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Abstract— This paper considers the identification problem of 

nonlinear systems based on single-hidden-layer neural networks 

(SHLNNs) and Lyapunov theory. A nonlinearly parameterized 

neural model, whose weights are adjusted by robust adaptive 

laws, which are designed via Lyapunov theory, is proposed for 

ensuring the convergence of the residual state error to an 

arbitrary neighborhood of zero. In addition, a scaling matrix is 

used to resize the unknown nonlinearities to be approximated by 

an SHLNN, which, in turn, provides a simple way to shape the 

residual state error. It is shown that all estimation errors are 

uniformly bounded and, in addition, that the residual state error 

is uniformly ultimately bounded with an ultimate bound that 

depends directly on some independent design parameters. To 

validate the theoretical results, the identification of a chaotic 

system and a comparison study with other work in the literature 

are performed. 

Keywords—Online identification, Lyapunov methods, 

Multilayer neural networks  

I. INTRODUCTION  

It is well known that the mathematical characterization is, 
often, a prerequisite to observer and controller design. 
However, in some circumstances, the characterization of the 
dominant dynamics can be a difficult or even impossible task. 
In this scenario, the use of online approximators as, for 
instance, neural networks (NNs) is a possible alternative to 
parameterization. Basically, the unknown nonlinearities in the 
system are replaced by NN models, which have a known 
structure but unknown weights. In the case of supervised 
learning, the unknown weights are estimated by using an error 
signal between the outputs of the actual system and the neural 
identification model. 

Commonly-employed neural identification models are 
linearly and nonlinearly parameterized, which can, by nature, 
be static or dynamic. Their weights are often adjusted using 
gradient-based schemes, such as the backpropagation 
algorithm, or their robust modifications [1-22]. The most 
widely-used robust modifications in neuro-identification are 

the σ, switching-σ, 
1,ε  parameter projection, and dead zone 

[1-22], which avoid the parameter drift. 

For instance, in [2], the neuro-identification of a general 
class of uncertain continuous-time dynamical systems was 
proposed, and a σ-modification adaptive law for the weights 
of recurrent high-order neural networks (RHONNs) was 
chosen to ensure that the state error converges to the 
neighborhood of zero. More recently, in [3]-[5], neuro-
identification schemes for open loop systems were proposed. 
In [3]-[4] the conditions to ensure the asymptotical 
convergence of the residual state error to zero were 
established, even in the presence of approximation error and 
bounded internal or external perturbations. The convergence 
of the state error to zero in both works ([3]-[4]) was based, 
among other assumptions, on the previous knowledge of 
bounds for the approximation error and perturbations, which 
are usually unknown in practice. In [5], an identification 
scheme based on a dynamical neural model with scaling and a 
robust weight adaptive law was proposed. The main 
peculiarity of [5] is that the residual state error is directly 
related to two design matrices, which allow the residual state 
error to be arbitrarily and easily reduced. 

Despite the remarkable theoretical contribution in these 
works ([2]-[15]), they are all based on linearly parameterized 
neural networks and consequently, in general, suffer from “the 
curse of dimensionality”. That is, these models have a poor 
capability of interpolation and require a large number of basic 
functions to deal with multi-dimensional inputs. This 
drawback can be alleviated by using identification models 
based on SLHNNs. See, for instance, [16]-[22]. In these 
works, the presence the two weight matrices to be estimated, 
approximation errors, and perturbations, however, make the 
problem challenging.  

For example, in [16], an online approximator of multi-
input multiple output static functions based on SHLNNs is 
proposed. In [17], a robust scheme based on SHLNNs to 
identify nonlinear systems was proposed. The weight 
adaptation laws were based on modified backpropagation 
algorithms.  By using the Lyapunov`s direct method, it was 
shown that all errors are uniformly bounded and the residual 
state error converges to a ball whose radius can be reduced by 
setting some design parameters in adequate values. 
Nevertheless, the design parameters related to the performance 
are dependent, and therefore, arbitrary small residual state 



error could not be achieved. Another disadvantage of [17] is 
that, due to static approximations assumed in the definition of 
the adaptive laws, the identification process may not converge 
in the presence of high frequency perturbations. In [21]-[22], 
the discrete case is considered and the stability properties of 
the approximation errors are presented.  

