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Abstract—The recently coined term “learning from label pro-
portions” refers to a new learning paradigm where training data
is given by groups (also denoted as “bags”), and the only known
information is the label proportion of each bag. The aim is then
to construct a classification model to predict the class label of an
individual instance, which differentiates this paradigm from the
one of multi-instance learning. This learning setting presents very
different applications in political science, marketing, healthcare
and, in general, all fields in relation with anonymous data. In
this paper, two new strategies are proposed to tackle this kind of
problems. Both proposals are based on the optimisation of pattern
class memberships using the data distribution in each bag and the
known label proportions. To do so, linear discriminant analysis
has been reformulated to work with non-crisp class memberships.
The experimental part of this paper sets different objetives: 1)
study the difference in performance, comparing our proposals
and the fully supervised setting, 2) analyse the potential benefits
of refining class memberships by the proposed approaches, and 3)
test the influence of other factors in the performance, such as the
number of classes or the bag size. The results of these experiments
are promising, but further research should be encouraged for
studying more complex data configurations.

Index Terms—weak supervision, linear discriminant analysis,
learning from label proportions

I. INTRODUCTION

The new term weak supervision [1] originates from the
need to tackle classification problems where the available
information is, as the research area indicates, weak, and not as
accessible as in a standard supervised classification problem
(where a label is associated to each pattern). An example is
the problem of learning a model using class-probabilities [2].
This is, for each pattern the known information is a vector
indicating the pattern probability of belonging to each of the
classes of the problem, and the final aim is to construct a pre-
diction model from these probabilities. Another example with
increased popularity is the semi-supervised learning setting
[3], where both labelled and unlabelled information is used to
construct the predictive model.

In this sense, the recently term known as learning from
label proportions (which can be framed under the notion of
weak supervision), has emerged and is receiving attention from
the machine learning research community [4], [5], [6]. This
paradigm study those learning problems where training data

are given as disjoint groups of patterns, and the only known
information are the proportions of the labels for each group
or bag. As in supervised classification, the objective remains
that of predicting the label for unseen individual instances,
in contrast to multi-instance learning, whose objective is to
predict a single label for a whole new bag. A wide range of
different applications can be found in the literature concerning
this type of problems, specially concerning anonymous data,
non-monitoring processes and all data with a black-box nature.
A clear example would be the creation of a system for poll
prediction (i.e. predicting what a citizen is going to vote).
Under this setting, the most commonly available data are
those obtained from polling stations, i.e. groups of citizens,
where we only have the proportion of their voting, rather
than the preferred party of each of these citizens.Although
semi-supervised problems have been extensively studied, the
paradigm from learning from label proportions (or aggregate
outputs) remains mostly unexplored [4], [5], [6], [7], [8],
[9], [10]. More specifically, probabilistic classifiers have been
considered [4], [5], [7], given that they work naturally with
pattern class-probabilities. Other algorithms have been adapted
as well, such as neural networks [8] or support vector machines
[8], [10]. One of these works have derived a complexity upper
bound for binary problems [5], proving that the complexity
scales exponentially with respect to the bag sample size.
Furthermore, it has been seen that the performance of such
algorithms decreases with the increase of the number of classes
in the problem. Despite the promising results of these works,
further research should be performed in this line, to adapt the
rest of classifiers in the literature and explore other hypotheses.

In this paper, a set of simple approaches are proposed
based on discriminant analysis [11] (being therefore useful
for classification and supervised dimensionality reduction),
although different classifiers could also be used. The main ob-
jective of our proposals is to refine (iteratively) a priori class-
probabilities (estimated through the given label proportions)
based on two sources: 1) pattern distribution or, alternatively,
2) estimated classifier probabilities. Instead of tackling this
problem using a transductive approach (i.e. trying to estimate
the original class labels before the learning process), we
reformulate a well-known classification strategy (discriminant



Fig. 1: Representation of the available information for four different learning paradigms. Each colour indicates a class (and
non-coloured patterns represent unsupervised patterns). In the case of label proportions the data are grouped into different bags
of patterns and the only supervised available information are the label proportions of each bag (represented by a coloured
rectangle). Note that, for visual simplicity, only some patterns have been grouped in a bag in the case of label proportions.

