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Abstract—In most real-world optimization problems, it is
very difficult to obtain accurate analytical objective functions
derived from process mechanisms. Instead, only approximate
objective functions can be built based on sparse historical data.
Performance optimization of fused magnesium furnaces is a
typical small data-driven optimization problem, where only very
limited and noisy data is available. A surrogate-assisted data-
driven evolutionary algorithm is proposed in this paper for
off-line data-driven optimization of furnaces performance in
magnesia production. The multiobjective evolutionary algorithm
is assisted by Gaussian process models to search for Pareto
optimal solutions. To generate new data samples in surrogate
management, a low-order polynomial model is constructed as
an approximate mechanism model that can be treated as the
real fitness function. To verify the effectiveness of the proposed
Gaussian process assisted evolutionary algorithm, it is first tested
on nine benchmark problems in comparison with a popular
multi-objective evolutionary algorithm and a surrogate-assisted
evolutionary algorithm. The algorithm is then applied to a real-
world fused magnesium furnaces optimization problem.

I. INTRODUCTION

In many real-world complex optimization problems, it is
impractical to build accurate physical or mechanistic models
for the objective function, preventing such problems being
solved by traditional model-based optimization methods, such
as the gradient descent method, Lagrangian relaxation, or
dynamic programming. For such optimization problems, data-
driven approaches are attracting increasing attention.

Evolutionary algorithms (EAs) have widely been applied
to highly nonlinear and uncertain optimization problems in
the past decades because of their global search capability
by simulating the main mechanisms in natural selection and
evolution. EAs have found to be well suited for multi-objective
optimization as they are population based search and are
considered to be suited for data-driven optimization as they do
not require derivative information of the objective functions.

Multi-objective optimization problems in general have the
following formulation:

min f(x) = (f1(x), f2(x), ..., fM (x))

s.t. x ∈ D
(1)

where D ⊆ RN is the feasible space of decision variables, and
M , N are the dimensions of objectives and decision vectors.
Only conflicting objectives are taken into account, and thus
there exist multiple Pareto optimal solutions rather than one

single global optimum as in single-objective optimization. The
Pareto optimal solutions are usually known as Pareto set in
decision space and Pareto front in objective space. Numerous
multi-objective evolutionary algorithms (MOEAs) have been
developed, which roughly fall into three categories, namely,
the Pareto dominance based, the decomposition based and the
performance indicator based approaches. As a most popular
dominance based approach, the elitist nondominated sorting
genetic algorithm II (NSGA-II) [1] has been widely employed
[2-4].

Most data-driven MOEAs adopt surrogates as a partial
substitute for the true objective function. Fitness evaluations
(FEs) using the original objective function are also known
as expensive FEs because they cost plenty of computational
resources or can be obtained only by experiment [5-8]. Many
machine learning techniques can be made use of to build
surrogates [9-12]. Gaussian process model (GPM) that can
predict the mean value and a confidence interval is considered
as one of the most effective surrogate methods. Taking both
the output optimality and model accuracy into account, sev-
eral metrics tailored for GPMs have been proposed, such as
the expected improvement, probability of improvement, and
lower confidence bound [13-15]. Theses metrics have been
demonstrated to be able to assist the evolutionary algorithm
to quickly find optimal solutions using a limited number of
expensive FEs.

Data-driven surrogate-assisted MOEAs can be roughly di-
vided into two types [16]. In the first type, MOEAs use data-
driven surrogates and expensive FE methods simultaneously.
As suggested in [17], three main methods for combining surro-
gates and expensive FEs have been proposed, which are known
as individual-based, generation-based and population-based. It
is also pointed out that a surrogate-assisted EA may converge
to a false optimum introduced by the surrogate, therefore it is
necessary to combine the surrogate and expensive FEs prop-
erly, which is called evolution control or model management
[18]. Usually, after new expensive FEs are conducted, the sur-
rogates will be updated to improve its approximation accuracy,
which is widely adopted in surrogate-assisted evolutionary
optimization [7], [8], [13]. These approaches are called on-
line data-driven surrogate-assisted evolutionary optimization
[16].

The second type of data-driven optimization can use sur-



rogates only in optimization phase due to the infeasibility of
performing new expensive FEs during the optimization. This
type of data-driven optimization is known as off-line data-
driven optimization [16], which will be extremely challenging
in case only limited historical data is available.