In this paper, we extended the results in [16] in order to 
identify dynamical systems based on SHLNNs. All conditions 
are established to ensure the convergence of the residual state 
error to an arbitrary neighborhood of zero, even in the presence 
of approximation error and internal or external perturbations. 
Also, the dependence between the residual state error and some 
independent design parameters is straightforward. 
Consequently, the residual state error can be arbitrarily and 
easily reduced. Furthermore, it is not necessary to have any 
previous knowledge about the ideal weight, approximation 
error and disturbances, in contrast to [3]-[4]. In addition, the 
designed methodology is structurally simple, since it does not 
use a dynamic feedback gain or bounding function employed in 
[3]. To provide stability, the weight adaptation laws are chosen 
based on Lyapunov theory. Simulation experiments are 
performed to illustrate the effectiveness of the proposed 
method. 

II. SINGLE HIDDEN LAYER NEURAL NETWORKS 

A class of multilayer NNs used here can be expressed 
mathematically in matrix form as 

 ( )( , , , )nng W V x u W Vzσ=  (1) 

where 2 1( 1)n n
V

× +∈ℜ , 
1n  is the number of neurons from the 

input layer, 
2n  is the number of neurons in the hidden layer, 

2 ,
n n

W
×∈ℜ 2nσ ∈ℜ is a basis function vector and 

[ ] 1 1

1 1, , , , , ,1
n

n mz x x u u
+= ∈ℜL L . In standard SHLNNs each 

entry of ( )σ ⋅  is a linear combination of either an external 

input or the state passed through a scalar activation function
 

( ).s ⋅   Commonly used ( )s ⋅
 
are the sigmoid and hyperbolic 

tangent function ([1]). In this paper, we combine SHLNNs 
with high-order neural networks (HONN) for allowing high 
order interactions between neurons in the hidden layer. The 
approximation capacity of RHONN and its superior storage 
capacity has been shown in several studies (see [1-2] for 
further details). 

Universal approximation results in [1]-[2] indicate that: 

Property 1: Let ( )s ⋅  be a non-constant, bounded and 

monotone increasing continuous function. Let 
zΩ  be a 

compact subset of nℜ , and ( )g z  be a real valued continuous 

function on zΩ . Then for any arbitrary constant 0µ > , there 

exist an integer 
  
n

2
 and ideal matrices *

W  and *
V  such that 

 ( ) ( )*
max , ,

z

nn
z

g z g W V z µ∗

∈Ω
− <          (2) 

Based on Property 1, we have 

 
* *( ) ( ) ( )g z W V z zσ ε= +               (3) 

with ( )zε  satisfying max ( ) ,  
zz zz zε µ∈Ω < ∀ ∈Ω . 

III. PROBLEM FORMULATION 

Consider the following nonlinear differential equation 

 
( ), , ,x F x u v t=& ,  ( ) 00x x=

 
 (4) 

where x X∈  is the n-dimensional state vector, u U∈ is a m-

dimensional admissible input vector, q
v V∈ ⊂ ℜ  is a vector 

of time varying uncertain variables and 

[ ): 0, nF X U V× × × ∞ ℜa  is a continuous map. In order to 

have a well-posed problem, we assume that , ,X U V  are 

compact sets and F  is locally Lipschitzian with respect to x in 

[ )0,X U V× × × ∞ , such that (4) has a unique solution. 

We assume that the following can be established:  

Assumption 1: On a region [ )0,X U V× × × ∞  

 ( ) 0
, , ,d x u v t d≤   (5) 

where  

 ( ) ( ) ( ), , , , , , ,d x u v t F x u v t f x u= −
   

(6)
       

 f is an unknown map, d is modelling uncertainty, and 
0

0d ≥ , 

is an unknown constant. Note that (5) is verified when x e u 
evolve on compact sets and the temporal disturbances are 
bounded. 

