
Solving Assembly Line Balancing Problems with Fish School Search algorithm

Isabela M. C. de Albuquerque,
João Monteiro Filho,

Fernando Buarque de Lima Neto and
Alany Maria de Oliveira Silva

Department of Computer Engineering
Polytechnical School of Pernambuco

Recife, Brazil
Email: {imca,jbmf,fbln,amos}@ecomp.poli.br

Abstract—Assembly lines constitute the main production
paradigm of the contemporary manufacturing industry. Thus,
many optimization problems have been studied aiming to
improve the efficacy of its use. In this context, the problem
of balancing an assembly line plays a key role. This problem
is of combinatorial nature and also NP-Hard. For this reason,
many researchers on computational intelligence and industrial
engineering have been conceiving algorithms for tackling many
versions of assembly line balancing problems using different
procedures. In this paper, the Fish School Search algorithm and
a variation of it that incorporates a routine to avoid stagnation
of the search process were applied in order to solve the Simple
Assembly Line Balancing Problem-type 1. The results were
compared with an exact solution procedure named SALOME
and also with the Particle Swarm Optimization algorithm. Both
proposed procedures were able to achieve good results and
the stagnation avoidance routine incorporated to FSS allowed
more uniform distributions of tasks among workstations in the
assembly line and converged faster to optimal solutions.

1. Introduction

As the main production system of the current manufac-
turing industry, the assembly line has its invention credited
to Henry Ford, who in 1913 started the serial production
of Ford automobiles. This innovative solution is known to
be one of the most important technical innovations of the
industrial age [1]. Thanks to the use of assembly lines, the
production cost of an automobile has decreased drastically.
Consequently, final customer prices decreased and the mar-
ket experimented a considerable sales improvement [2].

Formally, an assembly line is a flow based production
system in which work units, denominated workstations, are
disposed in a serial manner [3]. Work pieces travel along the
line moved by a transport system. One of the main elements
related with an assembly line productivity is the distribution
of assembly tasks on each workstation, i.e. balancing the
assembly line. The set of problems regarding balancing
assembly lines is known as the Assembly Line Balancing
Problem (ALBP) family.

It is important to highlight that all relevant problem
versions of the ALBP family are known to be combinatorial
NP-Hard problems [4]. Hence, there has been a relevant
research effort performed in order to solve these problems
with metaheuristic procedures such as Genetic Algorithms
[5] and Ant Colony Optimization [6]. A detailed review of
problem versions and solutions procedures is provided by
Sivasankaran and Shahabudeen [7].

From the literature reviewed, it is noticeable that mainly
discrete domain metaheuristic approaches such as the afore-
mentioned Genetic and Ant Colony algorithms have been
employed in order to solve ALBP instances. The applica-
tion of continuous optimization procedures such as Particle
Swarm Optimization is rare in this particular family of
problems [8]. Hence, in this work we intend to verify
the effectiveness in the application of a continuous opti-
mization technique in order to solve combinatorial discrete
optimization tasks. This is important once a validation of
this sort of approach would allow more general applications
of metaheuristic procedures.

Fish School Search (FSS) algorithm embeds an inherent
capability of automatically to choose if the search will
be focused in an exploration or exploitation process [9].
Therefore, we verify if this specific technique is an effective
option to solve ALBPs once the mapping procedures applied
in order to convert continuous position arrays into discrete
permutations use to generate plateaus in the search space.

In addition, a novel version of FSS, named FSS-
Stagnation Avoidance Routine (FSS-SAR), is also applied
in the solution of balancing problems. This version
incorporates a mechanism responsible to enhance FSS’s
capability of avoiding that searching entities get trapped
in plateaus during the search process [10]. Either the
original (named Vanilla) and SAR versions were applied
to solve three instances of the selected ALBP version with
different complexity levels. Results obtained were validated
using the exact solution procedure SALOME, a Branch
and Bound technique developed for solving ALBPs, and
also compared with the results achieved using the Particle
Swarm Optimization (PSO) algorithm [11].

This paper is organized as follows: in Section 2 we
provide some definitions and a brief description of the state-
of-the-art of the Simple Assembly Line Balancing Problem.
In Section 3 FSS algorithm and its operators are described.
In Section 4 the solution procedure proposed in this paper
is described. Section 5 provides details about parameters se-
lection and Section 6 describes the results obtained. Section
7 presents conclusion and future works.