The performance optimization of fused magnesium furnaces
represents a typical off-line data-driven problem. This opti-
mization is particularly challenging for long-cycle magnesia
production since only small data is available for optimiza-
tion. To the best of our knowledge, no dedicated algorithms
have been proposed for off-line data-driven optimization with
limited data. To address such problems, this paper suggests
to build low-order surrogate models based on the sparse and
noisy historical data, which will be less vulnerable to curse
of dimension and over-fitting. Then a data-driven surrogate-
assisted evolutionary algorithm is used, in which new samples
can be generated from the low-order surrogates that replace
expensive FEs that are not available in off-line data-driven
optimization.

The rest of the paper is organized as follows. Section
II introduces the fundamentals for the furnaces performance
optimization problem. Details of the surrogate-assisted evo-
lutionary multi-objective algorithm are presented in Section
III, including NSGA-II and GPM so that the paper is self-
contained. Numerical experiments are conducted and results
are presented in Section IV. Section V presents the real-world
furnaces optimization problem using the proposed approach.
Section VI summarizes the paper.

II. FURNACES PERFORMANCE OPTIMIZATION PROBLEM

Magnesia is a kind of highly purified MgO crystal, which
has high melting points, oxidation resistance, structural in-
tegrity, and good insulation. Magnesia is widely used in met-
allurgy, chemical industry and construction. In the submerged
arc furnace, caustic calcined magnesia will be heated to above
2800 degrees Celsius, and final magnesia product can be
obtained after natural cooling and crystallization of melt [19],
[20].

The furnaces manufacture process is illustrated in Fig.
1. The whole process takes about 10 hours, which can be
roughly divided into three stages, namely, starting, smelting
and ending. In the smelting stage, certain amount of caustic
calcined magnesia powder will be added into furnaces every
8-12 minutes and each furnace makes a frequent transforma-
tion within different operation conditions. Many electric arcs
will be developed among three-phase electrodes and furnace
burden, and electric energy is continuously converted into
thermal energy. A molten pool is formed and the pool surface
is gradually raised along with charging and fusion of burden.
When the surface approaches to furnace mouth, power supply
is cut off and one production batch is over.

Nowadays human users heuristically set the target value of
electricity consumption for a ton of magnesia (ECT), then
the operational control and optimization system decides the
positive-negative rotating of motors to adjust the electrode
height on the basis of real current, ECT, material ingredient

and granularity, which is beneficial to stabilize the current
[21]. The overall performance indices of furnaces are total
output, high-quality rate and electricity consumption, whose
optimization can be realized by suitable ECT setpoint of
every furnace. There are a few reasons why the relationship
between ECT and performance indices cannot be made clear
by theoretical analysis. Above all, a blend of solid, liquid and
gas in the high temperature leads to the failure of various
sensors. In addition, magnesia production is composed of
many physical and chemical processes such as fusing, impurity
precipitation and crystallization. Finally dynamics of control
loops are also complex [22], [23]. Thus historical production
data is applied to build function models, and the performance
optimization of furnaces is an off-line problem.

The crystal whose MgO content is more than 98% is
regarded as of high-quality. The goal of furnaces performance
optimization is to reduce the total energy consumption E while
increasing the total output Y and maintaining a high-quality
rate Q. If the ECT set point and performance indices of the
i-th furnace are denoted as ri, yi, qi, and ei, and there are N
furnaces in total, the optimization problem can be formulated
as follows:

min−Y,min−Q,minE

s.t.

Y =

N∑
i=1

yi, Q =

∑N
i=1 yi × qi∑N

i=1 yi
, E =

N∑
i=1

ei,

yi = h1,i(ri), qi = h2,i(ri), ei = h3,i(ri),

ri,min ≤ ri ≤ ri,max, i = 1, 2, ..., N.

(2)

where h1,i, h2,i and h3,i denote the relationship between ECT
and each performance index of the i-th furnace, respectively.
Note that a prior information that the performance indices of
the i-th furnace have nothing to do with ECT set points of the
other furnaces is applied to the above equation.