Hence, except for the Assumption 1, we say that 

( , , , )F x u v t  is an unknown map and our aim is to design a 

NNs-based identifier for (4) to ensure the state error 
convergence, which will be accomplished despite the presence 
of approximation error and disturbances. 

IV. IDENTIFICATION MODEL AND STATE ESTIMATE ERROR 

EQUATION 

We start by presenting the identification model and the 
definition of the relevant errors associated with the problem. 

By adding and subtracting Ax, where n n
A

×∈ ℜ  is an 

Hurwitz matrix, (4) can be rewritten as 

   
(7) 

where ( , ) ( , )g x u f x u Ax= − .  



By using SHLNNs, the nonlinear mapping ( )g z  can be 

replaced by ( )*
W V zσ∗  plus an approximation error term 

( , )x uε . More exactly, (4) becomes 

 
( ) ( ) ( ), , , ,x Ax BW V z B x u d x u v tσ ε∗ ∗= + + +&   (8) 

where n n
B

×∈ ℜ  is a scaling matrix, 2n nW ×∗ ∈ℜ  and 
2 1( 1)n nV × +∗ ∈ℜ  are the “optimal” or ideal matrices, which can 

be defined as 

 

( ) ( )
( , )

, : arg min sup ( )
z

zW V

W V W Vz g zσ∗ ∗

∈Ω

= −
 
 
 

      (9) 

Let Ŵ  and V̂  be the estimates of *
W  and *

V , 

respectively, and the weight estimation errors be  

*ˆW W W= −%  

*ˆV V V= −%  
(10) 

From (3), the following can be established 

Assumption 2: On a compact set ,zΩ the ideal neural 

network weights and the NN approximation error are bounded 
by 

 
( )* *

0,  ,  ,m mW w V v x uε ε≤ ≤ ≤
 

(11) 

with ,  m mw v  and 
0ε  being positive constants. 

Remark 1: Assumption 1 is usual in identification. 

Assumption 2 is quite natural since g  is continuous and their 

arguments evolve on compact sets. 

Remark 2: It should be noted that W ∗  and *V  were 

defined as being the values of Ŵ  and V̂  that minimizes the 

L∞ - norm difference between ( ),g x u  and ( )ˆ ˆW Vzσ . The 

scaling matrix B from (8) is introduced to manipulate the 
magnitude of uncertainties and, hence, the magnitude of the 
approximation error.  

Remark 3: By applying the Taylor series expansion of 

( )*
V zσ  about ˆ ,Vz  we have 

 
( ) ( )* ˆ ˆV z Vz Vzσ σ σ ′= − + Θ%

 
(12) 

where 
( )*

*

ˆ

ˆ

Vz

V z

V z

σ
σ

∂
′ =

∂
and Θ  represents is the high order 

terms in the Taylor expansion. 

The structure (8) suggests an identification model of the 
form  

 
( ) 0

ˆ ˆˆ ˆx Ax BW Vz l x lσ= + − −& %    (13) 

where 
0 0l > , l is a vector function to be defined afterwards, x̂  

is the estimated state, and ˆ:x x x= −% is the state estimation 

error. It will be demonstrated that the identification model (13) 

used in conjunction with convenient adjustment laws for Ŵ  

and ˆ ,V  to be proposed in the next section, ensures the 

convergence of the state error to a neighborhood of the origin, 
even in the presence of the approximation error and 
disturbances, whose radius depends on some design 
parameters. 

From (8) and (13), we obtain the state estimation error 
equation 

 

( ) ( )* *

0

ˆ ˆ

     ( , ) ( , , , )

x Ax BW Vz BW V z

B x u d x u v t l x l

σ σ

ε

= + −

− − − −

&% %

%
  

(14) 

From (12), we can rewrite the state estimation error 
equation as 

 

( )
( ) 0

ˆ ˆ ˆ

ˆ     

x Ax BW Vz BW Vz

BW Vz Vz l x l

σ σ

σ

′= +

− Λ −

+

′− −

& %% % %

% % %

  (15) 

where * ( , ) ( , , , )BW B x u d x u v tεΛ = − Θ − −  is a residual term.  