2. Simple Assembly Line Balancing Problem

In general, the problem regarding partitioning assembly
work among workstations while optimizing some perfor-
mance criteria is defined as an ALBP [4]. This assignment
problem is normally limited in each station by the cycle
time c which is defined as the maximum or mean time for
each work cycle on a single station. Some ALBP different
versions are very often tackled in literature [7]. A frequently
studied family of ALBP due to its simplicity is the Simple
Assembly Line Balancing Problem (SALBP). It can be
defined as a member of ALBP in which [12]:

• There is no product variety: only one variant of a
single homogeneous product is manufactured;

• There is no process alternatives: all operations are
performed in a predetermined manner;

• The assembly line consists of stations arranged in a
serial manner and being independent of each other,
i.e., each workplace belongs to a single station;

• Static and deterministic task times;
• Indivisibility of tasks: an operation cannot be split

up between multiple workplaces;
• One workplace per workstation: each workstation

contains exactly one workplace.

SALBP is known to be a simplified balancing problem
version due to many features of real assembly lines which
are not taken into account [13]. However, there is a relevant
research effort in recent years in order to tackle this problem
with different approaches. Metaheuristic procedures have
been playing an important role in its solution. In the field
of Evolutionary Computation, Differential Evolution [14],
[15], [16], Genetic Algorithms [17], [18] and Genetic Pro-
gramming [19] procedures were applied. Swarm intelligence
approaches were utilized with modified versions of Particle
Swarm Optimization [20] and Ant Colony Optimization
[21], [22]. Furthermore, specialist heuristics [23], [24] and
exact procedures [25], [26] were proposed recently and
stability analysis was studied [27], [28]. The design of
effective priority rules was described in the work of Otto
and Otto [29].

SALBP family contains four different problem versions:
SALBP-1 minimizes the number of stations for a given
cycle time; SALBP-2 minimizes the cycle time for a given
number of stations; SALBP-E is a multi-objective version
that tries to simultaneously optimize both number of stations
and cycle time; SALBP-F consists on finding a feasible
assignment given cycle time and number of stations. The
present work is intended to solve SALBP-1.

3. Fish School Search Algorithm - Vanilla Ver-
sion

First proposed by Bastos-Filho and Lima-Neto [9], FSS
is a population based search algorithm inspired in the be-
havior of swimming fishes that expand and contract while
looking for food. Each fish n-dimensional location repre-
sents a possible solution for an optimization problem. The
algorithm makes use of a new feature named weight for all
fish which represents cumulative account on how successful
has been the search for each fish in the school. FSS is
composed of Feeding and Movement operators, the latter
being divided into three sub-components. The first one is the
Individual component of the movement, in which every fish
in the school performs a random move looking for promising
regions in the search space. This component is computed
using the following equation:

xi(t+ 1) = xi(t) + rand(-1,1)stepind, (1)

where xi(t) and xi(t+1) represent the position of a fish i be-
fore and after the individual moment operator, respectively.
rand(-1,1) is a n-dimensional vector which components
are uniformly distributed random numbers varying from -
1 up to 1. stepind is a parameter that defines the maximum
displacement allowed in this movement. A new position
xi(t + 1) is only accepted if fitness improves as position
changes. If it is not the case, the fish remains in the same
position and xi(t+ 1) = xi(t).

After computing the Individual component for each fish,
the next operator to be applied is the Feeding. This is
performed in order to update fishes weights W according
to:

Wi(t+ 1) = Wi(t) +
∆fi

max(|∆f |)
, (2)

where Wi(t) is the weight parameter for fish i, ∆fi is
the fitness variation between the last and new positions
and max(|∆f |) represent the maximum fitness variation
among all fishes in the school. W is only allowed to vary
between 1 and Wscale, which is an user-defined parameter.
Weights of all fishes are initialized with value Wscale/2.
After feeding all fishes, the Collective-Instinctive component
of the movement is computed. It consists of an average
of individual movements and it is calculated based on the
following equation:

I =

∑N
i=1 ∆xi∆fi∑N

i=1 ∆fi
. (3)

