
Towards Generic Communication Interfaces of
Existing Applications

Hannes Klee∗, Michael Buchholz∗, Torben Materna†, Klaus Dietmayer∗

∗Institute of Measurement, Control and Microtechnology, University of Ulm
Albert-Einstein-Allee 41, 89081 Ulm, Germany

Email: {hannes.klee, michael.buchholz, klaus.dietmayer}@uni-ulm.de
†Deutsche Accumotive GmbH & Co. KG, Neue Strasse 95, 73230 Kirchheim u. Teck/Nabern, Germany

Email: torben.materna@daimler.com

Abstract—For most hardware components in the automotive
area, there is the problem that exchanges can only be done
if the components are technically identical. That means not
only identical in the interfaces and dimensions but also in the
internal properties. These properties are firmly integrated in
the software of connected hardware components. In this paper,
an approach towards generic interfaces is proposed to identify
this information and provide it on the communication interface.
Furthermore, the influence of the specific information is reduced
by an deployment optimization. Additionally, the communication
overhead as well as necessary changes from a given original
deployment are considered. A realistic case study is used to
demonstrate the practicability of the proposed approach. It shows
that it is possible to modify an existing application towards
a generic communication interface. This approach proposes a
combination of optimization and generalization in one procedure
with respect to two acceptance criteria for a future realization.
Not only theoretical best solutions are archived, but also solutions
with a high chance to be accepted due to organizational changes.

Index Terms—acceptance, evolutionary many-objective opti-
mization, generic interfaces, multi-criterion optimization, search
based software architecture optimization, software engineering.

I. INTRODUCTION

Today, a typical car comprises up to 100 Electronic Control
Units (ECUs) [1] which are connected through several buses
and gateways. In most cases, not only the specific ECU of one
hardware component is exactly tailored to the properties, but
also several other ECUs which possess certain information
about the specific hardware component, e.g. the engine of
a car with its characteristics. This information is typically
hard coded as data variables during the development process
because of the assumption that it is static and, therefore,
does not need to be communicated through the interfaces.
That is why changes of the hardware affect wide parts of the
system. If a component is exchanged with not exactly the same
properties as originally specified, the car will malfunction or at
least unexpected behavior is possible. Therefore, a component
change is associated with additional effort, cost and the risk of
unexpected problems. To upgrade a car, the software for every
Electronic Control Unit (ECU) must be updated. The necessary
software can only be provided by the Original Equipment

Manufacturer (OEM), which makes the upgrade idea very
unlikely for current cars.

In the last decade, several ideas have been published to
enable an easier way to exchange components in a system.
In [2], interfaces are defined in profiles which are only
dependent on the type of network. These profiles require only
to exchange the mapping instead of implementing the whole
communication together with drivers in the operating systems.
Aue et al. [3] published a patent that suggests a method for
providing a generic interface which enables an operation of
microcontrollers independent from the specific communica-
tion technology. AUTOSAR [4] is an industry standard for
automotive E/E (Electric/Electronic) architecture, of which one
goal is an easy exchange of hardware or software components.
Therefore, a virtual bus is used for the communication and
software interfaces are defined on application level [5]. In
[6], a functional decomposition of a vehicle control system is
suggested. Definitions of the functional interfaces are provided
for reuse of the architecture for future technologies. Another
idea is published in [7] which binds collections of related
components with wrapper interfaces. The wrapper acts as
an intelligent interface between the collection and domain
applications. The idea is aimed on an effective source code
reuse.

In contrast to other approaches, the proposed method in this
paper additionally treats the aspect that software today con-
tains specific hard coded information which makes exchange
of hardware a difficult task. The second part is related to
the software deployment problem where software components
(SWCs) are allocated to ECUs. Here, the best mapping of
SWCs to ECUs regarding given quality aspects must be found.
The problem has been covered from a lot of researches in
the past years [8], [9], [10], [11]. The technical survey [12]
summarizes different optimization strategies and notices that
evolutionary algorithms are the most used ones.