III. PROPOSED ALGORITHM

As mentioned in Introduction, this work aims to propose
a surrogate-assisted data-driven optimization method where
no analytic objective functions are available for accurate
calculation of the objective functions and only a limited
amount of historical data is available. This type of data-
driven optimization problems are extremely challenging, as it
is very hard to perform effective model management without
new accurate fitness evaluations (FEs). To address this diffi-
culty, one way is to derive simplified analytical models for
calculating the objective functions so that new samples can
be obtained for surrogate management. In case where such
simplified analytical models are unavailable, like the furnaces
performance optimization problem to be solved in this work,
we propose to build a low-order model based on the historical
production data for model management.

This work adopts the elitist non-dominated sorting genetic
algorithm (NSGA-II) [1] as the basic evolutionary optimiza-
tion algorithm and the Gaussian process model (GPM) as the
surrogate model. A brief description of the key component
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Fig. 1. Diagram of the production process of fused magnesium furnaces.

of NSGA-II is shown in Algorithm 1. The main steps for
GPM are listed in Algorithm 2. Note that matrix inversion
operations are needed in GPM, where the matrix dimension is
equal to the size of the training set. Therefore, use of Gaussian
processes for surrogate-assisted evolutionary optimization is
very computationally intensive, in particular when the number
of training data is large and the GPM needs to be updated in
each generation.

Algorithm 1 The NSGA-II Algorithm for Multi-objective
Optimization
Input: Population size Npop and maximum iterations T ;
Output: Final population PT ;
1: Randomly initialize a population P0 of size Npop;
2: Assign fitness for P0 based on nondominated sorting and

crowding distance;
3: for t = 1 to T do
4: Generate parent population from Pt by tournament

selection;
5: Simulated binary crossover and polynomial mutation

operate on parent to generate offspring population;
6: Intermediate population is formed by the combination

of parent and offspring, and then fitness is assigned;
7: Individuals of Pt+1 are selected from intermediate

population;
8: end for

A Gaussian process assisted NSGA-II, termed NSGA-II GP
for short, is proposed in this work, where a low-order model
constructed using small noisy data is adopted to replace the ac-
curate fitness evaluation in surrogate management. The details

Algorithm 2 Gaussian Process Modelling
Input: Training data in parameter space X =

[x1, x2, ..., xN1]T and in objective space
F = [f1, f2, ..., fN1]T ;
A new untested point xnew;

1: Choose a correlation function c which reflects the relation-
ship between objective errors through parameter distance;

2: X is used to calculate correlation matrix,whose element
is c(xn1 , xn2), n1, n2 = 1, ..., N1;

3: Hyperparameters in function c are estimated by maximiz-
ing the likelihood of the sample;

4: A new correlation matrix between xnew and each of X is
calculated based on the identified hyperparameters;

5: Predicted mean and variance value f̂(xnew) and s2(xnew)
are output.

of the proposed algorithm are described in the following.

A. Gaussian Process Assisted NSGA-II

EIj(x) =

(fjmin − f̂j(x))Φ(
fjmin − f̂j(x)

s2j (x)
) + s2j (x)ϕ(

fjmin − f̂j(x)

s2j (x)
)

(3)
Expected improvement (EI) [13] considers both optimal and
most uncertain solutions predicted by the surrogate as the most
promising ones. Suppose the objective value for the training
data used in the j-th (j = 1, ...,M ) GPM is Fj , of which the
minimum is fjmin. f̂j(x) and s2j (x) are the predicted mean
and variance of j-th GPM at point x, then the corresponding
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Fig. 2. Flowchart of NSGA-II GP.

EI value can be calculated as expression (3), where Φ and ϕ
represent standard normal distribution and probability density
function, respectively.

NSGA-II GP iterates to optimize EIs. Fig. 2 plots the flow
chart of the algorithm and its main steps are as follows:
Step 1 Limited and noisy historical data is collected.
Step 2 Low-order models building. Second-order polynomial
models mL are built based on the historical data, and these
models are applied to approximate the accurate FEs later.
Step 3 Stopping criterion and solutions verification. If the
maximal FEs of mL have been reached, solutions in the
historical data set are verified, otherwise go on to Step 4.
Step 4 Data screening. Fuzzy c-means clustering is applied to
screen L data from the historical set. If the number of historical
data is less than the limit L, all are used to build GPM.
Step 5 GPMs building. A GPM mG for each objective is built
using the selected data, and the corresponding EI metrics are
defined.
Step 6 Optimization. Use NSGA-II assisted by GPMs to find
solutions maximizing EIs of all objectives.
Step 7 Solutions selection and evaluation. K are chosen from
solutions in the last step by k-means clustering, then these
solutions are re-evaluated by low-order models mL built in
Step 2.
Step 8 Update of historical data set. The K solutions are
combined with original historical data. Go to Step 3 to a new
round of optimization.