Vector I represents the weighted displacements average of
each fish. It means that fishes which experienced a higher
improvement will attract other fishes into its position. After
vector I computation, every fish will be encouraged to move
according to:

xi(t+ 1) = xi(t) + I. (4)

At last, the Collective-Volitive component of the movement
is calculated. This component is responsible to regulate
the exploration/exploitation school ability during the search

process. First of all, school’s barycenter B(t) is calculated
according to:

B(t) =

∑N
i=1 xi(t)Wi(t)∑N

i=1Wi(t)
, (5)

and then, if school total weight
∑N

i=1Wi, where N is the
school size, has increased from the last to current iteration,
fishes are attracted to barycenter and ± sign in equation 6
becomes a −. If school total weight has not improved, fishes
are spread away from barycenter and ± sign becomes a +.

xi(t+ 1) = xi(t)± stepvolrand(0,1)∗
xi(t)− B(t)

distance(xi(t),B(t))
.

(6)

stepvol defines the maximum displacement performed size.
distance(xi(t),B(t)) is the euclidean distance between
fish i position and school barycenter. rand(0,1) is a n-
dimensional vector which components are random numbers
uniformly distributed in the interval [0; 1].

The parameters stepind and stepvol decay linearly along
with the number of iterations.

4. Solving SALBP-1 with FSS

The main issues regarding the solution of SALBP-1
using FSS are related to solution representation scheme
and treatment of capacity and precedence constraints. These
issues were tackled according to procedures commonly uti-
lized in literature [30] and are summarized as:

1) Solution representation: it was chosen the Task-
Oriented representation, which means that a solu-
tion is represented as an array with size equivalent
to the number of assembly tasks to be allocated. Ev-
ery array position contain a task index. However, in
FSS search procedure, a fish position is represented
by an array of real numbers. For this reason, the
solution proposed in this work uses the random-
keys [30] procedure to map a fish position array
into a tasks indexes array. This procedure maps the
smallest value in the position array of a fish into
the number 1, the second smallest value into the
number 2, and so on. This is repeated until all array
values are mapped into a task index;

2) Constraints treatment: as mentioned before, two
different types of constraints have to be taken into
account in order to solve SALBP-1 instances. First
of them is the precedence constraint. We applied
the same procedure defined by Hamta et al. [30]. It
receives a task indexes array, and based on a prece-
dence graph corrects the sequence to be ordered in
a sense that no successor precedes a predecessor
in the array returned. After that, capacity constraint
should be dealt with. To do so, we use the following
procedure: a workstation is opened and then the
maximum number of tasks in the array with total
time smaller than cycle time is assigned to the

opened workstation. After that, this workstation is
closed and a new one is then opened. This pro-
cedure is repeated until all tasks are assigned to
a workstation. A detailed explanation of capacity
constraint treatment in Task-Oriented approach is
provided by Scholl [12].

The methodology employed consists in running FSS
in its common form and all the mapping, correction and
assignment procedures take place when fitness calculations
are demanded. A pseudocode for SALBP-1 solution with
FSS is represented in the following:

1: Initialize user parameters;
2: Initialize fishes positions randomly;
3: while Stopping condition is not met do
4: Run Individual component of the movement;
5: Run Feeding operator;
6: Run Collective-instinctive component of the move-

ment;
7: Run Collective-volitive component of the movement;
8: for Each fish in the school do
9: Map fish position into a task indexes array;

10: Correct indexes order according to the precedence
graph;

11: Assign tasks into workstations using cycle time
constraint;

12: Measure balancing fitness;
13: end for
14: end while

4.1. Increasing Exploration in the Search Space

SALBP-1 utilizes the number of workstations as objec-
tive function. It implies that the search space is composed
of many plateaus, once many solutions will map task as-
signments with the same number of stations. Although FSS
is able to deal with search spaces containing plateaus due to
its capability of automatically to regulate the exploit/explore
behavior of the search entities, this fact can represent a
disadvantage in the use of FSS in order to tackle SALBP-1,
ever since the algorithm utilizes improvement information
to guide the search process. This disadvantage mainly has
effect in the Individual component of the movement. Once
it only allows fish to move if there is fitness improvement,
in case some fish is on a big plateau in the search space,
it will get trapped there. Two decisions were made in order
to tackle this issue. The first one is to change the objective
function of SALBP-1. Instead of the common use of the
number of workstation, we use:

minimize

m×
√√√√ m∑

k=1

(c− tk)2

 , (7)

where m is the number of stations, c is the cycle time
and tk is the workload at station k. This objective func-
tion simultaneously improves number of workstations and
Smoothness of the line balancing and also modifies the
search space allowing more variation in fitness values when

fishes move. The Smoothness measures the uniformity of
tasks distribution along workstations [12].