In this paper, an approach is suggested which enables
the possibility of changing hardware components within an
existing system by building up generic interfaces between the
ECUs. Before implementation, the total amount of affected
internal parts of the ECUs will be reduced by a deployment
optimization. This will decrease the influence of a hardware



change and provide a very flexible system. To demonstrate
the difficulties, a subsystem of an electric driven vehicle is
used. The practicability of the proposed approach is shown
and additionally an existing solution from the automotive area
serves as a reference. Then, feasible solutions can be compared
with the amount of changes, the resulting communication
and the influence of hardware specific information. This idea
cannot only be applied in the automotive industry, but also
in highly connected systems like a plant or production line,
an airplane or even in a software itself. Here, e.g. if software
functions are allocated to modules which are connected via a
virtual bus an effort on the interfaces of each module or even
signals in the software can be saved. The optimization level
can be refined from whole components with remodularization
[13] up to source code with genetic programming [14].

The rest of the paper is organized as follows: In Section II,
the problem is stated in detail on a real world example which
serves to derive the tasks of the paper. The solution of the
tasks is described in the first part of Section III. The second
part is devoted to the description of the proposed algorithm.
This method is evaluated on a realistic problem, which is
described in Section IV. Experimental results are presented
and discussed in Section V. The paper closes with some
conclusions as well as an outlook on future work in Section VI.

II. PROBLEM DESCRIPTION

The motivating example is a subsystem of an electric driven
vehicle with focus on the high voltage (HV) battery. The elec-
tric powertrain of the vehicle typically consists of an electric
engine, which also works as a generator for recuperation,
the power electronics, a DC/DC converter, a high voltage
battery, the whole cooling circuit (cooling pump, high voltage
air condition, valves etc.) and an on-board charger. All these
hardware components are controlled by different ECUs which
contain the logical functional level. For example, there are the
battery management system (BMS), energy and drive manage-
ment (EMM), thermal management and the operation strategy,
as partly shown in Fig. 1. These systems possess software
modules which conclude functions that are summarized in a
common context. The functions realize algorithms which need
specific information about the given hardware components and
their properties. Related functions are spread over the whole
system and communicate via signals. The signals are specified
by a document and are available on a specific interface. Here,
messages are transferred over a connection between several
ECUs, e.g. a communication bus like CAN or LIN, which are
widely spread in the automotive industry. Inside an ECU, the
signals are distributed to the required function.

Up to now, the architecture and its hardware components
do not change in general, especially if the product is on
the market. Before that, only the following reasons force the
manufacturer to exchange hardware components:

• problems with the production (amount, time, costs, fail-
ure, bankruptcy of a supplier),

• unfulfilled requirements (quality is worse than expected)

battery vehicle

EMM

cells

BMS

Fig. 1. Example of an electric driven car with focus on the high voltage
battery. Specific hardware information of the battery cells is spread over the
whole system (red) and specific hardware component information changes in
depended ECUs and their functional entities are shown (blue).

After a successful development, further reasons for an
exchange of a hardware component are that new alternatives
are available. Quality aspects in general are e.g. efficiency,
energy, power, costs, weight, safety, low/non-maintenance,
end-of-life. In the previously explained example, technical and
chemical progress leads to a better performance of batteries
which results e.g. in the ability of faster charging, fewer
cooling amount, less aging and a wider operation window etc.
There are several reasons for an exchange of a component and
especially in the sense of the very long lifetime of cars, the
industry must concentrate on concepts with generic interfaces
to make component exchanges easy.

The biggest challenge, except that the dimension must fit,
are the necessary software modifications in the related ECUs.
A scenario can be that the exemplary system is changed
because of the usage of a new battery cell type. The effect on
the whole system is represented in Fig. 1 by the battery/cell
information modifications in blue.

The effect of specific hardware component information
changes in the depended ECUs and their functional entities
are not completely predictable. This leads to the following
process:

1) analysis of the system where specific hardware compo-
nent information is needed,

2) communication of new properties of the hardware com-
ponent,

3) implementation of changes in the software,
4) verification of the software by testing all affected com-

ponents themselves and in the interaction with other
ECUs.

This must be done in Software/Hardware in the Loop
(SiL/HiL) tests, on a test bench and in prototypes or field
studies. It can be seen that this process leads to a huge effort
for the manufacturer which will result in high cost and makes
hardware changes very unlikely.

III. PROPOSED APPROACH

The idea is to enable the operation of the vehicle indepen-
dent of the actual used hardware components (e.g. HV battery
in Section II), which means that no specific adjustments of the
vehicle related ECUs are necessary if a specific hardware is
exchanged. An additional idea related to the problem is that



the influence of the new hardware can be minimized during
the design phase by identifying depended software functions
and relocate them to the exchangeable hardware, if that is
possible. This is part of the software component deployment
problem which was treated in a previous paper [11]. Here,
the communication overhead and the amount of changes in
comparison to an original system is considered. Both aspects
cannot be ignored and must be integrated in this new approach.