V. ADAPTIVE LAWS AND STABILITY ANALYSIS 

We now state and prove the main theorem of the paper. 

Theorem 5.1: Consider the class of general nonlinear 
systems described by (4), which satisfies Assumptions 1-2, the 
identification model (13) with 

0

min 1 2( ) exp( )

x
l

K x t

γ
λ γ γ

=
 + −  

%

%
                (16) 

Let the weights adaptation laws be given by 

( ) ( )0
ˆ ˆ ˆˆ ˆ2

T
T

W WW x W W BKx BKx Vzγ α σ σ ′= − − + −  
&

% % %

 

0
ˆ ˆ ˆˆ2 ( )

T T

v VV x V V W BKxzγ α σ ′= − − + 
&

% %  

(17) 

where 
0 1 20, 0, 0, 0, 0, 0, 0,W v W Vγ γ γ γ γ α α≥ > > > > > > 0W  

and 
0V  are constant matrices, K is a matrix such that 

 
TK P P= +    (18) 

and P is a positive definite matrix. Then, if 
0 0γ = , the 



estimation errors W%  and V%  are bounded, and x%  is uniformly 

ultimately bounded with an ultimate bound xα
%

. If 

0 3,γ α> 3 0,α > the state error converges to zero, i.e., 

( )lim 0.t x t→∞ =%  

Proof: Consider the Lyapunov function candidate 

 

2 2

2 2

T F F

w v

W V
V x Px

γ γ
= + +

% %

% %

 

 (19) 

By evaluating the time derivative of (19) along the 
trajectories of (15) and (17), we obtain 

 ( ){
( ) } ( ){

}

0

0

2

0

ˆ ˆ

ˆ ˆ 

ˆ ˆ     2

ˆ ˆˆ     2

ˆˆ     

T T T

T T

T T

W

T
T

V

T T T

V x Q x x KBW x KBW Vz

x KBW Vz x K

tr W x W W BKx

BKx Vz tr V x V V

W BKxz l x x Kl

σ σ

σ

α σ

σ α

σ −

′= − + −

′+ − Λ

− − +

 ′− − − 

′+ −

& % % %% % % %

%% %

% % %

%% %

% % %

       (20) 

where ,
T

A P PA Q+ = −  -Q is a Hurwitz matrix, ˆW W= &&%  and 

ˆV V= &&% , since 0W
∗ =&  and 0V

∗ =& . 

Furthermore, by using the following representations  

 

{ }

( ){ }
{ }

ˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

T T T

T
T T

T T T

tr W BKx x KBW

tr W BKx Vz x KBW Vz

tr V W BKxz x KBW Vz

σ σ

σ σ

σ σ

=

′ ′=

′ ′=

% %% %

% %% %

% %% %

  

(21) 

and further rearranging terms, (20) results 

( ){ }
( ){ }

0

*

0

2

0

ˆ2

ˆ ˆ      2

     

T T T

W

T T

V

T

V x Q x x K tr W x W W

tr V x V V x KBW V z

l x x Kl

α

α σ

−

= − − Λ − −

 ′− − +

−

& %% % % %

% %% %

% %

   (22) 

In the case that 
0 0,γ =  by considering the facts 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

*

2 22

0 0 0

2 22

0 0 0

0 0 0

0 0 0

,

ˆ ˆ2 ,

2 ,

ˆ , , , 0 and for some

positive constants , and .

T

F FF

T

F FF

d

l

V V V

tr W W W W W W W W

tr V V V V V V V V

t t z t z t

z

σ σ

σ

∗

∗

− + =

 − = + − − − 

 − = + − − − 

′ ≤ Λ ≤ Λ ≤ ∀ ≥

Λ

)
%

% %

)
% % %

    (23) 

and by completing the square, (22) implies 

2

2
1

0 0
2

     

W W
F F

W

V x l x W V
α

α α α
α

  
 = − + − + − 
   

& % %% %

   

(24) 

where 
2 2

2 * *

0 1 2 0 04 ,W W WF F
W W V Vα α α α α α= + + − + −  

*

1 0 0d F F
z KB Wα σ=  and 

2 0 F
Kα = Λ . 

