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Abstract—The Organic Rankine Cycle (ORC) process is
promised to significantly recycle the medium and low tempera-
ture heat source, achieve better performance to recover low grade
waste heat than traditional waste heat recovery processes in the
industrial applications. An accurate ORC model is indispensable
for the optimization and control of ORC systems. A new Radial
Basis Function (RBF) modelling approach, which combines the
node selection based on Fast Recursive algorithm (FRA) and
non-linear parameters optimization using the PSO algorithm is
proposed to model the ORC system. The experimental results
verify that the resultant models have achieved high training
accuracy and desirable generalization performance.

I. INTRODUCTION

It has been widely acknowledged that new renewable energy
resources as well as effective energy-saving have become the
core hotspot of the global energy research in the area of
industrial applications;. In Europe, the total amount of fuel
consumption for vehicles would be 150 billion litres every
year. Almost 60-70 % energies of fossil fuels get burned in
internal combustion engines and go into atmosphere through
the exhaust gas and cooling medium. This would cause a huge
waste of energy as well as pollute the environment [1].

Interest in low-grade heat recovery for industrial applica-
tions has increased dramatically in the past decades [2, 3]. The
Organic Rankine cycle (ORC) which uses organic medium as
the cycle fluid can effectively recycle the medium and low tem-
perature heat source [4]. It has high efficiency, low requirement
of working pressure containment, gas area expansion process
of expander, and environmental friendly with novel working
fluid, etc [3].

The majority of current researches on ORC waste heat
recovery are to enhance the efficiency of the ORC circulatory
system [5]. They focused on the fliter of organic substance
[6, 7], analysis of the thermodynamics and thermal economics
of ORC systems [3, 8], experiments and optimization design
for ORC systems [3, 9, 10]. Since the ORC system operation
involves complex thermal dynamics, research on dynamic
modeling and optimal control of ORC systems are very
limited.

Although abundant results are available on the working
fluid selection for ORCs [11], few papers propose a detailed
modelling of the cycle: static models have been proposed by
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Quoilin [12, 13] and Mathias [14]. And dynamic model of
a WHR ORC using a turbine was proposed by Wei [15].
Dynamic mechanism modelling and control of ORC has been
proposed by Zhang [16, 17, 18] and Hou [19]. However, the
dynamic modelling of ORC system using advanced identifica-
tion method has not been properly addressed. It is clear that
waste heat recovery based on the ORC system is a complex
process characterized by nonlinearity, uncertainty, multivari-
able coupling and load disturbance. Such processes cannot
be described fully and accurately with mechanism modelling
methods due to ideal assumption used in mechanism equa-
tions. Black-box models can describe ORC system behaviour
using advanced identification methods without resorting to
the knowledge of the underlying thermodynamic processes
occurring in each component of ORC system. Among all
black-box modelling methods, the RBF neural network has
been widely adopted due to its simple structure and powerful
approximation ability in modelling non-linear systems. One
of the main issues involved in RBF neural modeling is the
determination of the network structure. In this paper, in order
to remove less significant and redundant RBF hidden nodes
and increase the accuracy and generalization capacity of the
neural network models, a fast non-linear model identification
method (Fast Recursive algorithm) is used to pre-select the
suitable nodes for the RBF neural network. On the other
side, the Particle Swarm Optimization (PSO) algorithm is used
to optimize the basis function parameters instead of using
gradient-based searches.

The rest of the paper is organized as follows. Orangic
rankine cycle for waste heat process are reviewed in Section
II. A brief introduction of RBF neural networks as well
as PSO optimization algotithm is presented in Section III
and a fast forward node selection method is discussed in
Section IV. After presenting the proposed method in Section
V, experimental results of the proposed modeling approach
are given in Section VI. Section VII concludes the paper and
points out the future work.

II. ORGANIC RANKINE CYCLE SYSTEM

The schematic diagram of ORC system which is used
for waste heat recovery is shown in Fig.l. It consists of
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Fig. 1. Schematic diagram of ORC system

an evaporator which changes working fluid from sub-cooled
liquid phase to superheated vapor as well as a condenser which
changes working fluid from superheated phase to liquid, a
pump which can force working fluid into evaporator and a
generator (turbine expander) for power generation.