The necessary step to improve the described process in
Section II is that the software functions should be build robust.
This means that they must consider the possibility that specific
hard coded information can be modified during the lifetime
of the system. Additionally, the specific information must
be available for all related ECUs. Then, a new hardware
component must be tested by itself and its interaction with
the vehicle interface, but in contrast to the current practice, not
every related component and the respective interaction has to
be tested. This means that only testing must be accomplished
by the manufacturer of the component.

To provide the suggested process, a higher effort during the
development of the software functions in form of analysis and
specification is necessary. With these documents, algorithms
must be modified to be robust and not custom built for
one fixed system configuration. To gain the robustness, an
additional error handling must also be considered which reacts
on cases if the specific information is not available. Besides
that, after a successful implementation, both extensions must
be tested concerning the interaction. Despite the one-time
necessary effort, the idea promises a lot benefits, e.g. hardware
exchanges are easier in late development stages, less total
effort by new developments is required which saves money
and time, as well as benefits from the improvements of the
new components. Furthermore, the approach leads to more
competition on the market for the exchange components and
a wider use of platform components. Additionally, a higher
readiness for owners to invest in their vehicles and not only
to maintain them, enables a longer use of resources.

A few assumptions are necessary to outline the borders of
the approach in this paper. One requirement is that an existing
system is available, which builds the base of the design
optimization. Furthermore, the hardware and ECU structure
is fixed and the original deployment of software to ECUs is
given. Additionally, a preparatory work is necessary for the
optimization in which an analysis of the complete functional
level must be done. The functional level is represented by
software modules, e.g. the battery management system (BMS)
and the energy management (EMM), which are introduced
in Section II. The modules consist of functionally grouped
blocks (FBs) that contain software components (SWCs) and
their connections, see Fig. 2. Exchanged information between
ECUs over the communication interface can be found in a
bus message description. But this is only a first indicator for
the necessary exchange. A closer look in the SWCs provides
which hard coded specific information about hardware com-
ponents is required.

ECU1 ECU2

FB0 FB2

FB3 FB4

FB1
FB5

FB7

FB9

FB6

FB8

Fig. 2. The system is extended with parameters in green. An example of
one parameter is illustrated which is transferred to the requester SWCs. For
clarity reasons other parameters of ECU1 and ECU2 are not visible.

TABLE I
COMPARISON OF SIGNALS AND PARAMETERS.

signals parameters

changes dynamic static
information current values fixed values
transfer Rate with frequency f once
effect communication overhead degree of generalization
example current power nominal capacity

A. Architecture Extensions

For the transmission of information, two different types are
used. Information which is transferred cyclically or per request
is described as signals because of its dynamically changing
content. Static information which does not change during the
operation of the vehicle is stated as parameters. The param-
eters represent the previously described hard coded specific
hardware component information. Examples are manufacturer
specifications, safety limits, type code and initial values. Table
I describes the differences between signals and parameters.

The summarization of signals to interactions was published
earlier in [11]. This approach is extended to also summarize
parameters to interactions which is an important step to reduce
the total amount of connections and thereby reduce the amount
of SWC duplications before the optimization. Interactions
i contain k signals isk or parameters ipk

. Interactions can
be seen as direct connections between SWCs which provide
at least one information. Internal and external information
is treated the same way, as it can be changed through a
reallocation of a SWC to another host from internal to external
information. Signals and Parameters represent only one infor-
mation. Both are necessary for a distinction of one information
with which other SWCs this data is shared. This can be seen in
Fig. 3 where e.g. the provided information of SWCb is shared
by five connections which could be required by three SWCs, so
the information paths can be reduced to only three interactions.
That reduces the amount of SWCs duplicates from five to
three, too.

To realize the idea of exchanging components, additional to
signals, parameters must be communicated from the compo-
nents, too. This will be done by transforming the parameters
into signals and broadcast them over the system, see Fig. 2
and 3. This can be done e.g. in an initial phase during the
first start with the new component. Another solution would
be an update of parameter values of the ECUs in a car



function block

ou
tp

ut

in
pu

t
SWCa

SWCb

SWCc

SWCd

Fig. 3. Representation of a function block (FB) with software components
(SWCs), the belonging parameters and signals. Green squares represent an
exemplary amount of parameters for each SWC.

repair workshop. In automotive applications in the past, it
happened that parameters or at least static information had to
be transferred over the interface as signals. This information
now can be integrated in the new approach in one single signal
and needs to be transmitted only once.