NSGA-II GP will be applied to the real-world furnaces
performance optimization problem, after its effectiveness is
verified on standard test problems. It is important to note
that there are different treatments in the first three steps of

the algorithm when it is applied to two kinds of problems
above. First of all, decision variables of historical data in
standard tests are generated by Latin hypercube sampling, then
real fitness functions are used to evaluate these points, and
stochastic noise is added to the function values to generate
outputs of the historical data. Since data collected from the
actual magnesia production process are originally noisy, they
can be directly applied to build the low-order models, but the
decision variables of these data are not distributed as uniformly
as those of tests. In the next place, a low-order model is
built for each objective in standard tests. However, there are
M ×N low-order models in the furnaces problem, where M
and N represent the number of overall performance indices
and furnaces, respectively. The reason is that the performance
indices of a furnace are only related to ECT setpoint of itself,
and this prior information made use of in low-order models
building is partly beneficial to accurate approximation of un-
known analytic functions of furnaces performance. Eventually,
solutions verification in standard tests is firstly re-evaluating all
data in historical set by real functions, then the non-dominated
solutions are regarded as Pareto front approximation. While
the non-dominated performance indices of furnaces in the
historical data set are directly output as optimal solutions as
real furnaces performance functions are unavailable.

Some details of NSGA-II GP are described following. In
Step 1 the stochastic noise added to a j-th (j = 1, ...,M )
function value is generated according to

noise = (fjmax − fjmin)× rand (4)

where fjmax and fjmin are the maximum and minimum of
real function values in the j-th objective respectively, and rand
is a random number in the domain of [-0.1,0.1]. Parameters of
second-order models in Step 2 can be identified by multiple
linear regression. Limit L in Step 4 is to restict the time
taken to build GPM as the evolution proceeds, and the details
of fuzzy c-means clustering can be found in [8]. To ensure
the diversity of the training data, solutions different from the
training data are chosen with priority in Step 7. A threshold
based on the Euclidean distance is defined to indicate how
different two solutions are in the decision space, which is set to
10−5 in this work. Then the solutions are further screened by
the k-means clustering in the search space. It should be made
clear that GPMs building is based on noisy data and the data
re-evaluated by low-order models, so GPMs do not entirely
approximate the low-order models. The number of GPM in
all problems is equal to the number of problem objectives.

IV. NUMERICAL EXPERIMENTS

In this section, the performance of NSGA-II GP is com-
pared with that of the original NSGA-II as well as ParEGO,
one popular surrogate-assisted multi-objective evolutionary
algorithm [7]. Benchmark problems selected from three widely
used test suites, ZDT [24], DTLZ [25] and WFG [26] are used
for comparison, which are illustrated in Table I. Three different
cases for all test functions are considered, where the number of
decision variables is set to 5(6), 10, and 16, respectively. Note



TABLE I
BENCHMARK PROBLEMS

Problems
Objective

number M

Variable

dimension N

The range of

x or z
Objective functions Optima Characters

DTLZ1 3 5,10,16 [0,1]

f1(x) = 0.5x1x2(1 + g(x))
f2(x) = 0.5x1(1− x2)(1 + g(x))
f3(x) = 0.5(1− x1)(1 + g(x))
g(x) = 100[N −M + 1+∑N
i=3(xi − 0.5)2 − cos(20π(xi − 0.5))]

x1,2 ∈ [0, 1],

xi = 0.5,

i = 3, ..., N.

multifrontal

DTLZ4 3 5,10,16 [0,1]

f1(x) = (1 + g(x)) cos(xα1 π/2) cos(x
α
2 π/2)

f2(x) = (1 + g(x)) cos(xα1 π/2) sin(x
α
2 π/2)

f3(x) = (1 + g(x)) sin(xα1 π/2)
g(x) =

∑N
i=3(xi − 0.5)2

x1,2 ∈ [0, 1],

xi = 0.5,

i = 3, ..., N.