analysis) to deal with class-uncertainty. As stated before, two
approaches are derived: 1) a filter-based approach, based on
distances, and 2) a wrapper one, which uses the classifier itself
to approximate probabilities. A thorough set of experiments is
performed, using 28 benchmark datasets: 14 binary and 14
multiclass, with up to 21 classes (note that the multiclass
setting has been barely studied in this literature [6], [5],
[4], [10]). Our experiments try to answer experimentally to
different research questions: Firstly, is it possible to construct
a valid prediction tool, when we are only given bags of
data and the associated label proportions of each group (even
when no individual datum is labelled)?. Secondly, could this
approach compare to the fully supervised case, obtaining
similar results?. And finally, does the data complexity (in this
case measured by the bag size and number of classes) poses
a serious handicap in this learning area?.

The rest of this paper is organised as follows: Section 2
includes previous notions and the description of the proposed
methodologies; Section 3 presents the experimental part and
analyses the results; and finally, Section 4 outlines the conclu-
sions and future work.

II. METHODOLOGY

In the standard supervised classification setting the objective
is to assign an input vector x ∈ Rm to one of K classes ck,
where k ∈ {1, . . . ,K}, where N be the number of sample
patterns and Nk is the number of samples of the k-th class.

The final aim is to compute a function f : X → Y using a
sample D = {xi, yi}Ni=1 ∈ X × Y .

Concerning the learning from label proportions setting,
suppose, as said, a dataset (composed of N data) and divided
into b bags D = B1 ∪ B2 ∪ . . . ∪ Bb, where Bi ∩ Bj = ∅,
∀i 6= j. A bag Bi = {xi1,xi2, . . . ,xiNi} groups Ni patterns
and contains the only supervised information: the counts Cik

which correspond to the number of patterns in Bi that belong
to class ck. Similarly, bag class information can be given in
terms of proportions, pik = Cik

Ni
∈ [0, 1] with

∑
ck∈Y pik = 1.

Fig. 1 shows a graphical comparison between this learning
paradigm and other common ones. For visual simplicity, in
the case of label proportions not all the patterns are grouped.
As stated, the only supervised information known is the label
proportions per bag (shown in the figure by different coloured
proportions in the rectangle associated to each bag). The
difficulty in this case resides in assigning each instance to
its class, which can be thought as uncertainty of the label
proportions. Since each group has a given label proportion
and could involve a different amount of uncertainty, two type
of bags could be defined: full bags (with zero uncertainty,
composed only of patterns from the same label) and non-full
bags (with a mix of patterns from different classes). These
terms will be used throughout the paper. Note that in the
learning from label proportions case represented in Fig. 1 there
are two non-full bags and one full bag.

The technique proposed in this paper considers the use



of Linear Discriminant Analysis (LDA) [11].In this case,
although originally LDA does not consider probabilities, its
formulation can be easily changed to take them into account.
The rest of this section describes the fully-supervised LDA
and presents the proposed method.

A. Fully-supervised LDA

This is one of the pioneer and leading techniques in machine
learning, being both used in dimensionality reduction and clas-
sification [11]. The objective is to compute the optimum linear
projection for the data (the one which separates the classes
in the best way possible). To do this, this technique considers
two objectives: the maximisation of the between-class distance
and the minimisation of the within-class distance, by the use
of covariance matrices (Sb and Sw, respectively) and the so-
called Rayleigh coefficient (J(β) = βTSbβ

βTSwβ
, where β is the

projection). To achieve this, the K leading eigenvectors, asso-
ciated to the highest eigenvalues of S−1w · Sb, are calculated,
and these compose the projection function, which can be later
used as a discriminant or visualisation technique.