Hence, 0V <& outside the compact set 

( ){ }, ,
x W VF F

x W V x or W or Vα α αΩ = ≤ ≤ ≤% %%

% % % %% %  where 

0 0 ,x lα α=
% ( )1 2

0 0 1 2 WW
lα α α α= +

%
and  ( )1 2

0 .VV
α α α=

%
 

Thus, since ,xα
%

 
W

α %  and  
V

α %  are positive constants, by 

employing usual Lyapunov arguments [24], we concluded that 
all error signals are uniformly bounded. In addition, since 

0 ,l
W

α %
 and 

V
α %

 can be arbitrarily selected, ( )x t%  is uniformly 

ultimately bounded with an ultimate bound xα
%
. 

In the case that 
0 3,γ α> (22) implies 

( )
( )
( )

2 23 1
min 0

1 2

exp

exp

x t
V Q l x

x t

η γα γ
λ

η γ γ

 − −  ≤ − + −   + −

%
&

%
%  

 (25) 

where 
2 2

* *

3 1 2 0 0W VF F
W W V Vα α α α α= + + − + −  and 

( )1 3 0 3η γ α γ α= − . 

Define now 

( ) ( ){ }2, exp( )x W x t tη γΩ = ≤ −%% %               (26) 

Note that the numerator in the bracket of (25) is greater 

than zero for 
2exp( )x tη γ> −%  (or c

x ∈ Ω% ); hence, 

( ) 2

min 0V Q l xλ≤ − +  
&

%
                         

 (27)  

Further, since V is bounded from below and non-

increasing with time, we have  

( )
( )

2

min 00

0
lim ( )

t

t

V V
x d

Q l
τ τ

λ
∞

→∞

−
≤ < ∞

+∫ %               (28) 



where lim ( )t V t V→∞ ∞= < ∞ . Notice that, based on (15), with 

the bounds on x% , ,, VW %% and l, x&%  is also bounded. Thus, V&  is 

uniformly continuous. Hence, by applying the Barbalat’s 

Lemma [24], we conclude that lim ( ) 0t x t→∞ =%  for all c
x ∈ Ω% . 

Once the synchronization error ( )x t%  has entered Ω , it will 

remain in Ω  forever, due to (26). Consequently, we conclude 

that lim ( ) 0t x t→∞ =%
 
holds in the large, i.e., whatever the initial 

value of ( ) ( ) ( )( )ˆ, ,Vx t W t t%%  (inside or outside Ω ). 

 

Corollary 1: Consider the class of general nonlinear 

systems described by (4), which satisfies Assumptions 1-2, the 

identification model (13), (16)-(17) with 02 =γ . Then, the 

state error ( )x t%  converges to the residual set 

 

( ){ }1 tx x t γ αΞ = ≤% %  

 

where ( )st t2exp γα −=  and st  is the time in which the 

exponential function in (16) is turned off. 

 

Remark 4: Corollary 1 establishes an interesting 
peculiarity of the proposed method. The exponential function 
used in the identification model can be turned off when the 
residual state error has entered into any desired neighborhood 
of the origin. It is important to overcome numerical errors that 
can appear when the exponential function on the right-hand 
side of (16) has practically decayed to zero.  

VI. SIMULATION 

Consider the unified chaotic system [23], which is 

described by 

 

( )( )
( ) ( )
25 10

28 35 29 1

8

3

x y x

y x xz y

z xy z

α

α α

α

= + −

= − − + −

+ = −  
 

&

&

&

  (29) 

 
where x, y and z are state variables and it is always chaotic in 
the whole interval [0,1]α ∈ . It should be also noted that 

system (29) becomes the Lorenz system for 0α =  and the 

Chen system for 1α = . In the following simulations, we 

consider the Chen system. 

To identify the chaotic system (29), the proposed 
identification model (13) and the adaptive law (16) and (17) 
were implemented. The design parameters were chosen 

as 1,Vγ = 0.02,Wγ = 0 0.001,l = 0.5,Wα = 0.5,Vα =

( ) ( )85 1 exp 1 ,s  ⋅ = + − ⋅   

  

A=
−7.8 0 0

0 −7.8 0

0 0 −7.8
















,  B =

121 0 0

0 127,6 0

0 0 143

















 

00.05 ,   0P I V= =  and 
0 0W = . 