However, in most cases, there is an existing system which
is nearly optimal in relation to certain previous quality criteria
and improvements can only be achieved by modifications or
reallocation of software functions. To gain the best possible
solutions, an automated optimization process is required.

B. Optimization Settings

For the stated problem, a search-based optimization method
is chosen. The most commonly used one in the field of
evolutionary algorithms is the non-dominated sorting genetic
algorithm (NSGA-II) [15]. It is a modification of the first
version, which both are published by Deb et al. [16]. The
second version is easier to use and yields good solutions for
multi-objective problems in the shortest time by providing
fast non-dominated sorting and an efficient crowding distance
metric. In 2014, with NSGA-III [17], a newer version was
introduced which is recommended for optimization problems
with more than three objective functions. Instead of the
crowding distance, uniformly distributed reference points are
used to ensure the diversity of the population.

As input for the optimization a case study must contain
SWCs, interactions, ECUs and the bus. The problem is defined
as the software component deployment problem where the
algorithm is allowed to create different allocations of the
SWCs to the ECUs. E.g. if there are two ECUs and 95 SWCs,
then the search space is 295 which is an amount of approxi-
mately 3.14e+ 28 solutions, because each of them can cause
different performance values regarding to the quality criteria,
see Section III-D. Additionally, constraints are defined for each
ECU by a location list, which describes the permission of the
SWCs to be allocated to this ECU. The lists divide the SWCs
into ECU dependent and independent ones, whereof only
independent SWCs can be allocated freely by the algorithm.

As output representation, a list of the non-dominated solutions
is chosen. This represents the Pareto-optimal set. It contains
the solutions which are not dominated by others for at least
one of the criteria.

C. Optimization Procedure

The procedure is divided into five stages. Fig. 4 shows the
general algorithm, where extensions are highlighted in red.
The input of the optimization is extended with the parameters
and the deployment of the original solution. During initializa-
tion, a population of n solutions is created whereof the original
solution is one and the remaining are randomly allocated. All
solutions are evaluated on up to five quality aspects (ccom,
cnts, cntp, cntmod and cntchanges), which will be explained in
the next section. In the next stage, the optimization begins
with the reproduction. This is done by means of typical
operations like mutation and crossover, where new solutions
are created by winners of the tournament selection from the
mating pool. Numerical values can be found in Section IV-B.
An acceleration of the process is achieved by the usage of the
localization information during the reproduction, i.e. only valid
solutions are generated. After the evaluation, the solutions are
sorted (by rank and their crowding distance) and only the
best n solutions survive. The process is repeated until the
stop criterion is met. In this paper, the maximum number of
evaluations for one single run is chosen as stop criterion.

D. Objective Functions

The quality objective ccom calculates the inter-ECU com-
munication, which is also described as communication over-
head. During the calculation, it is checked if an interaction
ij connects two components that are assigned to different
ECUs. The method counts the data amount only once per
cycle because it is transferred via a bus where the identical
information is combined to one signal. The receiving ECUs
will manage the distribution of the signals to the SWCs
internally. This is done by the collection listtransferred, which
stores the unique identifier of a transferred signal information.
Simultaneously, the number of signals cnts is calculated by
the amount of different information which must be exchanged
between different ECUs:

ccom =
∑
j

∑
k

ij,sfreq,k ∗ ij,sdata,k ∗ extij,s ∗ validsk , (1)

extij,s =

{
1, if ij,ssrc 6= ij,sdest

0, else
, (2)

validsk =

{
1, if sk 6∈ listtransferred

0, else
, (3)

cnts =
∑
k

validsk . (4)

Neglecting the ECU failure rate, network delay, and reliability
of the bus, which all three affect the communication, only
the quantitative amount of data is assessed. However, these
features could be easily integrated in the proposed method.



initialization
- population n
- original deployment
- architecture with signals and
- parameters

selection, creation and validation
- tournament selection
- crossover and mutation
- localization

evaluation
- signals (ccom, cnts)
- parameters (cntp)
- deployment (cntchanges)
- modifications (cntmod)

sorting (plus-selection)
- merge pool
- rank solutions
- select n best solutions

stop criterion met?

Fig. 4. Optimization procedure of the genetic algorithm with extensions
highlighted in red.

