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Abstract—In this paper, we propose a privacy preserving
protocol for cloud system utilization based on extreme learning
machine (ELM). The purpose is to implement aware agents (A-
agents) on portable/wearable computing devices (P/WCD). The
proposed protocol is useful to reduce the calculation cost on the
P/WCD. The basic idea of the protocol is to divide an ELM-based
A-agent into two parts, one containing the weights of hidden
layer(s) and the other containing the weights of the output layer.
The former is implemented in the remote server and the latter is
implemented in the P/WCD. In addition, the input data are first
encrypted in the P/WCD using transposition cipher, and then
sent to the server. Because the server can only ”see” random
weights and encrypted data, the user intention and privacy can be
protected. In addition, since part of the computations is executed
on the server, the cost for implementing A-agents in the P/WCD
can be reduced. Experimental results on several public databases
show that the proposed protocol is useful if the dimension of the
input data is high.

Index Terms—extreme learning machine, privacy preserving
cloud-based computing, portable computing device.

I. INTRODUCTION

Since around 2010, portable/wearable computing devices
(P/WCD) like smartphones, have become more and more
popular over the world. A variety of applications for P/WCDs
has been developed and used by many people. The goal of
our research is to implement high performance aware agents
(A-agent) on P/WCDs. The A-agents are applications that
can provide useful information and help the users to solve
problems in their daily lives. Machine learning is often used
for developing the A-agents. With the support of different A-
agents, people can use the P/WCDs more easily. However,
it is difficult to implement the A-agents in a P/WCD if they
require too many computing resources. This is mainly because
P/WCDs are usually powered by small batteries and their
computing performance is lower than desk-top computers.
That is, implementation of A-agents in P/WCDs poses a
performance-cost dilemma.

To resolve the above dilemma, we may consider two meth-
ods. One is to develop methods that can design compact and
high performance machine learning models, and the other is to
use a cloud server for data processing. For the former method,
we have proposed an algorithm called decision boundary
making (DBM) [1]. In DBM, a compact model reproduces a
decision boundary generated by a high performance model.
Multi-layer perceptron (MLP) [2] is used as the compact
model, and support vector machine (SVM) [3] is used as the

high performance model. Using DBM, we can obtain compact
and high performance models for A-agents and implement
them in P/WCDs. The concept of ”compactness”, however,
is relative. Compared with the SVM-based high performance
model, the MLP-based model obtained using DBM can be
smaller, but may not be small. That is, if the given problem is
complex, we may not be able to obtain a model small enough
for P/WCD implementation.

Using the second method, we can conduct all expensive
computations in a cloud server, and the P/WCD is used only
for data collection. However, if we put the A-agents in the
cloud server, the server will be able to know the user intention
easily. In addition, if we send all data to the server for
processing, the user privacy will be visible to the server. That
is, the second method is not ”trust-able” to the users.

To solve the problem, in this paper we propose a pri-
vacy preserving protocol for cloud system utilization using
extreme learning machine (ELM). ELM is a special type
neural network proposed by Huang [4], [5]. In this study, we
focus on that how to implement the ELM-based A-agent on
P/WCD. The basic idea of the protocol is as follows. The
neural network (NN) is divided into two parts: 1) the random
weight matrix between input layer and hidden layer, and 2)
the weight matrix between hidden layer and output layer. The
hidden layer is calculated by a server, and the output layer
is calculated by the P/WCD. So, the computation of NN has
communication between the server and the client (P/WCD).
Additionally, before sending an input datum to the server, it is
encrypted using a transposition cipher. Therefore, the server
can only see random weights in the hidden layer and the
encrypted data, and will not be able to understand the privacy
of the user.

In the training phase, the protocol generates n different
keys (i.e., 2 ≤ n ≤ Nf ! where Nf is the number of
features) for the transposition cipher. The training datasets
are encrypted using each key, and an ELM-NN is trained
for each encrypted dataset. Here, the same random weight
matrix can be shared by the hidden layers of all models. We
only generate n output weight matrices. After training, the
hidden weight matrix is saved in the server. The n keys and
the corresponding output weight matrices are stored in the
P/WCD. In the classification phase, the P/WCD sends the data
to the server, that is encrypted by the k-th encryption key for
transposition cipher. The number k is determined at random



(1 ≤ k ≤ n). The server then calculates the hidden layer from
the encrypted feature vector, and sends back the result to the
P/WCD. Finally, the P/WCD calculates the output layer using
the k-th output weights, and find the class label. Theoretically,
this protocol can reduce calculation time of P/WCD if the
computation cost in the hidden layer is large. In addition, the
user’s privacy information (the original data and the trained A-
agent models) can be preserved without reducing the accuracy.