The chosen initial conditions for the system and the 
identification model are 

( )0 2,x = ( )0 1,y = ( )0 2,z = ( )ˆ 0 5,x = ( )ˆ 0 5,y = ( )ˆ 0 5,z =  

( )ˆ 0 0W = and ( )0 0V =
)

.  

In the simulations of the proposed algorithm, the design 
matrices A, B, and P were initially chosen as identity matrices.  
In the sequence, these values were adjusted, by a trial and 
error procedure.  

To check the robustness of the proposed method, we 
consider the emergence at t = 5s of disturbances of the form: 

 
( )( ) ( )

( )

1
22 2 2( , , , ) 3sin 50sin 200

                     10cos 400

d x u v t t x y z t

t

= + + +

+
 (30) 

To illustrate the advantages of the proposed methodology, 
the identification model introduced in [17] is used here for 
comparison. Consider the online identification multilayer 
neural network algorithm proposed in [17] described as 

 

( )
( ) ( )( )

( )( )( )

1

1 1

1

2 2

ˆ ˆˆˆ

ˆ ˆˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

TT
T

T
T T

x Ax W Vx

W x A Vx x W

V x A W I Vx x x V

σ

η σ ρ

η ρ

−

−

= +

= − −

= − − Λ −

&%

&
% %

&
% %

 (31) 

where ( ) ( ){ }2ˆ ˆˆ ˆ , 1, 2,..., .i iVx diag V x i mσΛ = = The design 

parameters are chosen as
1 25,η =

 2 0.4,η =  

1 0.00012,  ρ = 2 0.00012,ρ =
 

  

A=
−0.0078 0 0

0 −0.0078 0

0 0 −0.0078

















 and ( ) ( )
500

1 exp 0.5
s + − ⋅  

⋅ = . 

Other design parameters and initial conditions were chosen as 
before. 

The performances in the estimation of state variables are 
shown in Fig. 1-3. It can be seen that the simulations confirm 
the theoretical results, that is, the algorithm is stable and the 
residual state error is small. From Figs. 1-5, it can be 
concluded that the identification scheme is robust in the 
presence of perturbation without, practically, any degradation 
of performance. 

Figs. 1-3 show the state error norms comparisons for each 
state variable. It should be pointed out that the adjustment of 
the design parameters in [17] was not trivial, perhaps due to 
the mutual dependence between the design matrices P and Q. 



The comparison between the Frobenius norms associated with 
the estimated weight matrices W and V are shown in Figs. 4-7. 
After a transient phase, due to large initial uncertainty, these 
norms seem to converge in our case, indicating that most of 
the state estimation error has been removed.  

 

Fig. 1: Performance comparison in the estimation of x. 

 

Fig. 2: Performance comparison in the estimation of y.   

 

Fig. 3: Performance comparison in the estimation of z. 

 

 

Fig. 4: Frobenius norm of the estimated weight matrix W. 

 

Fig. 5: Frobenius norm of the estimated weight matrix V. 

 

 

Fig. 6: Frobenius norm of the estimated weight matrix W. 

 

[17] 

 

[17] 

 

[17] 

 

[17] 



 

Fig. 7: Frobenius norm of the estimated weight matrix V. 

VII. CONCLUSION 

In this paper, we proposed a novel identification scheme for 
the approximation of nonlinear dynamical systems. The 
scheme is based on SHLNNs, to parameterize the unknown 
nonlinearities, whose weights are adjusted by adaptive laws 
designed using Lyapunov theory. It was shown that the 
residual state error can be adjusted via independent design 
constants. The use of a scaling matrix to adjust the size of the 
unknown nonlinearities and an SHLNN, with an activation 
vector function with high order terms, allowed for the easy 
manipulation of the residual error performance. Simulation 
results were performed to show the effectiveness and 
performance of the proposed approach in the presence of 
perturbations.  
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