biased

DTLZ5 3 5,10,16 [0,1]

f1(x) = (1 + g(x)) cos(θ1π/2) cos(θ2π/2)
f2(x) = (1 + g(x)) cos(θ1π/2) sin(θ2π/2)
f3(x) = (1 + g(x)) sin(θ1π/2)
θi =

1+2g(x)xi
2(1+g(x)) , i = 2, ...,M − 1, the rest θi = xi

g(x) =
∑N
i=3(xi − 0.5)2

x1,2 ∈ [0, 1],

xi = 0.5,

i = 3, ..., N.

degenerate

ZDT3 2 5,10,16 [0,1]

f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x) −

x1
g(x) sin(10πx1)]

g(x) = 1 + 9(
∑N
i=2 xi)/(N − 1)

x1 ∈ [0, 1],

xi = 0,

i = 2, ..., N.

disconnected

ZDT6 2 5,10,16 [0,1]

f1(x) = 1− exp(−4x1) sin6(6πx1)
f2(x) = g(x)[1− (f1(x)/g(x))2]
g(x) = 1 + 9[(

∑N
i=2 xi)/(N − 1)]0.25

x1 ∈ [0, 1],

xi = 0,

i = 2, ..., N.

biased

WFG2

WFG3

WFG4

WFG5

3

6,10,16

and

k = 4,

l = 2, 6, 12

[0, 2i],

i = 1, ..., N
Details see [26]

zp ∈ [0, 2p],

p = 1, ..., k.

zq = 0.7q,

q = k + 1, ..., N.

1 disconnected

non-separable

2 degenerate

non-separable

3 multimodal

4 deceptive

that GPM is implemented in MATLAB toolbox downloadable
from http://www.gaussianprocess.org/.

A. Experimental settings

The hypervolume (HV) [27] is adopted as the performance
indicator, which can capture both diversity and convergence
of solutions. A higher HV indicates better quality of the
solution set. The reference point is determined by equation
bj = maxj + δ(maxj − minj), j = 1, ...,M [16], where
maxj and minj are the maximization and minimization of
all results to be assessed in the j-th objective, and δ takes
0.01 here. In addition, all HV values will be normalized by
dividing

∏M
j=1 bj .A detailed description of the experimental

settings is given below:

1) Ten independent runs are performed for each experi-
ment. The Wilcoxon rank sum is introduced to compare
the results obtained by the proposed algorithm and
the compared algorithms at a confidence level of 5%.
Symbol ‘+’ indicates that the proposed algorithm is
much better than the compared one, while ‘−’ indicates
the compared algorithm is significantly better, and ‘=’

means there is no notable difference between the results
obtained by the two algorithms.

2) In each run, initial historical data are newly generated,
and the number of these data is set to 11N−1, where N
is the dimension of decision space. The initial data are
the same for all algorithms in comparative experiments.

3) In NSGA-II GP, the upper limit of historical data num-
ber L are 80, 130 and 200 for N = 5(6), 10, and 16,
respectively.

4) In NSGA-II GP and ParEGO, the population size and
the iteration number are both set to 50, and other
parameters in the algorithm are the same as in [1], [7].
The population number of NSGA-II is also 50.

5) Taking the computation time into account, we set the
maximal FEs of low-order polynomials to 250.

6) In each generation, the number of re-evaluated solutions
K is 5.

B. Comparative experiments among NSGA-II GP, ParEGO
and NSGA-II

Solutions obtained by three algorithms need to be re-
evaluated by real fitness function of benchmark problems,
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Fig. 3. Mean value of HV calculated by real fitness function versus the function evaluation number of the low-order models when dimension of decision
variables is 5 or 6.

then the non-dominated solutions are chosen to calculate HV.
Assessment results for all cases are listed in Table II, where
the best results are highlighted. It is plotted in Fig. 3 that the
change of mean HV over the accumulated FE number of the
low-order models in the case of variable dimension N = 5(6).

In every subfigure of Fig.3, the starting point is the mean
HV of ten groups of initial historical data. It can be seen that
HV of all three algorithms constantly increase as the evolution
proceeds although real fitness functions are not known in the
optimization, indicating that the low-order surrogate models
are able to accelerate the convergence. NSGA-II GP and
ParEGO have clear advantages over NSGA-II, and this should
be attributed to GPMs, which are built based on both the initial
noisy data and the data sampled from low-order models.