In the previous study about ELM on cloud system, Jiarun
Lin et al, proposed a secure and practical outsourcing mech-
anism, named partitioned ELM [6]. Their paper focused on
running the training process of ELM on a cloud server to
reduce the training cost and make it fast. On the other hand,
we focus on reducing classification cost on P/WCD.

The structure of this paper is as follows. Section II intro-
duces detail of the privacy preserving protocol, and discusses
its security. Section III, and Section IV provide the experi-
mental results and discuss the performance of the protocol.
Section V draws some conclusions and suggests some topics
for future work.

II. PRIVACY PRESERVING PROTOCOL FOR CLOUD SYSTEM

A. Extreme Learning Machine

The ELM is one of machine learning algorithms based on
single hidden layer feedforward neural networks. Training for
ELM is faster than traditional gradient-based learning meth-
ods, because the weights of hidden layer for ELM need not
be tuned. Output function of ELM with binary classification
is shown below.

f(x) = sign(h(x) · β) (1)

where

h(x) = G(W · x+ b) (2)

G(z) =

 g(z1)
...

g(zn)

 (3)

W =

 w11 . . . w1Nf

...
. . .

...
wNh1 . . . wNhNf

 b =

 b1
...

bNh

 (4)

Sigmoid function is often used as the activation function.

g(z) =
1

1 + exp(−λ · z)
(5)

In the above equations, Nh is the number of hidden neurons,
W is the weight matrix for the hidden layer, b is the bias
vector, β is the output weight vector, and λ is a positive real
number. Generally the ELM has high performance when Nh is
large enough. In this study, we use the basic training algorithm
of ELM proposed in [5].

B. Methodology

To implement ELMs on a P/WCD, normally we can use two
methods. One is to conduct all computations in the P/WCD,
and the other is to conduct all computations in the server. In
the latter case, P/WCD is used only for data collection and
for displaying the results. But these methods have problems.
The former has running time and resource problems. Because
the computation/energy resources of a P/WCD are less than
normal computers, high performance A-agents that require
high computational cost, cannot be implemented completely
in the P/WCD. The latter has security and privacy problems. If
we put the A-agents in the server, and send the original data for
processing, the user privacy and intention cannot be protected.
To solve the problems, we propose a privacy preserving
protocol for cloud system using ELM. The proposed protocol
can reduce the computation cost and at the same time, improve
the trust-ability of the system.

The main points of proposed protocol are to divide the
ELM-NN into two parts, and applying a transposition cipher.
Fig. 1 shows the neural network diagram for this protocol. In
the protocol, a feature vector (training datum) which is a plain
text, is first encrypted using the transposition cipher. The trans-
position cipher is a basic algorithm for encryption. The idea of
transposition cipher is permutation. When the feature vector
for encryption is v and a key is defined k = (k1, k2, ..., kNf

)
where Nf is dimension of v, if ki = j, the j-th element of v
is used as the i-th element of the encrypted vector.

Fig. 2 and Fig.3 provide sequence flow diagrams of training
phase and classification phase for the protocol.

The steps of training phase are as follows.

T.1 Generate n keys (2 ≤ n ≤ Nf !) for transposition cipher
(the key length equals to Nf ).

T.2 Encrypt training data using each key by the transposition
cipher and create n different encrypted training datasets.

T.3 Train n different ELMs using the encrypted data.
T.4 Save the weight matrix W for hidden layer and the bias

b to the cloud sever, and save β1,β2, ...,βn and key 1,
key 2, ... , key n to P/WCD.

In T.3, the weight matrix W and bias b can be shared by all
models, different matrices are not needed, because the weights
are random numbers. Fig.4 shows the diagram for training
phase. In this study, we assume that training is conducted in
a personal computer (PC).

The steps for classification are as follows:

C.1 In P/WCD, encrypt a feature vector x using transposition
cipher with key k, and k is defined at random (1 ≤ k ≤
n).

x′ = transposition(x, k) (6)

C.2 Send the encrypted feature vector x′ from the P/WCD to
the server.



C.3 Calculate hidden neurons in the server.
C.4 Send the hidden neurons from the server to the P/WCD.
C.5 Calculate output neurons using βk on the P/WCD, and

output class label.