B. Weakly-supervised LDA

As said, LDA represents the class distributions using covari-
ance matrices. In order to combine label proportions with this
classifier and assist this representation, the class means and
within-class covariance matrix can be rewritten as follows:

µk =

∑b
i=1

∑Ni

j=1 pikx
ij∑b

i=1 pik ·Ni

, k = 1, . . . ,K, (1)

Sw =
1

p

K∑
k=1

b∑
i=1

Ni∑
j=1

pik[x
ijk − µk][x

ijk − µk]
T , (2)

where pij = {pi1, . . . , piK}, p =
∑K

k=1

∑b
i=1 pik · Ni, and

pik is the a priori class probability for Bi and ck (obtained
from the initial label proportions). By this approach, we
directly consider that all the data in this bag have the same
probability (pik). This formulation will allow patterns with a
higher membership for class ck to contribute to a larger extent
to the computation of the mean and within-class covariance
of the class. The technique here described is referred in the
experiments to as Simple Weighting Scheme (SWS-LDA).

C. A distance-based filter approach to weakly-supervised LDA

Label proportions are generally used as a first estimation of
the class probabilities per instance. In this sense, our proposal
tries to improve this estimation and not assume the same that
probability is equal for all the bag data. Our first idea is that
these class probabilities can be iteratively improved using on
data distribution in the input space. To this end, the method
here proposed relies on the previously presented definition of
class-mean (Eq. 1) and makes use of distance relations. One of
the crucial characteristics of this proposal is that the original
label ratios are maintained (although individual proportions
change), since this is the only true supervised information
available.

For a graphical description of the main idea behind this
technique see Fig. 2, where a hypothetical bag B1 of three
patterns is represented. It can be seen that the pattern that
will have the greatest uncertainty will be x12, since it lies on
the intersection of c1 and c2. For this example, the original
label proportions are p11 = 2

3 and p12 = 1
3 (i.e. two patterns

within B1 belong to c1 and one of them to c2). It is clear that
these initial probabilities can be improved based on the data
distribution (specially for x11 and x13). In the absence of prior
information, x12 (which lies in an overlapping region between
c1 and c2), would have the same probability of belonging to
both classes. However, as the original label proportions are
considered in the refinement step, x12 would be assigned in
this case to c1.

The first step of our approach is the computation of the
means per class using Eq. 1, where each pattern xij associated
to bag Bi contributes with a weight of pik to the computation
of µk. In this sense, µk estimates the real value of the mean for
class ck. The second step is to compute the relative distance
of each pattern to the mean of each class using the previous
approximated means:

P (yij = ck|xij) = p∗ijk = 1− d(xij , µk)∑K
z=1 d(x

ij , µz)
, (3)

where j = {1, . . . , Ni}, k = {1, . . . ,K}, and d represents
a distance relation (in our case the Euclidean distance). The
vector p∗ij = {pij1, . . . , pijK} provides information about the
relative closeness of xij to all the classes, where

∑K
k=1 p

∗
ijk =

1.
The next step is to refine the associated probabilities based

on this distance relation. Note that it is crucial to maintain the
original ratios pik (as this is the only true information about
the labelling). To maintain these ratios while optimising the
different weights per pattern, the following formulation can be
used:

wijk =
p∗ijk∑Ni

z=1 p
∗
izk

· Cik, (4)

where the first term represents a ranking of relative distances of
the patterns inside bag Bi, and wijk represents the associated
weight of pattern xij with respect to class ck. Note this
formulation ensures

p∗
ijk∑Ni

z=1 p∗
izk

= 1, k = 1, . . . ,K, and thus,
when multiplying this by Cik, the original label proportions
are maintained.

For the sake of understanding, analyse the computation of
these weights for the example in Fig. 2:

p∗111 = 0.750, p∗121 = 0.516, p∗131 = 0.302

p∗112 = 0.250, p∗122 = 0.484, p∗132 = 0.698

w111 = 0.957, w121 = 0.658, w131 = 0.385

w112 = 0.175, w122 = 0.338, w132 = 0.487

In this case, it can be seen that the initial class probabilities
(derived from the label proportions) are refined. x11 has
increased its weight for c1 and x13 for c2 (note that initial class
probabilities for this pattern were p11 = 2

3 and p12 = 1
3 ). In



Fig. 2: Representation of the main idea behind the proposal for a toy example where p11 = 2
3 and p12 = 1

3 . In this case, these
initial class probabilities can be further improved computing distances to class centroids, which results in x11 and x12 having
a greater probability of belonging to c1 and x13 to c2.

the case of x12, although the original distance relation should
indicate that this pattern is closer to c2, our methodology is
able to fix this.