Furthermore, it is assumed that the acceptance of a solution
is reverse proportional to the amount of SWC allocation
changes based on the original deployment. Changes of the
deployment cause organizational effort, e.g. to move either the
respective responsibilities and expertise to another team, or to
move people from one team to another. The fewer changes
cntchanges are necessary, the higher the acceptance will be, see
Eq. (5). The amount of changes is calculated by the differences
of the current deployment p and the initial deployment pref:

acceptance ∼ 1

cntchanges
, (5)

cntchanges =
∑
i

diff(p[i],pref[i]), (6)

diff(p[i],pref[i]) =

{
1, if p[i] 6= pref[i]

0, else
. (7)

To optimize the system towards a generic interface, the
number of parameters cntp which must be transferred between
ECUs should be next to zero. Parameters are treated in the
same way as signals, so that the parameter interactions will
be checked up on a connection between different ECUs. The
information counts only once over the interface, see Eq. (3)
and (4). Here, instead of signals, all parameters will be checked
whether they are element of the collection listtransferred.

Another criterion for the acceptance of the solution is the
amount of necessary modifications cntmod of the affected func-
tion. It will be counted by the parameter interactions ip over
the interface cntext interactions,p with the current deployment:

cntmod = cntext interactions,p, (8)

cntext interactions,p =
∑
j

extij,p , (9)

extij,p =

{
1, if ij,psrc 6= ij,pdest

0, else
. (10)

Again, parameter interactions differ either in the destination
or source SWC, as they are always be provided by one SWC
on an ECU. Therefore, the amount of interactions over the
interface is equal to the amount of affected SWCs. The distinc-
tion between both criteria is necessary to prefer those solutions
which affect fewer SWCs by the same amount of parameters
and to keep solutions which require less modification but more
parameters. For example, in one case, a parameter is required
by three SWCs, in another case a different parameter is only
required by two SWCs.

The amount of data of the parameters would be another
criterion, similar to communication overhead, but is neglected
because the transmission has non or only a little effect on the
bandwidth, as it must be done only once during initialization
(see Section III-A). Further evaluation criteria could be the
data transmission reliability, scheduling length, and response
time to analyze the real-time ability of a solution, which is
not the focus of this contribution.

IV. EXPERIMENT

The approach is demonstrated on a subsystem of an electric
driven vehicle with focus on the high voltage battery manage-
ment system (BMS). It represents a real world problem with
functions of a plug-in hybrid vehicle. This type is chosen,
because it possesses functions for fully electric driving, driving
with the combustion engine and the combination as well as
charging with an on-board loader. With the usage of the
proposed approach, the aim is to make the battery independent
from the rest of the vehicle while providing the original
functionality.

A. Problem Instances

Besides the BMS, the case study consists of the energy
management as well as other logical control units which are
typical needed for an EV. The hardware structure is set to two
hosts (BMS and the rest of the vehicle) that are connected by
one bus, see Fig. 1.

The software architecture consists of 147 SWCs for the
functions and two SWCs which contain the specific hardware
information. Each SWC has the opportunity to provide and to
receive information through in- and outputs. Overall, there are
463 dynamic values available which are outputs of the com-
ponents. These values are received through 1104 connections,
called signals, which build the inputs of the components. In
average, the SWCs are connected with more than 7 signals.



Furthermore, the signals are characterized by data amount and
frequency. Due to the fact that internal signals are all timed
with the same sample rate of their ECU, one fixed rate is set
for both, internal signals and signals over the interface.

The hard-coded information which can be found in the
components results in 148 static values whereof 129 belong
to ECU1 and 19 to ECU2. The values are needed at 199
input ports. These connections represent the parameters. In
the next step, signals or parameters with the same source
and destination component are combined to interactions. The
parameter interactions are necessary to evaluate the amount
of SWCs which require parameters from another ECU. In
total, there are 80 parameter interactions which means that 80
SWCs require at least one parameter (72 with the origin from
ECU1 and 8 from ECU2). An existing application is used as
reference deployment for the optimization which allocates 60
SWCs on ECU1 and 89 SWCs on ECU2. 37 SWCs on ECU1

are hardware dependent due to hardware closely functionality
like sensor value interpretation. 17 of the 89 SWCs on ECU2

are hardware dependent, too. After the subtraction of those
SWCs, there are 95 SWCs left which can be allocated freely on
both ECUs by the optimization process. The original solution
causes a communication overhead of 1160 bits per cycle with
68 signals. Additionally, 81 parameters must be transferred
which affect 45 SWCs.