The flow for classification is shown in Fig. 5. The proposed
protocol can reduce calculation time of P/WCD, and protect
the user’s privacy (feature vector, trained ELM model, and
calculation) without decreasing accuracy of ELM.
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Fig. 1. How to separate calculations of ELM with encryption
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Fig. 2. Sequence flow of training phase

C. Discussion on Security

The length of keys depends on Nf which is the number of
features. So the encryption space can be Nf !. It is assumed
that the dataset whose Nf is large enough, is suitable for
this method. When a malicious third person tries to find the
original feature vector using brute-force attack, he/she needs
to check at most Nf ! patterns. The plain text (feature vector) is
a sequence of real numbers. So there is no way to distinguish
the correct or not, if the third person finds a deciphered feature
vector.
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Fig. 3. Sequence flow of classification phase
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Additionally, the proposed protocol makes it difficult for
the third person to find the meaning of the data, if they are
normalized before the training. Because the range of the data
can be [−1, 1]. Data normalization is basic pre-processing
technique for improving classification performance. Therefore,
this process can be not only for security but also performance.

For classification phase, the data sent from P/WCD to the
server are encrypted (C.2), and all elements ofW on the server
are random numbers (C.3). The results of calculation on the
server are also random data (C.4). Hence the data through the
network and the data stored in server, are only encrypted data
or random data. Moreover, the key for encryption was switched
at random when classification (C.1). Therefore, data analysis
can be difficult (except user), if the network transmission and
server calculation are published.
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There is a point that we need to improve in the future. In
T.4, the keys and β are saved to P/WCD. However, it will
not be safe if the keys or the β are leaked. Because, the third
person can decipher the encrypted data using leaked keys, and
analyze the user’s privacy information from the feature vector.
We need to protect them especially using another encryption
or security technology, this is one of our future work.

III. EXPERIMENT

A. overview

The privacy preserving protocol proposed in our study is
tested using datasets that are published on UCI Machine
Learning Repository [7] and mldata.org [8]. They are shown
in Table I.

TABLE I
DATASET FEATURES

class (Nc) Features (Nf ) Data Count(Nd)
Iris 3 4 150
Australian 2 14 690
Satimage 6 36 6,435
USPS 10 256 9,298

We measured classification time in each dataset. The classi-
fication time is defined as the time between the input (feature
vector) and the output (class label). The purpose of this
experiment is confirmation of reducing calculation time on
P/WCD, and find suitable situations.

As for P/WCD, an Android smartphone was used. The
network for this experiment was structured on one Android
smartphone, one server, and one router. The router and smart-
phone are connected with Wi-Fi, and the router and the server
are connected with LAN cable. NEC PA-WG1800HP2 was
used as the router for this experiment. Specifications of the
smartphone and the server are provided in Table II and Table
III, respectively.

Activation function was sigmoid function. The number of
hidden neurons were 100, 500, and 1,000. We measured the
classification time of each dataset for the following two cases.
• All P/WCD: All classification computation of ELM in

P/WCD, without encryption.

TABLE II
P/WCD SMARTPHONE SPECS AND ENVIRONMENTS

Machine Google Nexus6
OS Android 6.0.1 ART VM
CPU Qualcomm 2.7GHz

quad-core krait 450
Memory 3 GB
Wi-Fi IEEE802.11b/g/n

TABLE III
SERVER SPECS AND ENVIRONMENTS

Machine Dell Precision-WorkStation-T3400
OS Ubuntu 12.04
CPU Intel Core2 Duo E8500 (3.16GHz)
Memory 4GB

• Protocol: Proposed privacy preserving protocol.
ELM models (W , b, some βs) and keys were generated

and dumped to files. The ELM was implemented in Python
3.5 with Numpy 1.10.4 [9], Scipy 0.17.0 [10] and Scikit-learn
0.17.1 [11]. To implement calculation of the P/WCD, we used
Java, which is a basic programming language for developing
Android applications.

B. Implementation of All P/WCD

The files for trained weights and keys were serialized to Java
object and saved to the device. Also, the datasets were stored in
device as serialized Java object. Fig. 7 shows the pseudocode
for All P/WCD classification. It does not encrypt the data
because we do not need the encryption if we calculate all
only on P/WCD. The range of time measurement is between
line 3 - line 6 in Fig. 6.

1: Observe a feature vector x from user
(feature vector from dataset in this experiment)

2: x ⇐ Normalize the feature vector x
3: W , b ⇐ Load hidden weight and bias
4: β ⇐ Load output weight
5: H ⇐ G(W · x+ b)
6: label ⇐ sign(H · β)

Fig. 6. Classification pseudocode for all classification on P/WCD

C. Implementation of Protocol

We implemented the system as REST API. The communi-
cation method between the P/WCD (Android smartphone) and
the server was HTTP. And the feature vector was serialized to
JSON for communication.