By this strategy, the initial probabilities pik (for pattern
xij) are updated based on the classes structure, and a new
estimated weight wijk is obtained. This process is made
iterative, refining the class means using these weights until
convergence as follows:

µ̂k =

∑b
i=1

∑Ni

j=1 wijkx
ij∑b

i=1 wik ·Ni

. (5)

where w =
∑b

i=1

∑Ni

j=1

∑K
k=1 wijk. Fig. 3 shows the pseu-

docode of this distance-based weight refinement procedure,
where C = {Cik; i = 1, . . . , b; k = 1, . . . ,K}.

Pseudocode for Filter Weighting Scheme (FWS)
• Input: training data D, label proportions C.
• Output: pattern-weight per class w.
t← 1
while not stopping criterion

1. if t = 1
Compute µ using D and p, Eq. (1).

else
Compute µ using D and w, Eq. (5).

end
2. Compute pattern distances to µ: d(xij ,µ).
3. Rank distances using Eq. 3 (p∗).
4. Compute w using Eq. 4, p∗ and C.
6. t← t+ 1

end while

Fig. 3: Different steps considered for the Filter Weighting
Scheme to obtain the final weights per pattern.

After applying this procedure, we obtain a set of optimised
weights. At this point different classifiers could be used.
However, we use the well-known LDA algorithm, because of
its natural extension to this paradigm. The class mean and
covariance matrices used in LDA are computed in this case
using the estimated weights using Eq. (5) and:

Ŝw =
1

w

K∑
k=1

b∑
i=1

Ni∑
j=1

wijk[x
ijk − µk][x

ijk − µk]
T . (6)

The projection β is computed solving an eigenvector problem
via the Rayleigh quotient. The technique here presented is
referred in the experiments to as Filter Weighting Scheme
(FWS-LDA).

D. A wrapper approach to weakly-supervised LDA
Class-memberships could also be refined using weak clas-

sifiers, which learn a model based on weak information. More
specifically, the classifier can be constructed in each iteration
using the estimated weights w. Class-probabilities could be
then estimated from the obtained model (for LDA using the
projection and a soft-max function). These probabilities are
used to further refine w considering the number of instances
in Bi that belong to class label ck (i.e., Cik).

In the same vein than in Sections II-B and II-C, the strategy
here starts computing the class means using Eq. (1), where
each pattern xij of group Bi contributes with a weight of
pik to the computation of µk. Apart from these means per
class, the corresponding LDA model is trained as before, using
the associated covariance matrix computed by Eq. (2) and the
Rayleigh coefficient.

Once that an initial β has been obtained, the probability
that pattern xij has of belonging to class ck can be estimated
from the projection using the soft-max function:

P (yij = ck|xij) = p∗ijk =
e((x

ij)Tβk)∑K
z=1 e

((xij)Tβz)
. (7)



In the next phase, these probabilities will be refined using
the initial proportions applying Eq. (4). This refinement is
captured in the associated weights w, which are then used
again for constructing the mean per class, the covariance
matrix and a new LDA model, using Eqs. (5) and (6). This
process of computing the LDA projection using the pattern
weights and estimating the new weights using the soft-max
function and label proportions per bag is also repeated until
convergence. Fig. 4 shows the pseudocode of this classifier-
based weight refinement procedure, where C = {Cik; i =
1, . . . , b; k = 1, . . . ,K}.

Pseudocode for the Wrapper Weighting Scheme (WWS-
LDA)
• Input: training data D, label proportions C.
• Output: pattern-weight per class w.
t← 1
while not stopping criterion

1. if t = 1
Compute µ using D and p, Eq. (1).

else
Compute µ using D and w, Eq. (5).

end
2. Compute LDA projection β.
3. Estimate probabilities using Eq. 7 (p∗).
4. Compute w using Eq. 4, p∗ and C.
5. t← t+ 1

end while

Fig. 4: Different steps considered for the Wrapper Weighting
Scheme to obtain the final weights per pattern.

The method here proposed is referred in the experiments to
as Wrapper Weighting Scheme (WWS-LDA).

III. EXPERIMENTS

The experimental design and the results obtained are pre-
sented in this section.