As the used algorithm minimizes the specified quality crite-
ria, no resource restrictions are necessary for the optimization.
This fact makes the approach interesting for a phase of
system design when the used hardware is not yet selected.
Furthermore, a perfect transmission channel is assumed that
has no delay, no failure rate, and the transmission rate is
unlimited. The approach is not limited to two hosts, but as
the amount of ECUs is the base and the amount of SWCs
the exponent, in this case 295, the search space is strongly
increasing by considering more than two ECUs.

B. Algorithmic Settings

The proposed approach is integrated within the free avail-
able framework ArcheOpterix [18], [19]. The source code of
the NSGA-III is taken from [20] and added to the frame-
work. For experiments with three objectives, NSGA-II is
used whereas for all five objectives NSGA-II and NSGA-III
are compared to decide which one is better for the specific
problem instance. The number of divisions in NSGA-III is
problem dependent and a short investigation with nine different
values shows that the best results can be achieved with six
divisions, which result in 210 reference points. For more
details on this algorithm see [17]. A second investigation
consists of different settings for the remaining algorithm
parameters, which can be seen in Table II. The aim is to
figure out which algorithm should be used for this specific
problem with five quality criteria. The optimization is able
to improve solutions within 10000 evaluations until the stop
criterion is met. The reproduction rate is set to 0.5 and 10
runs per setting are executed. The mating pool is chosen to a
factor of 1.5 of the population size. During the initialization

TABLE II
OPTIMAL ALGORITHM SETTINGS FOR NSGA-II AND NSGA-III.

numerical values NSGA-II NSGA-III

evaluations 10000
reproduction rate 0.5
mating pool 1.5
initialization with reference solutions yes
population size 20
mutation rate 1 0.9
crossover rate 0.2 0.1
NSGA-III divisions - 6

TABLE III
COMPARISON OF NSGA-II AND NSGA-III FOR FIVE OBJECTIVES.

hypervolume NSGA-II NSGA-III

without original solution 0.9371 0.8425
with original solution 0.9382 0.9316
with eight Pareto solutions 0.9390 0.9298

it is possible to decide if the original solution is added to the
population. Furthermore, it is possible to add other solutions to
guide the algorithm. Here, the eight Pareto solutions from the
first experiment in Section V are chosen. As the investigation
is not the main content of this paper, only the main results
will be presented. The hypervolume is chosen as performance
metric. It assesses the quality of the solutions found in the
genotype (evaluation) space and first appeared in [21]. The
quality values are normalized which is why the maximum
value of the hypervolume is one. The resulting values can
be found in Table III, which represent the average of ten runs
with the best found settings for each algorithm, see Table II.
A large population size of 500 elements is used for the start
and reduced to 100, 50 and finally to 20 elements. Then, the
mutation and the crossover rate are modified in a range from
0.01 to 1.

It can be seen that NSGA-II performs better than then the
newer version, therefore only this algorithm is used for the
following experiments. Here, due to the risk of sub-optimal
solutions, the evaluation limit is increased to 50000 and 60
runs will be executed.

V. RESULTS & DISCUSSION

In the first part, the original solution is investigated in rela-
tion to the communication effort, signal amount and the nec-
essary deployment changes. In the second part, the parameter
amount and the affected SWCs are taken into account together
with the previous criteria. The experiments are executed on an
Intel Core i7 CPU with 2.67GHz and 18GB RAM. One single
run takes about 3 minutes for three criteria and 41 minutes
for five criteria. With parallelization by six cores, the whole
execution takes less than 7 hours. Table IV summarizes the
most important results of both investigations.



TABLE IV
RESULTS OF THE EXPERIMENTS.

evaluation original sol1 sol2 sol3

comm. overhead (ccom) 1160 bits -1.4% +0.3% +176.8%
signals (cnts) 68 +1.5% -5.9% +163.2%
parameters (cntp) 81 +9.9% 0% -84.0%
modifications (cntmod) 45 47 46 10
changes (cntchanges) 0 3 2 43

99
100

90
100

110
0

2

4

ccom in %cnts in %

cn
t c

ha
ng

es

Pareto solutions
min ccom

min cnts

Fig. 5. Results for parameter amount minimization in comparison to signals.