ORC (Organic Rankine cycle) is utilized to generate electric
power from waste heat in this diagram. The selected working
fluid is R123. It should be noted that fluid selection is an
important and preliminary issue in ORC design [11, 20, 21].
The flue gas waste heat is transferred to the evaporator where
working fluid R123 is heated before it enters into a turbine
expander (generator), the vaporized R123 drives the expander
for power generation. The vapor from the expander is then
condensed into liquid state in an air-cooled condenser. The
liquid working fluid R123 is pressurized by the pump and sent
back to the evaporator again. Considering that the evaporator
and expander are key components in the ORC system in power
generation using waste heat, the condenser mass flow rate has
only a minor effect on the cycle and it is not necessary to
control the condenser during ORC operation, this paper mainly
focuses on the modeling of the evaporator and expander. The
big impact and easy measurable variables for evaporator and
expander are then chosen for ORC system identification.

III. PRELIMINARIES
A. RBF neural networks model

Among various model types, Radial Basis Function (RBF)
neural network (NN) has been widely adopted due to its simple
structure and powerful approximation ability to model non-
linear systems.

The RBF network is a feed forward neural network with
one hidden layer as shown in Fig.2.

Consider a general multi-inputs and single-output (MISO)
RBF network, the mathematical model with m inputs and n
hidden nodes can be formulated as

y(t) =Y Oxoor(x(t); W) + (1) ()

k=1

where y(t) is the system output at sample time ¢, x(¢) € R™
is the input vector, ¢ (x(t);wy) denotes the radial basis

function, and wy, = [o},cl] € R™F! is the hidden layer
parameter vector which includes the width o, € R! and
centres ¢, € R™. 6 represents the output layer weight for
each RBF node, and &(t) is the modelling error at sample
time ¢. The radial basis function ¢ of input vector x(¢) is
chosen as Gaussian function defined as follows:

1
or(X) :exp(—QHX—ckHQ),k: 1,2,....,n (2)

Fig. 2. RBF network structure

B. PSO Optimization

Particle Swarm Optimization (PSO) is a popular swarm
intelligence method that was originally proposed in [22].1t
has been widely applied to optimization problems schedul-
ing, neural network training and task assignment. In ORC
identification models, PSO is used to optimize the nonlinear
parameters (center and width of nodes).

In PSO each particle in the swarm represents a possible
solution which moves through the problem search space seek-
ing an optimal or satisfactory solution . The position of each
particle is adjusted according to its velocity and the difference
among its current position, the best position it has found so
far, and the best position to date found by its neighbours [23].

Suppose x; denotes the ¢th particle in the swarm, v;
represents its velocity, p; is the best position it has found so
far, while p, denotes the best position from the entire swarm.
In inertia-weighted PSO [24, 25], v; and x; are updated as:

Vi = wv; + ceiri(p; — Xg) + cora(py — X;) (3)
Xi < X; + \'Z} (4)

where w is the inertia weight used to scale the previous
velocity term, c¢; and co are acceleration coefficients, and r;
and ro are two vectors comprising random values uniformly
generated between 0 and 1.



IV. FAST FORWARD RBF NODE SELECTION

To model a system using an RBF network, the structure
should firstly be determined, including the selection of neural
input X and the number of hidden layer nodes. The main
issues involved in constructing RBF network are selecting
the suitable nodes and optimizing non-linear parameters in
the basis function. Some studies optimize the basis function
parameters using gradient-based approaches, but they are often
trapped within a local optimum. If lots of nodes are used in
the RBF network, the number of the model parameters will
be too large and the computational cost can be extremely
high. Furthermore, it would cause over-fitting problem. To pre-
select the suitable nodes and optimize the RBF neural network
structure, a fast nonlinear model identification method (Fast
Recursive algorithm) is used.

The Fast Recursive algorithm (FRA) is a fast forward
method to select both model structure and estimate model
parameters [26]. In ORC identification models the FRA is
proposed to pre-select the RBF neural network nodes. The
relationship between the RBF hidden nodes and RBF output
can be formulated as a linear-in-the-parameters model shown
as (1); The radial basis function ¢, which has most net
contribution to the cost function can be selected based on the
FRA methods.

The FRA is introduced by defining a recursive matrix My
and a residual matrix Ry. Thus

M £@[®, k=1,---,n (5)
Ry 21— &M, '®] Ro21 (6)

where @7 € RV** contains the first k columns of the regres-
sion matrix ®. According to [26] and [27], the matrix terms

Ry, k=0, - ,n have the following attractive properties:
R T RT
Ript = Ry — — PR g1, n— 1 (7)
Pii1 RePrt1
RT:Rk* (Rk)QZRkv k=0,1,---,n 3
R.R;=R;R,=R;, i>j;¢j=0,1,---,n €))
0, rank(|[Pr,¢.]) =k
Ryop = %) ( i) B ; (10)
@5 #0, rank([Py, ¢;]) = k+1
j=01,--n
The cost function can now be rewritten as:
E(Py) =y Ryy (1n

In forward stepwise construction, the RBF nodes are opti-
mized once at a time. Suppose at the k-th step, one more RBF
node pg1 is to be added. The net contribution of py; to the

cost function can then be calculated as:

AE1(Pr.pri1) =y  (Ri — Ryg)y

Y Ripry1ph Riy
pz;_,_lepk-Fl
k
) "
= ® (12)
Pr1+1Prt1

where pgi)l £ Ripk+1. In this way, the candidate hidden

node will be selected continuously based on the cost function
for which each selected hidden node should make the maxi-
mum contributions.