The most common relevant source of information for learn-
ing from label proportion is private data. Consequently, there
are not publicly available datasets. In this way, synthetic or
classical supervised datasets are usually considered in the
literature, after transforming them into label proportions with
the objective of validating the algorithms.

A set including 28 supervised benchmark datasets (with
14 binary classification problems and 14 multi-class ones,
some of them with more of 20 classes) are used to compare
the two approaches proposed in this paper. Different bag
sizes are tested (more specifically, 3, 5 and 10 patterns per
bag) to stablish conclusions in the influence of this param-
eter in the classifier performance. The bags are randomly
constructed, all algorithms being applied to same bags. The
standard supervised algorithm is also compared to learning
from label proportions, in order to check the consequences of

TABLE I: Characteristics of the datasets used for the ex-
periments: number of patterns (N), features (m), classes (K)
and baseline mean and standard deviation Acc LDA fully
supervised results.

Dataset N m K LDA Acc

Binary datasets

appendicitis (AP) 106 7 2 86.73± 9.40
bands 365 19 2 66.31± 4.36
breast 286 15 2 70.28± 5.96
card 690 51 2 86.38± 4.17
colic 368 60 2 82.23± 3.88
credit-a 690 43 2 85.77± 4.72
haberman 306 3 2 74.19± 4.94
heart 270 13 2 82.96± 5.00
hepatitis 155 19 2 84.54± 6.28
housevotes 232 16 2 96.96± 3.58
mammographic 830 5 2 80.36± 4.65
pima 768 8 2 77.60± 4.29
sick 3772 33 2 95.57± 0.90
wisconsin 683 9 2 96.04± 1.84

Multiclass datasets

cleveland 297 13 5 58.97± 7.60
dermatology 358 34 6 96.07± 3.58
ecoli 336 7 8 78.29± 4.62
flare 1066 38 6 75.70± 3.24
glass 214 9 6 45.78± 7.66
hayes-roth 160 4 3 54.38± 14.15
horse 364 58 3 65.16± 8.38
hypothyroid 3772 33 4 93.03± 0.28
iris 150 4 3 98.00± 4.50
nursery 12960 26 5 91.13± 0.80
primary-tumor 339 23 21 25.68± 5.09
soybean 683 84 19 94.14± 2.94
wine 178 13 3 98.86± 2.41
zoo 101 21 7 95.00± 5.27

weekly supervised information in the final performance of the
classifiers.

Different methods haven been compared in this paper:

• A standard fully supervised version of Linear Discrimi-
nant Analysis (LDA), where the original labels are used
for learning. Although this information is not available
for learning from label proportions, these results are
considered as a baseline to study whether the paradigm
of the algorithms developed might yield similar results to
the complete supervised setting in this case.

• Simple Weighting Scheme combined with the LDA
method (SWS-LDA). This method is described in Section
II-B, the class weights for each instance being fixed
using the initial label proportions. Depending on the bag
size, the results of this method are given three different
acronyms: SWS-LDA-3, SWS-LDA-5 and SWS-LDA-
10.

• The method Filter Weighting Scheme combined with the
LDA technique (FWS-LDA) is described in Section II-C,
the class weights being optimised by a distance-based
strategy. The results for this method are referred to as
FWS-LDA-3, FWS-LDA-5 and FWS-LDA-10, depend-
ing on the bag size.

• Finally, a Wrapper Weighting Scheme combined with the



LDA technique (WWS-LDA) is considered. The method-
ology is the one introduced in Section II-D, the class
weights being optimised by a classifier-based strategy.
In this case, the results are referred to as WWS-LDA-3,
WWS-LDA-5 and WWS-LDA-10.

The only parameter for FWS and WWS methods is the stop
criterion. The algorithms is considered to have converged when
the total change for the estimated weights is less than 10−5.

In order to measure the performance of the different clas-
sifiers obtained, we consider the accuracy (Acc), i.e. the
percentage of correctly classified patterns:

Acc = 100 · 1
N

N∑
i=1

Jŷi = yiK, (8)

where J·K is the indicator function (being 1 if the condition is
true, and 0 otherwise) and ŷi is the predicted target for xi.

