distance between the frequency of relevant and
irrelevant inputs indicates (Figures 4d, 4e 4f, 4j, 4k, 41). Also,
it is observed that the best topology for FD-NEAT for initiating
its networks’ evolution would be the one of few hidden nodes
(e.g. 0 and 1 hidden nodes), while it is found again that
these are the worst topologies for FS-NEAT. Again, a clear
conclusion cannot be drawn for FS-NEAT’s initial topology
as it depends on the complexity of the problem. Comparing
FD-NEAT and FS-NEAT, hypothesis tests show that FS-NEAT
has a better ability than FD-NEAT in distinguishing between
relevant and irrelevant inputs independently of the choice of
the initial topology for all the three problems. Although the
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Fig. 5. Results of the sum of absolute weights of FD-NEAT and FS-NEAT with initial topology of one hidden layer and increasing number of hidden nodes
for the 2/5, 2/10 and 2/20 XOR problems

details on the graphs may not be easily observed, we can notice  of the initial topology.
the difference between relevant and irrelevant inputs. Also,
the standard deviation of the frequency of selecting irrelevant
inputs is higher than the standard deviation of the frequency

of selecting the relevant ones, which shows the consistency of

From the graphs of the sum of absolute weights (Figure 5)
we can observe that as the number of hidden nodes increases
FD-NEAT has the tendency to assign higher values to all

the two algorithms in finding the relevant features.

4) Sum of absolute weights: In Figure 5 we present the
results of the sum of absolute weights. At the 2/5 problem,
the difference between the relevant and irrelevant inputs is the
worst for an initial topology of 0 hidden nodes for FD-NEAT
and 8-10 hidden nodes for FS-NEAT. Comparing FD-NEAT
and FS-NEAT, FD-NEAT has a statistically higher difference
between relevant and irrelevant inputs than FS-NEAT for 7-
10 hidden nodes. At the 2/10 XOR problem (Figures 5b,
Se), the topologies of 0 hidden nodes for FD-NEAT and
of 0 and 1 nodes for FS-NEAT are statistically better than
most of the other topologies. For FS-NEAT the worst initial
topology is the one of 9 nodes. In comparison, FD-NEAT is
more able than FS-NEAT to distinguish between relevant and
irrelevant features for most of the topologies. Finally, at the
2/20 inputs problem (Figures 5c, 5f), FD-NEAT’s ability in
distinguishing between relevant and irrelevant inputs is better
for initial topologies of 8-10 hidden nodes while FS-NEAT’s
for 0 hidden nodes. In comparison, FD-NEAT performs better
feature selection than FS-NEAT independently of the choice

the inputs (relevant and irrelevant ones) (Figures Sa, 5b, 5c),
whereas FS-NEAT assigns higher weights to the relevant
inputs compared to the irrelevant ones (Figures 5d, Se, 5f). FD-
NEAT seems to have a better feature selection ability for an
initial big hidden layer and FS-NEAT for an initial small hid-
den layer, but taking into account that for these topologies the
accuracy is smaller and the number of generations is higher,
we tend not to accept this conclusion. Also, by comparing
the two algorithms, FD-NEAT is found to outperform FS-
NEAT in feature selection which is a result contradictory to
the conclusion drawn from the analysis of the frequencies.
These two remarks imply that one should not solely rely on
one of these measures in order to identify the feature selection
ability of an algorithm. In order to choose the more appropriate
measure, we should take into account that the frequency shows
the fraction of the population that has selected the relevant
inputs. It is assumed that in the course of the generations, all
the networks of the population should converge to the correct
solution and thus it indicates how homogeneous the population
is in selecting the relevant inputs. On the other hand, the sum
of absolute weights concerns the weights that are assigned to



the inputs by the best network of the population. If we take
into account that the goal of FS-NEAT and FD-NEAT is to
provide an ANN with the right topology, then this measure
is more appropriate for investigating the feature selection
ability of the algorithm as the best network is expected to
assign higher weights to the connections that initiate from the
relevant inputs compared to the ones initiating from irrelevant.
Also, the use of this measure does not require the a priori
definition of any threshold above which the inputs should be
considered selected. In this paper, the selection of the threshold
was performed based on analysis of the range of weights of
the relevant inputs and the irrelevant ones. This requires the
a priori knowledge of the correct set of features, which is
something that does not happen in real datasets. Therefore, in
real applications, the definition of such a threshold is very
important, as its value is the border between selecting the
correct set of relevant inputs and leaving them out.

V. CONCLUSION

The experiments of this paper, although limited to one
artificial dataset with restricted complexity, indicate that the
the choice of an initial topology plays an important role for the
performance of FD-NEAT and FS-NEAT. Although a general
conclusion cannot be drawn on the exact number of hidden
nodes that yield the best performance, we observe that overall,
FD-NEAT seems to have a better performance for initial
topologies of small number of hidden nodes (0-3), whereas FS-
NEAT performs worse for an initial topology of zero hidden
nodes. This means that FS-NEAT performs better when the
networks of the initial population have one hidden layer with
at least one hidden node. Finally, FS-NEAT performed better
than FD-NEAT in most cases in terms of accuracy, number
of generations and ability of selecting features. This can be
explained by the different mechanisms for feature selection in
the algorithms. FS-NEAT starts with one selected input and it
gradually adds inputs, whereas FD-NEAT starts with all the
inputs selected and it gradually removes inputs. In a dataset
where the portion of relevant features is less than the irrelevant
ones it was expected that FS-NEAT would outperform FD-
NEAT because it would be easier to select these relevant
ones compared to FD-NEAT that would have to deselect the
irrelevant ones. However, it should be noted that none of these
algorithms knows a priori the number of relevant and irrelevant
features, which is something that will happen in an application
to real world datasets, where the algorithms will be called to
select the relevant inputs.

In future work we are going to extend the set of experiments
on problems of increased complexity by employing well-
known benchmark datasets, such as the spiral and surface
plots, the Monk’s problems [18] and others. Also, we are going
to investigate the behaviour of these algorithms on datasets
with more features and also by increasing the ratio between
relevant and irrelevant features to approach more realistic
problems.
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