V. FRA BASED RBF CONSTRUCTION ALGORITHM

With regards to RBF neural modelling, there are three key
steps, i.e. determination of the network size, optimization of
the basis function parameters and estimation of the output
weights.

In this modelling experiment, Root Mean-Squared Error
(RMSE) based cost function is formulated as the criterion for
PSO optimization. The RMSE is defined as follows:

SSE  [(y-y)T(¥ —vy)
N _\/ N

RMSE = (13)

where SSE is the sum-squared error, ¥ is the prediction value
of the RBF neural model and y is the measured data set,
and N is the number of samples. The implementation of the
RBF modelling procedure has three major steps illustrated as
follows.

A. determination of the network structure

The inputs and the number of hidden nodes are two keys for
RBF neural network construction. In this paper, considering
a MISO RBF network is used to model the ORC system, a
number of approaches could be used to determine the input
vectors [27, 28]. However in this paper, the trial and error
method is adopted to empirically select input vectors and some
input vectors will be chosen as the centres of the initial RBF
nodes. The application of the above methods to determine the
network construction will be further introduced.

B. node selection and parameters optimization

The number of hidden nodes will be selected using the FRA
method. To further improve the network performance, the non-
linear parameters oy, ¢ in (1) are then optimized using the
PSO algorithm. The cost function (RMSE) is chosen as the
fitness function for the optimization process.

C. output weights estimation
The output weights wy, in (1) is given as
-1
0=(s"0) ¢y
The detailed neural model construction procedure can be

summarized as follows.
1) Initialization:

(14)



Randomly chose 100 data samples as initial centers of RBF
hidden nodes;
2) Node selection:
a) Use FRA to select RBF nodes that contribute mostly
to the cost function reduction;
b) Repeat selection step until SSE criteria is achieved.
3) Parameter optimization for the RBF neural model using
PSO algorithm.

VI. EXPERIMENTAL RERULT

ORC system data obtained from North China Electric Power
University(NCEPU) is used for modeling the ORC system.
NCEPU has a 100 kW waste heat utilization power system
and has built mechanism models for the system. Experimental
results have demonstrated that the mechanism models can
produce satisfactory performance and the main operating
parameters for this ORC system are listed in Table I. The
generated power in ORC system is a complex function of all
parameters in the cycle. For system identification we want easy
measurable variables. It should be known that increasing the
expander torque means increasing the expander inlet pressure,
the pressure ratio over the evaporator is changed and this way
the output power is increased. So the expander torque has
a big effect on the evaporator pressure. In order to use the
easy measurable and big impact variables for ORC system
identification, the expander torque (N.m) is chosen as the
system input and the evaporator pressure (kPa) is chosen as the
system output in this experiment. During nominal operating
conditions, Pseudo-Random Binary Sequence (PRBS) was
adopted as the input signals to satisfy the persistent excitation
conditions. The expander torque data as well as evaporate
pressure data have 2000 samples respectively,as shown in Fig.
3. The sampling time has been set as 200s and data samples
are normalized so the range is between -1 and 1.

TABLE I
ORC SYSTEM OPERATING PARAMETERS

Operating Parameters Value
heat source temperature,®C 150
expander torque,N.m 12
heat source mass flow,kg/h 2020
pump rotate speed,rmp 115
working fluid R123
evaporator pressure, kPa 833
cooling water temperature,®°C 16-20
superheat,®C 39.2
cooling water mass flow,kg/h 2620

The model inputs are selected as Neyp(t — 1), Negp(t —
2),Negp(t —3), Po(t —1),Pe(t —2). Pe(t) is the ORC system
output. Negp(t) and P (t) are the expander torque and evapo-
rate pressure at current time respectively. Iy, {y in Negp(t—1y,) ,
P.(t—1,) are the delays of the expander torque and evaporate
pressure respectively. 600 continuous data samples selected
randomly from ORC test data were used for RBF neural
modeling and the other continuous 600 data samples were
used for RBF modeling validation. In this experiment, the
final numbers of RBF nodes after FRA selection is 7. The