A 10-fold partition procedure is used for the experimental
design. TABLE I presents the characteristics of the 28 datasets,
including the number of instances (N ), input variables (m)
and classes (K). The fully supervised LDA results can also
be found in this table. Note that we are considering multiclass
datasets with up to 21 classes, which poses a serious handicap
for the setting of learning from label proportions.

TABLE II shows the complete set of results, the best
performing algorithm for each bag size being marked in bold
face, while the second one is marked in italics. Now, different
issues are discussed from this table.

If we start by comparing the values obtained for FWS-LDA-
3 to the results of fully supervised LDA in TABLE I, it is
clear that, generally, the fully supervised setting leads to results
which are better or similar to those of the label proportions
proposal. In binary datasets, similar performance is obtained
for six datasets (considering a range of 1% accuracy), the
performance is better in seven cases (the difference being
larger than 1% of accuracy), and it is worse for one dataset
(the range being larger than 1%). When considering the same
ranges in the multiclass datasets, supervised LDA obtains
similar results in four datasets, better in nine datasets and
worse in one.

If we compare WWS-LDA-3 to the supervised LDA
method, when analysing binary datasets, LDA and WWS-
LDA-3 are similar in five cases (range within 1%), LDA is
better in seven datasets (range larger than 1%), and it is worse
for two datasets. The same comparison for multiclass datasets,
using the same ranges, establishes that the supervised approach
is similar in seven datasets, better in six cases and worse in
one.

Taking into account the difficulty inherent to learning from
label proportions, the results are acceptable when compared to
the supervised version of the algorithms proposed. However,
there is still room for improvement, what makes clear that the
proposals of this paper and other existing approaches need
to be improved (given the additional problems involved in
multi-class datasets). In any case, the methodologies presented
in this paper seem to reconstruct the information about the

original labels for many of the datasets by using only weakly-
supervised information.

On the other hand, by examining TABLE II, we can con-
clude that the process of adjusting the class probabilities by the
iterative methods (FWS-LDA and WWS-LDA) improves the
results with respect to considering only the initial probabilities
(SWS-LDA) independently of the bag sizes (FWS-LDA being
better than SWS-LDA for 58 datasets out of 84, and WWS-
LDA wining in 53 datasets). As an example, consider the
significant difference of performance for iris and wine datasets.
Moreover, WWS-LDA seems to obtain slightly better results
than FWS-LDA, WWS-LDA obtaining the best performance
of all methods for 50 out of 84 datasets. Finally, when more
difficult problems are considered (i.e. when the size of the bags
is larger or when the number of classes is increases), FWS-
LDA seem to yield similar results to SWS-LDA, the results
LDA and WWS-LDA being significantly better. This is very
clear for some datasets such as zoo. The class probabilities
are harder to be optimised with this kind of datasets for all
methods which learn a classifier from only label proportions,
specially if only a filter approach is considered. However,
the wrapper method (WWS-LDA) leads to good performance
for large bag sizes and for datasets with many classes: the
difference of performance favouring WWS-LDA with respect
to FSW-LDA and SSW-LDA is very high for wine, soy-bean,
and iris datasets, when using 5 and 10 patterns per bag.

To conclude the analysis of results, TABLE II also in-
cludes the mean results and rankings for all methods and
configurations considered (different bag sizes and number of
classes). From these results, it is clear that the filter and wrap-
per methods perform quite similarly for binary classification
problems. Nonetheless, WWS-LDA shows better results when
considering more complex configurations (larger bag sizes
and multiple classes), where the difference of performance
is 12, 25% on average for multiclass datasets and bags of
10 instances. Note also that WWS-LDA involves a higher
computational cost.

IV. CONCLUSIONS

The approaches developed in this paper are contextualised
on the topic of learning from label proportions, where the su-
pervised information available is the label proportion for each
bag of data. The methods here proposed make use of linear
discriminant analysis and are based on an iterative refinement
of class probabilities, one of them based on the position of
patterns in the input space (acting as a filter approach for
LDA) and the other based on the estimated probabilities of
LDA (wrapper approach). The final model is constructed using
these refined weights to estimate the class distributions (i.e.
mean per class and covariance matrices). Our experiments
have shown that our approaches improve the result, leading
to a promising accuracy even when considering multiclass
datasets. Moreover, our experiments have also proven that the
complexity of such problems grows with the bag size and
number of classes.