Fig. 5 shows the Pareto solutions for the first test. Even
though 60 runs are executed, only eight solutions are found.
Solution sol1 possesses the best communication effort im-
provement of 1.4% from 1160 to 1144 bits/cycle, but takes
a slight increase of the signal amount, just like the change
amount which requires three SWCs more on ECU2. Solution
sol2 possesses the lowest signal amount with only 64 signals
instead of 68, which is an improvement of 6%. The solution
causes a slight increase of the signal data which leads to a bit
more of communication effort and two changes in the deploy-
ment are necessary. The used original solution here is already
nearly optimal for the communication of dynamic information.
Better solutions can be found, but they are only compromises
of the given quality criteria and no huge improvements can
be achieved. It is a result of the strong connectivity of the
SWCs in the ECUs of the original deployment. Only 153 of
the 1104 signals are external connections between the two
ECUs, which is a proportion of 13.8%. The rest of the 956
signals are communicated internally and lead to an increase
of the interface if they are allocated on the other ECU.

For the next test, the genotype space is extended to five
objectives by the amount of parameters that must be trans-
ferred over the interface and the affected SWCs which must be
modified to be robust against parameter changes. The original
solution requires 81 parameter transfers and 43 modified
SWCs to gain a generic interface. This is quite a large number
and means a lot of effort for implementation and testing.
Solution sol1 of the first part has a negative effect of the

100 200 300 400 0 200
4000

20

40

60

ccom in % cnts in %

cn
t ch

an
ge

s

min ccom

min cnts

min cntp

Fig. 6. Pareto optimal solutions for five quality criteria shown for the
deployment changes and the signal interface aspects.

0 200
400

020406080100120
0

20

40

60

ccom in %cntp in %

cn
t ch

an
ge

s

min ccom

min cnts

min cntp

Fig. 7. Pareto optimal solutions for five quality criteria shown for the de-
ployment changes, parameter minimization and the communication overhead.

required parameter amount. Eight parameters more must be
transferred, which is an increase of nearly 10%. Here, even 47
SWCs have to be modified, whereas only three SWCs must
be moved to the other ECU. The few changes mean a little
organizational effort, but the high number of modifications
leads to an improbable acceptance. Solution sol2, however,
does not affect the number of parameters over the interface, but
one SWC requires a parameter which is already transferred,
while 46 SWCs must be modified. Fig. 6 and 7 show the
2223 Pareto optimal solutions found for the allocation and the
interface criteria during the 60 runs. It can be seen that there
are many solutions which reduce the total parameter amount,
but also cause a huge increase of the dynamic communication.
It would be expected that a solution with zero parameters can

be achieved, but only solution sol3 is found which possesses
the best value for the parameter minimization. Here, 13
parameters instead of 81 must be communicated which is an
improvement of 84%. This solution represents a deployment



where all parameter affected hardware independent SWCs
are allocated to ECU1. The remaining parameters over the
interface result from SWCs that cannot be moved (5) or would
require more parameters from the other ECU (8) which is why
sol3 really represents the minimal parameter deployment. 10
interactions contain the parameters which means that only 10
SWCs must be modified for robustness regarding parameter
changes. Unfortunately, the other criteria are almost 1.8 times
more data and 1.6 times more signals that must be transferred.
Furthermore, the reduction of the parameters leads to a huge
increase of the deployment changes with 43 SWCs from ECU2

to ECU1. Even though the solution possesses the minimum
effort for modifications and testing, the great organizational
effort as well as the higher utilization of the bus lead to a very
low acceptance. As mentioned before, this extreme solution
is not really necessary because parameters can be transferred
without affecting the bus load.

To decide which solution should be used for a generic
communication interface, both aspects, the necessary effort
for robustness and move of SWCs, must be evaluated in more
detail. Then, a limit for the bus load must be set and it must be
checked if the algorithms can use available information from
the new host which could make further reductions possible.

VI. CONCLUSIONS

In this paper, the problem of hard coded specific hardware
component information of an existing system was addressed.
The goal was to modify the system that generic interfaces
between the vehicle and exchangeable hardware components
are possible. An approach was presented which transforms the
specific static information into parameters and sent them over
the interface.

An exemplary case study needs 45 SWCs which must be
modified to gain a robust generic interface. On the basis of
the expected effort for the modification, a software component
deployment optimization was used to reduce the total amount
of parameters over the interface. The best solution achieves a
reduction of about 84% with only 10 SWCs to be modified,
but results in 43 changes of SWC from one host to another,
which will be expected as unlikely to be accepted due to the
required company reorganization.