1 T T T T T T

expander torgque

W

0 |
02 |
04 l
06 |

08

L L I L L L L L A
o 200 400 BOO 800 1000 1200 1400 1600 1800 2000

T T T T
evaporator pressure

L L I L L L L L L
o 200 400 BOO BOO 1000 1200 1400 1600 1800 2000

Fig. 3. ORC test data

total number of generations for PSO is set as 50 and the
population size is set to 20. Besides the proposed FRA-PSO-
RBF approach, random nodes selection which generates the
nodes parameters randomly is implemented respectively for
comparison purpose.

The simulation results are shown in Figures 5-8. It can be
seen that both the training and validation errors for the two
methods are small enough, indicating that the resultant models
are accurate enough to satisfy the ORC system operation,and it
also confirmed the good performance of the proposed param-
eters optimization method. The model optimization procedure
revealed that the two approaches reduced the training error
within less than 10 generations and after 30 generations, the
FRA-PSO-RBF approach began to outperform the PSO-RBF
approach without nodes selection. The training error along
generation with nodes selection for PSO optimization process
is illustrated in Figures 4.It can be observed that the training
error decreased rapidly within less than 5 generations and
finally reached nearly 4.5 x 1075 after 48 generations.

ORC model validation results are illustrated in Figures 7-8.
Here another 600 samples comprising data of the expander
torque as well as evaporate pressure are used as the validation
data set. It can be seen clearly that both these two approaches
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approximate the ORC Nexp-Pe curve well (Nexp is the ORC
model input and Pe stands for the ORC model output).
Validation errors for these two models are also given. With
nodes selection, the maximum spike in the overall error profile
is 1.5 x 10~%, which is better than the validation error without
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Fig. 6. training results and errors with nodes selection (Solid line:FRA-PSO-
RBF prediction; Dashed line: actual system output)

nodes selection(the maximum error is nearly up to 7 x 10~*
).The improvement is significant and this is largely due to
the introduction of the RBF nodes pre-selection rather than
randomly identifying hidden nodes. The average deviations
of model predictions from actual measurements are compared
in Table ILIt is clear that the two approaches have again
achieved satisfactory prediction accuracy as expected. The
model average deviation is as low as 1.7E~5 for the PSO-
RBF approach and 6 £~6 for the FRA-PSO-RBF approach
respectively on the validation dataset. It is clear that the FRA-
PSO-RBF model with nodes selection preformed better as well
on the validation data which shows its better generalization
capability.

TABLE 11
AVERAGE DEVIATION OF MODEL PREDICTIONS

Model method PSO-RBF without ~ FRA-PSO-RBF with
nodes selection nodes selection
Average Deviation Value 0.000017 0.000006

VII. CONCLUDING SUMMARY

In this paper, a novel RBF neural modelling approach is
proposed to model an ORC system in the waste heat process.
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To simplify the RBF model structure and improve model accu-
racy, the Fast Recursive algorithm (FRA) is used to pre-select
the centers of RBF neural network nodes. The contribution
of each selected RBF centre is reviewed, and insignificant
centres are replaced. Moreover, to further optimize the ORC
model, Particle Swarm Optimization (PSO) is used to optimize
the non-linear parameters in the RBF model. Compared with
the RBF model with randomly selected centre, the FRA-PSO-
RBF model with nodes selection performs better both on the
training and validation data sets, shows better model accuracy
and generalization capability.

The model, trained by data set obtained through a standard
test procedure, is applied to an ORC system for predicting
the evaporator pressure outputs. Although the model shows
acceptable approximation performance, some problems still
remain to be solved. Firstly, input selection is a key in
compact RBF configuration, but it is determined by trial and
error in this paper. Secondly, other optimization algorithms
such as Vortex Search optimization (VSO) [29], Teaching-
learning based optimization (TLBO) [30], and Imperialist
Competitive Algorithm (ICA) [31] can be used to improve
the model accuracy and generalization capability. Thirdly, the
heuristically optimized RBF model is more suitable for off-
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Fig. 8. validation results and errors with nodes selection (Solid line:FRA-
PSO-RBF prediction; Dashed line: actual system output)

line modelling due to its expensive computation efforts as
well as long training procedure. Some on-line identification
methods such as Kalman filters [32] can be used for building
ORC models for online real-time applications. Finally, when
load demand changes or the waste heat sources vary, some
advanced control strategies need to be applied to control the
ORC process in order to keep vital operating parameters within
allowable ranges.
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