TABLE II: Acc test experimental results obtained (in mean and standard deviation).

Binary SWS-LDA-3 FWS-LDA-3 WWS-LDA-3 SWS-LDA-5 FWS-LDA-5 WWS-LDA-5 SWS-LDA-10 FWS-LDA-10 WWS-LDA-10

appendicitis 79.27± 3.55 85 .82 ± 8 .36 89.55± 8.62 80.18± 2.77 83.91± 4.70 83 .09 ± 10 .46 80.18± 2.77 83 .00 ± 5 .88 83.91± 9.21
bands 65.47± 2.70 65.47± 2.99 62 .74 ± 7 .94 63.83± 1.27 63.83± 1.80 57 .24 ± 6 .37 63.30± 1.02 63.30± 1.02 58 .09 ± 7 .29
breast 70 .30 ± 1 .43 71.70± 2.82 68.17± 6.79 70.28± 1.69 70.28± 1.69 68 .84 ± 7 .30 70.64± 1.49 70 .30 ± 1 .43 67.44± 8.67
card 84 .49 ± 6 .07 84.20± 5.89 85.65± 3.58 75.51± 4.71 76 .52 ± 5 .15 84.93± 3.50 61.01± 3.51 62 .61 ± 4 .03 85.36± 3.45
colic 72.02± 6.20 73 .91 ± 5 .44 81.25± 4.52 66.88± 6.94 67 .95 ± 6 .13 75.03± 8.92 64.41± 2.89 65 .50 ± 3 .46 73.37± 11.80
credit-a 81.88± 3.07 82 .32 ± 3 .33 84.78± 4.39 76.67± 5.53 79 .13 ± 4 .98 84.64± 4.69 62.75± 4.21 64 .93 ± 3 .73 84.93± 5.03
haberman 73.20± 1.25 73 .54 ± 2 .25 76.15± 4.03 73.53± 1.00 73 .86 ± 1 .40 74.19± 4.91 73.53± 1.00 73 .86 ± 1 .40 73.85± 4.38
heart 77 .78 ± 7 .20 82.59± 4.95 77.41± 8.63 69.63± 7.57 76.67± 6.06 76 .30 ± 8 .41 61.85± 3.51 70 .37 ± 8 .00 73.33± 10.00
hepatitis 80 .63 ± 4 .36 81.29± 4.74 74.79± 7.69 80 .00 ± 1 .86 81.29± 4.74 75.38± 7.68 79 .38 ± 2 .38 79 .38 ± 2 .38 80.13± 11.35
housevotes 93.48± 6.87 95 .22 ± 4 .78 96.96± 3.58 90.07± 6.81 91 .38 ± 4 .59 96.96± 3.58 75.85± 9.34 89 .22 ± 6 .87 95.65± 5.80
mammographic 80.72± 4.29 80 .60 ± 4 .15 78.67± 4.44 80.72± 4.95 80 .60 ± 4 .11 77.71± 2.91 78 .43 ± 6 .26 80.24± 4.41 77.11± 3.01
pima 70.06± 2.88 74.22± 4.17 73 .31 ± 3 .06 65.50± 1.17 68 .62 ± 1 .68 70.19± 5.83 64.98± 0.59 65 .37 ± 0 .84 67.32± 4.10
sick 93.88± 0.08 93.88± 0.08 92 .58 ± 2 .06 93.88± 0.08 93.88± 0.08 90 .27 ± 2 .51 93.88± 0.08 93.88± 0.08 88 .23 ± 2 .70
wisconsin 85.79± 3.96 95 .31 ± 2 .06 95.46± 1.61 75.10± 4.37 95 .16 ± 1 .56 95.32± 1.80 65.01± 0.48 95.31± 1.67 95 .02 ± 1 .42