The results in Table II demonstrate that the performance
difference of these algorithms is reduced as the dimension of
the decision space increases. In two biased problems, DTLZ4
and ZDT6, NSGA-II GP and ParEGO have almost equal
performance. Overall, we can see that NSGA-II assisted by
the Gaussian process based surrogate significantly outperforms

NSGA-II and ParEGO on almost all test problems for the
considered search dimensions.

V. PERFORMANCE OPTIMIZATION OF FURNACES

The furnaces performance optimization problem considered
in this work is based on data collected from a factory in Liaon-
ing Province, China. The fused magnesium furnaces have a
designed production capacity of 30 ton. In this application
example, five furnaces are connected to one transformer, that
is, N in Eq. (2) equals 5.

Since only one group of performance indices can be mea-
sured in one day, data collection for this optimization problem
is very time-consuming. In this work, we gathered 60 groups
of performance indices for the five furnaces, including output,
high-quality rate, energy consumption, and ECT. The data of
one furnace is illustrated in Fig. 4 (solid lines), from which
we can see that industrial data is very noisy. Such noisy
data can easily be over-fitted if a highly complex model is
adopted. For this reason, we employ low order polynomials to
fit the production data and the results are shown by the dashed
lines in Fig. 4. All resulting approximate models are presented



TABLE II
MEAN (STANDARD DEVIATION) VALUES OF HV (CALCULATED BY REAL

FUNCTIONS) OBTAINED BY NSGA-II GP, PAREGO AND NSGA-II

DTLZ1 N = 5 N = 10 N = 16
NSGA-II GP 0.9997(0.0001) 0.9967(0.0012) 0.9953(0.0008)

ParEGO 0.9977(0.0006)+ 0.9827(0.0025)+ 0.9854(0.0019)+

NSGA-II 0.9964(0.0014)+ 0.9753(0.0026)+ 0.9803(0.0031)+

DTLZ4 N = 5 N = 10 N = 16
NSGA-II GP 0.8403(0.0091) 0.9314(0.0079) 0.9270(0.0041)

ParEGO 0.8425(0.0059)= 0.9328(0.0059)= 0.9318(0.0030)−

NSGA-II 0.8413(0.0079)= 0.9306(0.0083)= 0.9334(0.0047)−

DTLZ5 N = 5 N = 10 N = 16
NSGA-II GP 0.6579(0.0044) 0.8242(0.0105) 0.8090(0.0038)

ParEGO 0.6511(0.0051)+ 0.8096(0.0079)+ 0.8148(0.0030)−

NSGA-II 0.6429(0.0094)+ 0.7999(0.0110)+ 0.8098(0.0052)=

ZDT3 N = 5 N = 10 N = 16
NSGA-II GP 0.9693(0.0100) 0.9092(0.0278) 0.8587(0.0172)

ParEGO 0.9204(0.0116)+ 0.8288(0.0171)+ 0.7987(0.0167)+

NSGA-II 0.8519(0.0189)+ 0.7608(0.0158)+ 0.7459(0.0192)+

ZDT6 N = 5 N = 10 N = 16
NSGA-II GP 0.3107(0.0996) 0.2386(0.0784) 0.2015(0.0388)

ParEGO 0.2885(0.0255)= 0.2035(0.0141)= 0.1917(0.0133)=

NSGA-II 0.1900(0.0221)+ 0.1455(0.0116)+ 0.1491(0.0134)+

WFG2 N = 6 N = 10 N = 16
NSGA-II GP 0.7792(0.0389) 0.7426(0.0351) 0.6743(0.0354)

ParEGO 0.7173(0.0334)+ 0.6949(0.0228)+ 0.6759(0.0358)=

NSGA-II 0.6557(0.0261)+ 0.6935(0.0482)+ 0.6798(0.0265)=

WFG3 N = 6 N = 10 N = 16
NSGA-II GP 0.6366(0.0099) 0.6379(0.0128) 0.5993(0.0129)