In addition, a new version of FSS was used to solve
SALBP-1. In the Vanilla version the Individual component
of the movement is only allowed to move a fish if it
improves its fitness value. However, in a very smooth search
space, there would be many moving trials with no success
and the algorithm could fail to converge. To solve this, in
the version of FSS proposed by Monteiro et al. [10], authors
introduce a parameter α for which 0 ≤ α ≤ 1. Values for α
decay exponentially along with the number of iterations and
measure the probability of a worsening allowance. It means
that, every time a fish tries to move to a position that does
not improve its fitness in the Individual component of the
movement, a random number is chosen and if it is smaller
than α the movement is allowed. In this work α decays
exponentially according to α = 0.8e−0.007currentIteration.
In addition, in this version only fish which have improved
their fitness contributes to vector I computation.

5. Parameters Selection

Based on the literature reviewed, this is the first ap-
plication of FSS for solving SALBP-1. Thus, there is no
reference indicating the parameters set in order to apply
FSS in that specific problem. The methodology chosen to
select parameters values for FSS-Vanilla and FSS-SAR was
inspired in the Factorial analysis technique with two levels.
It means that 3 parameters, Stepind, Stepvol and Wscale

had two values defined, being the smallest of these values
labeled as low level and the highest as high level. Consider-
ing the present study, this methodology application results
in 23 = 8 different combinations of values of the 3 selected
parameters. These 3 parameter affect the exploratory ability
of FSS and tuning them is a relevant issue to be solved
in order to guarantee convergence to good results. High
and low levels for each parameters were chosen based on
values used by Bastos-Filho and Lima-Neto [9]. High values
for Stepind and Stepvol were set as 10% of search space
width and low values were 1% and 0.01%, respectively. The
considered search space was [−100; 100]n where n is the
number of tasks. Table 1 summarizes the values used for
each variable.

TABLE 1. HIGH AND LOW VALUES USED FOR EACH PARAMETER

Level Wscale Stepind Stepvol
High 10000 20 20
Low 1000 2 0.2

The 8 sets of parameters generated from the combination
of high/low levels of the 3 parameters to tune were tested
with a benchmark instance of SALBP-1 with a high level
of difficult. In this case, level of difficult is related to
the number of tasks that will be balanced and precedence
graph complexity. We have chosen a difficult instance in
order to generalize this parameters choice for problems
with lower levels of difficult. All test instances used in this
work were taken from http://assembly-line-balancing.de.

The minimum number of stations for each of these instances
is already known from the solution of those instances using
an exact procedure called SALOME [12]. For this stage
we used the instance referred as n = 100 34 and its
minimum number of stations is 15. In order to choose the
parameters we have run SALBP-1 with both versions of FSS
30 times. Table 2 summarizes configurations tested. An ID
is assigned to each different configuration and here FSS-
Vanilla is referred as FSS-V.

TABLE 2. CONFIGURATIONS OF THE TESTS EXECUTED

ID Version Wscale Stepind Stepvol
1 FSS-V Low Low Low
2 FSS-V High Low Low
3 FSS-V Low High Low
4 FSS-V High High Low
5 FSS-V Low Low High
6 FSS-V High Low High
7 FSS-V Low High High
8 FSS-V High High High
9 FSS-SAR Low Low Low
10 FSS-SAR High Low Low
11 FSS-SAR Low High Low
12 FSS-SAR High High Low
13 FSS-SAR Low Low High
14 FSS-SAR High Low High
15 FSS-SAR Low High High
16 FSS-SAR High High High

Considering number of stations (ST), which is the main
objective of SALBP-1, all configurations described in Table
2 were able to find the optimum solution in at least one
of the 30 runs. For a more detailed analysis of which
configurations and version of FSS is better, we also con-
sidered the Smoothness (SI) achieved by each parameter
configuration. In addition, we also analyze the convergence
for all configurations. In order to do so, we defined that
the algorithm converged if solutions generated caused no
improvement higher than 0.0001. The number of iterations
until convergence (IUC) is defined as the iteration where
occurred the last improvement. IDs of configurations that
achieved minimum values for mean, standard deviation, best
and worst values found for each criterion considering 30
executions are shown in Table 3.