Mean 79.21 81.43 81 .25 75.84 78 .79 79.29 71.09 75 .52 78.84

Ranking 2.36 1.71 1 .93 2.46 1.68 1 .86 2.54 1 .75 1.71

Multiclass SWS-LDA-3 FWS-LDA-3 WWS-LDA-3 SWS-LDA-5 FWS-LDA-5 WWS-LDA-5 SWS-LDA-10 FWS-LDA-10 WWS-LDA-10

cleveland 54.22± 1.22 54 .56 ± 1 .85 57.57± 6.11 53.89± 0.89 53.89± 0.89 50 .86 ± 9 .18 53.89± 0.89 53.89± 0.89 49 .79 ± 7 .54
dermatology 91.61± 3.76 93 .29 ± 3 .78 96.07± 3.58 85.74± 7.52 87 .12 ± 8 .10 96.36± 2.98 53.09± 4.52 56 .15 ± 4 .69 95.23± 4.04
ecoli 56.85± 4.95 58 .32 ± 4 .67 75.00± 4.00 48.52± 5.11 51 .24 ± 5 .83 71.69± 4.49 43 .15 ± 2 .24 43 .15 ± 2 .24 62.21± 5.33
flare 75.33± 3.33 75 .51 ± 3 .29 75.61± 3.28 71.67± 4.20 72 .51 ± 3 .74 75.23± 3.47 37.23± 2.98 38 .26 ± 3 .74 74.30± 3.29
glass 32.73± 0.78 32.73± 0.78 32.73± 0.78 32.73± 0.78 32.73± 0.78 32.73± 0.78 32.73± 0.78 32.73± 0.78 32.73± 0.78
hayes-roth 45.63± 12.52 47 .50 ± 12 .22 60.00± 9.41 44.38± 9.06 45 .00 ± 10 .54 51.25± 9.22 35.63± 8.36 38 .13 ± 10 .40 53.75± 12.22
horse 67.33± 6.31 67.33± 6.13 60 .15 ± 9 .41 63.48± 4.74 62 .39 ± 5 .15 54.69± 7.96 61.82± 1.69 61.82± 1.69 58 .88 ± 10 .55
hypothyroid 92.52± 0.63 92.55± 0.83 88 .34 ± 2 .30 92.50± 0.56 92 .42 ± 0 .59 89.98± 3.37 92.34± 0.34 92.34± 0.34 88 .34 ± 2 .62
iris 84.00± 10.04 85 .33 ± 11 .24 98.00± 4.50 82.67± 11.42 85 .33 ± 10 .80 98.00± 4.50 77.33± 7.17 84 .00 ± 9 .53 98.00± 4.50
nursery 90 .24 ± 0 .71 90.25± 0.75 89.97± 0.84 89.43± 0.72 89 .48 ± 0 .70 88.97± 1.13 86.39± 0.65 86 .50 ± 0 .60 87.99± 0.98
primary-tumor 24.79± 1.64 24.79± 1.64 24.79± 1.64 24.79± 1.64 24.79± 1.64 24.79± 1.64 24.79± 1.64 24.79± 1.64 24.79± 1.64
soybean 91.94± 2.45 92 .08 ± 2 .72 93.26± 2.54 89.15± 3.30 89 .30 ± 3 .36 93.41± 2.80 80 .23 ± 3 .23 80.08± 4.26 90.62± 2.24
wine 89.90± 6.82 92 .71 ± 5 .33 99.41± 1.86 86.54± 11.30 93 .89 ± 6 .65 98.86± 2.41 78.69± 9.32 87 .68 ± 7 .73 98.86± 2.41
zoo 79.09± 12.07 80 .09 ± 12 .56 94.00± 5.16 59.36± 8.88 62 .36 ± 12 .28 89.09± 11.98 46.55± 6.68 47 .55 ± 6 .33 83.09± 15.72

Mean 69.73 70 .50 74.64 66.06 67 .32 72.57 57.42 59 .08 71.33

Ranking 2.61 1 .82 1.57 2.39 1 .89 1.71 2.43 2 .00 1.57

As future work, this algorithm can be extended to deal with
nonlinear decision boundaries using the kernel trick, and tested
in a more extensive set of cases, comparing it to other related
approaches. The ideas of learning from label proportions
could be extended to other classification paradigms, such
as monotonic or ordinal classification, where this type of
problems also arise.
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