Future work will comprise a detailed estimation of the effort
for generalization and deployment changes. Additionally, a
method for optimizing algorithms with internally available
information is a desired goal which enables the possibility
to reduce interface communication after deployment changes.

REFERENCES

[1] R. N. Charette, “This Car Runs on Code,” IEEE Spectrum,
Feb. 2009. [Online]. Available: http://spectrum.ieee.org/transportation/
systems/this-car-runs-on-code

[2] IEC CD 61800-7, Adjustable speed electrical power drive systems,
Part 7: Generic interface and use of profiles for power drive
systems. International Electrotechnical Commission. [Online]. Available:
http://www.iec.ch/

[3] A. Aue and E. Becker, “Method for providing a generic interface and
microcontroller having a generic interface,” Dec. 4 2014, uS Patent
App. 14/288,028. [Online]. Available: http://www.google.com/patents/
US20140359180

[4] [Online]. Available: http://www.autosar.org
[5] [Online]. Available: http://www.autosar.org/about/basics/
[6] A. M. Phillips, “Functional decomposition in a vehicle control system,”

in American Control Conference, 2002. Proceedings of the 2002, vol. 5,
2002, pp. 3713–3718 vol.5.

[7] H. M. Haddad, “Integrated Collections: Approach to Software Compo-
nent Reuse,” in Third International Conference on Information Technol-
ogy: New Generations (ITNG’06), April 2006, pp. 28–33.

[8] P.-Y. R. Ma, E. Lee, and M. Tsuchiya, “A Task Allocation Model
for Distributed Computing Systems,” IEEE Transactions on Computers,
vol. 31, no. 1, pp. 41–47, 1982.

[9] I. Moser and S. Mostaghim, “The automotive deployment problem:
A practical application for constrained multiobjective evolutionary op-
timisation,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), July 2010, pp. 1–8.

[10] A. Aleti and I. Meedeniya, “Component Deployment Optimisation with
Bayesian Learning,” in Proceedings of the 14th International ACM
Sigsoft Symposium on Component Based Software Engineering, ser.
CBSE ’11. New York, NY, USA: ACM, 2011, pp. 11–20.

[11] H. Klee, M. Buchholz, T. Materna, and K. Dietmayer, “Acceptance-
Based Software Architecture Deployment for Improvement of Existing
Applications,” in Computational Intelligence, 2015 IEEE Symposium
Series on, Dec 2015, pp. 1832–1837.

[12] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software Architecture Optimization Methods: A Systematic Literature
Review,” IEEE Trans. Software Eng., vol. 39, no. 5, pp. 658–683, May
2013.

[13] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh,
K. Deb, and A. Ouni, “Many-Objective Software Remodularization
Using NSGA-III,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 3,
pp. 17:1–17:45, May 2015.

[14] W. B. Langdon and M. Harman, “Optimizing Existing Software With
Genetic Programming,” IEEE Transactions on Evolutionary Computa-
tion, vol. 19, no. 1, pp. 118–135, Feb 2015.

[15] A. S. Sayyad and H. Ammar, “Pareto-optimal search-based software
engineering (POSBSE): A literature survey,” in Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE), 2013 2nd
International Workshop on, May 2013, pp. 21–27.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. on Evolution-
ary Computation, vol. 6, no. 2, pp. 182–197, April 2002.

[17] K. Deb and H. Jain, “An Evolutionary Many-Objective Optimization Al-
gorithm Using Reference-Point-Based Nondominated Sorting Approach,
Part I: Solving Problems With Box Constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601, Aug 2014.

[18] A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya, “ArcheOpterix:
An extendable tool for architecture optimization of AADL models,”
in ICSE Workshop on Model-Based Methodologies for Pervasive and
Embedded Software (MOMPES), May 2009, pp. 61–71.

[19] I. Meedeniya, A. Aleti, I. Avazpour, and A. Amin, “Robust
ArcheOpterix: Architecture optimization of embedded systems under
uncertainty,” in ICSE Workshop on Software Engineering for Embedded
Systems (SEES), June 2012, pp. 23–29. [Online]. Available: http:
//mercury.it.swin.edu.au/g archeopterix/experiments/SEES2012/

[20] D. Hadka, “MOEA Framework - A Free and Open Source Java
Framework for Multiobjective Optimization. Version 2.9,” 2015.
[Online]. Available: http://www.moeaframework.org/.

[21] E. Zitzler and L. Thiele, Multiobjective optimization using evolutionary
algorithms — A comparative case study. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, pp. 292–301.