TABLE 3. RESULTS OBTAINED DURING THE PARAMETERS SELECTION
STAGE

Criteria Mean Std. Dev. Best Worst
ST 3, 4, 12, 15 3, 4, 12, 15 All 3, 4, 12, 15

Smoothness 12 12 3 5
IUC 13 13 8 12

From Table 3 it is possible to notice that most of
configurations that have achieved the minimum values uses
at least one of the steps in the high value. This characteristic
approximates FSS-Vanilla and FSS-SAR to a random search
process. As the idea of this work is evaluate efficacy on the
use of both versions of FSS to solve SALBP-1, we decided
to use a configuration that presented good results but also
have steps parameters at low values, even if this choice did
not provide the best results. Considering the idea mentioned

above, the selected IDs were 2 and 10. Then, the resulting
choice is Wscale = 10000, Stepind = 2 and Stepvol = 0.2.

6. Tests and Results

In order to evaluate FSS-Vanilla and FSS-SAR per-
formance in solving SALBP-1, we compared the results
for number of stations obtained with SALBP-1 solution
using PSO and optimum values obtained with the exact
procedure SALOME. Thus, we used these optimum values
to check whether FSS-Vanilla, FSS-SAR and PSO were able
to achieve optimum results.

In the PSO version chosen [31], for a particle xi its
position in iteration t+ 1 is defined by:

xi(t+ 1) = xi(t) + χ[vi + c1r1(pbi − xi(t))+

c2r2(gbi − xi(t))],
(8)

χ =
2

|2− (c1 + c2)−
√

(c1 + c2)((c1 + c2)− 4)|
. (9)

χ is known as Constriction Factor and r1 and r2 are uni-
formly distributed random numbers in the interval [0; 1]. In
this version c1 and c2 must satisfy c1 + c2 ≥ 4. For this
work we have chosen c1 = c2 = 2.1. Solution of SALBP-1
with PSO follows the same flow as for FSS, as described in
section 4.

In order to validate SALBP-1 solution with FSS-Vanilla
and FSS-SAR, both algorithms and PSO were used to solve
three different instances of SALBP-1. The same instance
used during parameters selection, now referred to as Large
instance, was solved and in addition two more instances
from the same repository were selected. These two new test
cases are less complex than the larger one and are referred
to as Small and Medium instances.

The minimum number of stations for the Small instance
is 12 and 6 for the Medium one. All considered instances
of SALBP-1 were solved using FSS-Vanilla, FSS-SAR and
PSO with the parameters defined later and each test case was
repeated 450 times. As in the parameter selection for FSS-
Vanilla and FSS-SAR, number of stations, Smoothness and
also the result of the convergence analysis, represented by
IUC, were used as criteria to determine if FSS-Vanilla and
FSS-SAR are able to obtain good solutions for SALBP-1.

The 450 results for each test case were grouped in
samples of size 15 and the means of those were considered
as input data for the statistical analysis, which results in 30
samples per algorithm for each instance.

In order to decide if a parametric or nonparametric sta-
tistical test is going to be taken, we applied the Shapiro-Wilk
test [32] and then concluded that normality is guaranteed for
the results obtained in all test cases. Thus, we decided for a
parametric test and choose to apply the widely used one-way
Analysis of Variance (ANOVA) technique [33] to conclude
whether the results obtained are significantly different from
each other and, if so, which algorithm is better for each
criterion considered.

All the procedures tested were able to achieve the op-
timum number of stations in all test instances considered.
Thus, we only analyzed in details the other criteria men-
tioned: Smoothness an IUC.

For all test instances, an one-way ANOVA with 95% of
confidence was performed. Calculated degrees of freedom
were v1 = 2 and v2 = 87, thus Fref = 4.89.

6.1. Results for Smoothness

The values of Fcalculated for each ANOVA considering
Smoothness values obtained for all test instances are shown
in Table 4.