1) P/WCD client: Fig. 7 shows the pseudocode for P/WCD
client. We used OkHttp 2.4.0 [12] as HTTP communication
and Jackson 2.6.0-rc3 for JSON serialization on Android.
OkHttp and Jackson are well-known library for developing
Android applications. The number of keys n was set to 5 in
this experiment. The range of time measurement is between
line 3 - line 9 in Fig. 7.



1: Observe a feature vector x from user
(feature vector from dataset in this experiment)

2: x ⇐ Normalize the feature vector x
3: k ⇐ Get a random value from [1, n]
4: key ⇐ Load k-th key
5: β ⇐ Load k-th output weight
6: x′ ⇐ Encrypt the feature vector x by the key
7: Send x′ to the server
8: H ⇐ Receive a response from the server
9: label ⇐ sign(H · β)

Fig. 7. Classification pseudocode for P/WCD client

2) Cloud server: The server was implemented in bottle
0.12.9 [13], which is a web framework for Python. The files for
hidden weights and biases were serialized to Python objects
using pickle library, and saved to the server, The process is
only calculation of input vector, random weight matrix and
random bias. Fig. 8 shows the pseudocode for cloud server
(API server). This program runs when the server get a request
from the P/WCD.

1: Get x′ with a post request from client
2: W , b ⇐ Load hidden weight and bias.
3: H ⇐ G(W · x′ + b)
4: return H to P/WCD client

Fig. 8. Classification pseudocode for Server

IV. RESULT AND DISCUSSION

First, we confirmed the accuracy of ELM to investigate how
many hidden neurons are needed to get enough accuracy score.
Table IV shows the averaged accuracy of 10 times 5-fold cross
validation for three different Nh values.

TABLE IV
ACCURACY OF ELM (%)

Nh

100 500 1,000
Iris 80.4 82.2 80.6
Australian 85.2 60.6 54.4
Satimage 87.2 91.2 93.0
USPS 88.4 93.7 94.9

Bold-faced numbers are the highest scores in each dataset.
From these results, we found that proper Nh is needed for
each dataset to get a high accuracy score.

Fig. 9 through Fig. 12 show the classification time for
each dataset. The vertical axis of each graph indicates the
classification time (second), and the horizontal axis is the
number of hidden neurons Nh. Each bar shows the average
of classification time of 30 trials. The error bars represent the
standard deviations.

It is shown that with larger Nf or Nh takes longer time. In
Iris dataset which has relatively small Nf , all P/WCD method
can classify faster than the proposed protocol when Nh = 100.
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Fig. 9. Classification time of Iris dataset
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Fig. 10. Classification time of Australian dataset

This is because loading the weights and calculation of the
hidden layer, are faster than encryption and communication.
But in other Nh or datasets, the proposed protocol can classify
faster. From Eq. (4), the hidden weight matrix size depends on
Nf and Nh. So, the loading and calculation time also depend
on Nf and Nh. Hence the protocol is unsuitable for small Nh

or small Nf like Iris dataset.
Also, in Australian and Iris dataset, there was no big

difference of classification time between the proposed protocol
and all P/WCD method. But it has big difference in the result
of Satimage and USPS datasets that has large Nf . The data
with large Nf requires longer time for loading weight matrices
and classification. Additionally the classification of data with
large Nf are more secure because of transposition cipher
in the proposed protocol. Therefore the proposed protocol is
suitable for dataset having large Nf . From these results, it was
confirmed that the proposed protocol can reduce classification
time for A-agent on P/WCD.
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Fig. 11. Classification time of Satimage dataset
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Fig. 12. Classification time of USPS dataset

V. CONCLUSION

In this paper, we proposed a privacy preserving protocol for
cloud system using ELM to implement A-agent on P/WCD,
and investigate (the classification times) of the protocol with
other methods. In the protocol, the calculation of the server
uses only random matrix and encrypted vector. Therefore, the
user’s privacy (feature vector and models), and the computa-
tion intention can be protected. From the experimental result,
the proposed protocol can classify faster if the number of
features or the number of hidden neurons is large. For imple-
menting high performance A-agent on P/WCD, the proposed
protocol can be one solution to reduce calculation time of the
A-agent on P/WCD. However, it will not be safe if the keys
or the output weight matrices are leaked. For future work, we
would like to find a method to protect the keys and the output
weights stored in the P/WCD. We would also like to use some
public cloud server for high performance classification using

deep learning or ensemble learning.
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