ParEGO 0.6251(0.0076)+ 0.6258(0.0084)+ 0.5898(0.0160)=

NSGA-II 0.5773(0.0094)+ 0.5774(0.0191)+ 0.5790(0.0208)+

WFG4 N = 6 N = 10 N = 16
NSGA-II GP 0.5877(0.0110) 0.4196(0.0120) 0.3756(0.0161)

ParEGO 0.4569(0.0163)+ 0.3689(0.0200)+ 0.3796(0.0163)=

NSGA-II 0.4401(0.0469)+ 0.3871(0.0147)+ 0.3918(0.0221)=

WFG5 N = 6 N = 10 N = 16
NSGA-II GP 0.5533(0.0281) 0.4305(0.0157) 0.4260(0.0443)

ParEGO 0.4745(0.0181)+ 0.3705(0.0126)+ 0.3589(0.0108)+

NSGA-II 0.3974(0.0244)+ 0.3102(0.0117)+ 0.3460(0.0114)+
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Fig. 4. An example for fitting the performance indices of one furnace.
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Fig. 5. Optimization results on the furnaces performance problem.
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Fig. 6. The mean HV value over the function evaluation number of the
low-order models in the performance optimization of furnaces.

in Table III. Worker intervention and equipment depreciation
lead to the difference among the approximate performance
functions of furnaces in Table III, so final parameters of low-
order models takes the mean value of those of all furnaces
equations. The range of ECT is determined by the maximum
and minimum of collected data. As a result, the optimization
problem in Eq. (2) can be re-formulated as follows:

min−Y,min−Q,minE

s.t.

Y =

5∑
i=1

yi, Q =

∑5
i=1 yi × qi∑5

i=1 yi
, E =

5∑
i=1

ei,

yi = −5942.1ri + 29521,

qi = −40.7548r2i + 170.1776ri − 148.1144,

ei = −17353r2i + 78201ri − 51871,

1958.5 ≤ ri ≤ 2569.5, i = 1, 2, ..., 5.

(5)

Simulation settings are the same with experiments on the
test problems. In this application example, the low-order poly-
nomial models built from the data are used as the real fitness
functions. Fig. 5 plots all performance indices, where a black
‘×’ indicates the ideal optimal solution. Note that although
not all production indices resulting from the optimization are
better than historical data, the HV mean value in Fig. 6
averaged over 10 runs increases constantly.

VI. CONCLUSIONS

This paper proposes a data-driven optimization method
for the off-line problems, which are very commonly seen



TABLE III
LOW-ORDER MODELS OF FIVE FURNACES

Furnace number Function of output Function of high-quality rate Function of energy consumption

1 y1 = −7234.8r1 + 32185 q1 = −9.4773r21 + 29.0256r1 + 10.6462 e1 = 5378.5r21 − 23704r1 + 61734

2 y2 = −2891.0r2 + 22761 q2 = −39.0944r22 + 161.5855r2 − 137.7960 e2 = −55697r22 + 248230r2 − 240420

3 y3 = −6312.0r3 + 30471 q3 = −110.6837r23 + 476.1242r3 − 483.8129 e3 = −19726r23 + 89357r3 − 64514

4 y4 = −7126.7r4 + 32168 q4 = −74.7296r24 + 321.4685r4 − 314.8097 e4 = −7664.1r24 + 34548r4 − 2628.8

5 y5 = −6146.1r5 + 30019 q5 = 30.2109r25 − 137.3158r5 + 185.2007 e5 = −9056.1r25 + 42577r5 − 13526

in process industry. Since no accurate analytical models are
available for the objective functions, low-order polynomial
models are built using the limited and highly noisy data, which
will be treated as the real fitness functions in data-driven
surrogate-assisted evolutionary optimization. A multi-objective
evolutionary algorithm assisted by a Gaussian process is pro-
posed to solve a performance optimization problem of fused
magnesium furnaces, where the low-order polynomials are
used for surrogate management. With a limited computation
budget, the effectiveness of the proposed algorithm is verified
on nine standard tests in different search dimensions.

The use of low-order polynomials to replace the real ob-
jective function is the first step towards solving off-line data-
driven optimization problems with very limited data. Our next
step will be to improve the validation model for performance
evaluation in the furnaces optimization problem by combining
parameterized physical model with a data-driven approach.
In addition, it might be necessary to adapt the number of
solutions to be re-evaluated during the optimization.
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