TABLE 4. ANOVA Fcalculated VALUES FOR SMOOTHNESS RESULTS

Criterion Small Medium Large
Smoothness 64,01 91,42 561,81

From Table 4, as all values of Fcalculated were greater
than Fref , it is possible to conclude that at least one
technique performance regarding the Smoothness index for
all test instances is statistically different from the others.
However, it is not possible to conclude yet which was the
best performer.

In order to make a more detailed analysis and discover
which technique performed better than the others, we calcu-
late confidence intervals of the mean with a confidence level
of 95% using the pooled standard deviation for the three
test instances. Confidence intervals for Small, Medium and
Large instances are shown in Figures 1, 2 and 3, respectively.

From Figures 1, 2 and 3 it is possible to notice that
FSS-SAR has improved Smoothness values obtained with
the Vanilla version, as we expect. For the Small and
Medium instances, results obtained with FSS-SAR were
statistically indistinguishable from the ones obtained with
PSO, although in the Large instance PSO shows better
results for this criterion.

Figure 1. Pooled confidence intervals of Smoothness values obtained for
the Small test set

Figure 2. Pooled confidence intervals of Smoothness values obtained for
the Medium test set

Figure 3. Pooled confidence intervals of Smoothness values obtained for
the Large test set

6.2. Convergence analysis

Values of Fcalculated for each ANOVA considering the
IUC values obtained for all test instances are shown in Table
5.

TABLE 5. ANOVA Fcalculated VALUES FOR IUC RESULTS

Criterion Small Medium Large
IUC 172,48 104,8 41,66

From Table 5, as all values of Fcalculated were greater
than Fref , it is possible to conclude that at least one
technique performance regarding the IUC criterion for all
test instances is statistically different from the others. As
we did for Smoothness, we calculate confidence intervals of
the mean with a confidence level of 95% using the pooled
standard deviation for the three test instances in order to
make a more detailed analysis and discover which technique
performed better than the others. Confidence intervals for
Small, Medium and Large instances are shown in Figures
4, 5 and 6, respectively.

Figure 4. Pooled confidence intervals of IUC values obtained for the Small
test set

Figure 5. Pooled confidence intervals of IUC values obtained for the
Medium test set

Figure 6. Pooled confidence intervals of IUC values obtained for the Large
test set

Observing Figures 4, 5 and 6 it is possible to notice
that, for the Small instance, FSS-Vanilla converged faster
than FSS-SAR and PSO. In the Medium instance, both FSS-
Vanilla and FSS-SAR converged faster than PSO, and it is
not possible to tell which one, FSS-Vanilla or FSS-SAR,
converged faster. At last, for the Large instance, FSS-SAR
converged faster than FSS-Vanilla and PSO.

Summarizing, considering the Small and Medium in-
stances, FSS-SAR achieved better values for Smoothness
than FSS-Vanilla and statistically indifferent results in com-
parison with PSO. Furthermore, for the Small instance,
FSS-Vanilla converged faster than FSS-SAR and PSO, but
the Smoothness values achieved by this technique were
worse than the obtained with FSS-SAR and PSO, thus, it
seems that FSS converged to local optima. For the Medium
instance, FSS-SAR converged faster than both FSS-Vanilla
and PSO, although PSO achieved best values for Smooth-
ness, hence, we can conclude that, in this case, FSS-SAR
converged to local optima. For the Large instance, PSO
achieved best values for Smoothness and it took a fewer
number of iterations than FSS-Vanilla to converge.

7. Conclusion

This paper main contribution is the evaluation of the
effectiveness in the application of a continuous optimization
technique in order to solve the discrete combinatorial prob-
lem named Simple Assembly Line Balancing Problem-type
1. Two different versions of the Fish School Search algo-
rithm were employed and compared against results obtained
using an exact procedure named SALOME and Particle
Swarm Optimization.

Considering the results obtained, it is possible to con-
clude that both versions of FSS were successful, once both
were able to achieve the minimum number of stations for
three different problem instances.

A more detailed analysis has shown that FSS-SAR pre-
sented better results considering two other criteria: Smooth-
ness and IUC. We applied an one-way ANOVA in order to
guarantee the reliability of the conclusions taken from the
resulting data of the experiments performed. Thus, we can
conclude that: (i) in comparison with FSS-Vanilla, FSS-SAR
achieved better results for Smoothness but, as we expected,
in most of the problems this version demands a greater IUC
to be able to improve the results; (ii) in comparison with
PSO, FSS-SAR converges faster and, except for the Large
instance tested, it has achieved Smoothness values as good
as the ones obtained with PSO.

As future work we propose to tackle other ALBP
versions with FSS, including multi-objective variations of
ALBP such as SALBP-E. Moreover, the present work could
be extended by the comparison of FSS performance on
solving SALBP-1 with larger data-sets and comparing its
results with other metaheuristic approaches such as Genetic
Algorithms and Ant Colony Optimization.

Acknowledgments

The authors thank to CAPES (Coordination for the
Improvement of Higher-Education Personnel), Brazil, for
partial financial support for this paper.

References

[1] Q. Tu, M. A. Vonderembse, and T. Ragu-Nathan, “The impact of
time-based manufacturing practices on mass customization and value
to customer,” Journal of Operations management, vol. 19, no. 2, pp.
201–217, 2001.

[2] “Ford-Timeline,” http://corporate.ford.com/company/history.html, ac-
cessed in: 2016-06-15.

[3] N. Boysen, M. Fliedner, and A. Scholl, “Assembly line balancing:
Which model to use when?” International Journal of Production
Economics, vol. 111, no. 2, pp. 509–528, 2008.

[4] C. Becker and A. Scholl, “A survey on problems and methods in gen-
eralized assembly line balancing,” European Journal of Operational
Research, vol. 168, no. 3, pp. 694–715, 2006.

[5] Ö. Mutlu, O. Polat, and A. A. Supciller, “An iterative genetic algo-
rithm for the assembly line worker assignment and balancing problem
of type-ii,” Computers & Operations Research, vol. 40, no. 1, pp.
418–426, 2013.

[6] M. Chica, O. Cordón, S. Damas, and J. Bautista, “A new diversity
induction mechanism for a multi-objective ant colony algorithm to
solve a real-world time and space assembly line balancing problem,”
Memetic computing, vol. 3, no. 1, pp. 15–24, 2011.

[7] P. Sivasankaran and P. Shahabudeen, “Literature review of assembly
line balancing problems,” The International Journal of Advanced
Manufacturing Technology, vol. 73, no. 9-12, pp. 1665–1694, 2014.

[8] A. C. Nearchou, “Maximizing production rate and workload smooth-
ing in assembly lines using particle swarm optimization,” Interna-
tional Journal of Production Economics, vol. 129, no. 2, pp. 242–250,
2011.

[9] C. J. A. B. Filho, F. B. D. L. Neto, A. J. C. C. Lins, A. I. S.
Nascimento, and M. P. Lima, “A novel search algorithm based on
fish school behavior,” Conference Proceedings - IEEE International
Conference on Systems, Man and Cybernetics, pp. 2646–2651, 2008.

[10] J. B. Monteiro, I. M. C. Albuquerque, F. B. L. Neto, and F. V. S.
Ferreira, “Optimizing multi-plateau functions with FSS-SAR (Stagna-
tion Avoidance Routine),” IEEE Symposium Series on Computational
Intelligence, 2016.

[11] R. C. Eberhart, J. Kennedy et al., “A new optimizer using particle
swarm theory,” in Proceedings of the sixth international symposium
on micro machine and human science, vol. 1. New York, NY, 1995,
pp. 39–43.

[12] A. Scholl, Balancing and sequencing of assembly lines. Physica-
Verlag Heidelberg, 1999.

[13] J. Sternatz, “Enhanced multi-Hoffmann heuristic for efficiently solv-
ing real-world assembly line balancing problems in automotive in-
dustry,” European Journal of Operational Research, vol. 235, no. 3,
pp. 740–754, 2014.

[14] A. Mozdgir, I. Mahdavi, I. S. Badeleh, and M. Solimanpur, “Using
the Taguchi method to optimize the differential evolution algorithm
parameters for minimizing the workload smoothness index in simple
assembly line balancing,” Mathematical and Computer Modelling,
vol. 57, no. 1-2, pp. 137–151, 2013.

[15] R. Pitakaso, P. Parawech, and G. Jirasirierd, “Comparisons of different
mutation and recombination processes of the dea for salb-1,” in
Proceedings of the Institute of Industrial Engineers Asian Conference
2013. Springer, 2013, pp. 1571–1579.

[16] R. Pitakaso, “Differential evolution algorithm for simple assembly
line balancing type 1 (SALBP-1),” Journal of Industrial and Produc-
tion Engineering, vol. 32, no. 2, pp. 104–114, 2015.

[17] T. Al-Hawari, M. Ali, O. Al-Araidah, and A. Mumani, “Development
of a genetic algorithm for multi-objective assembly line balancing
using multiple assignment approach,” The International Journal of
Advanced Manufacturing Technology, vol. 77, no. 5-8, pp. 1419–
1432, 2014.

[18] C. G. S. Sikora, T. C. Lopes, H. Silv, and L. Magat, “Genetic
algorithm for type-2 assembly line balancing,” in 2015 Latin America
Congress on Computational Intelligence (LA-CCI), vol. 41, 2015, pp.
1–6.

[19] A. Baykasoglu and L. Ozbakir, “Discovering task assignment rules
for assembly line balancing via genetic programming,” International
Journal of Advanced Manufacturing Technology, vol. 76, no. 1-4, pp.
417–434, 2014.

[20] J. Dou, J. Li, and C. Su, “A novel feasible task sequence-oriented
discrete particle swarm algorithm for simple assembly line balancing
problem of type 1,” International Journal of Advanced Manufacturing
Technology, vol. 69, no. 9-12, pp. 2445–2457, 2013.

[21] Q. X. Zheng, Y. X. Li, M. Li, and Q. H. Tang, “An improved ant
colony optimization for large-scale simple assembly line balancing
problem of type-1,” Applied Mechanics and Materials, vol. 159, pp.
51–55, 2012.

[22] Y. G. Zhong and B. Ai, “A modified ant colony optimization algo-
rithm for multi-objective assembly line balancing,” Soft Computing,
2016.

[23] M. C. D. O. Moreira, C. Miralles, and A. M. Costa, “Assembly Line
Worker Integration and Balancing Problem,” Anais do XLIV Simpósio
Brasileiro de Pesquisa Operacional, vol. 54, pp. 54–65, 2012.

[24] T. Pape, “Heuristics and lower bounds for the simple assembly
line balancing problem type 1: Overview, computational tests and
improvements,” European Journal of Operational Research, vol. 240,
no. 1, pp. 32–42, 2015.

[25] M. Vilà and J. Pereira, “An enumeration procedure for the assembly
line balancing problem based on branching by non-decreasing idle
time,” European Journal of Operational Research, vol. 229, no. 1,
pp. 106–113, 2013.

[26] M. Ritt and A. M. Costa, “Improved integer programming models for
simple assembly line balancing and related problems,” International
Transactions in Operational Research, vol. 00, pp. 1–15, 2015.

[27] E. Gurevsky, O. Battaı̈a, and A. Dolgui, “Stability measure for
a generalized assembly line balancing problem,” Discrete Applied
Mathematics, vol. 161, no. 3, pp. 377–394, 2013.

[28] Y. N. Sotskov, A. Dolgui, T. C. Lai, and A. Zatsiupa, “Enumerations
and stability analysis of feasible and optimal line balances for simple
assembly lines,” Computers and Industrial Engineering, vol. 90,
no. m, pp. 241–258, 2015.

[29] A. Otto and C. Otto, “How to design effective priority rules: Ex-
ample of simple assembly line balancing,” Computers and Industrial
Engineering, vol. 69, no. 1, pp. 43–52, 2014.

[30] N. Hamta, S. M. T. Fatemi Ghomi, F. Jolai, and M. Akbarpour
Shirazi, “A hybrid PSO algorithm for a multi-objective assembly line
balancing problem with flexible operation times, sequence-dependent
setup times and learning effect,” International Journal of Production
Economics, vol. 141, no. 1, pp. 99–111, 2013.

[31] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability,
and convergence in a multidimensional complex space,” Evolutionary
Computation, IEEE Transactions on, vol. 6, no. 1, pp. 58–73, 2002.

[32] N. M. Razali and Y. B. Wah, “Power comparisons of Shapiro-
Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests,”
Journal of Statistical Modeling and Analytics, vol. 2, no. 1, pp. 21–33,
2011.

[33] B. J. Winer, D. R. Brown, and K. M. Michels, Statistical Principles
in Experimental Design, vol. 2.

