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Abstract—The quality of identified models is inherently linked
to the amount of information contained in the data used for
identification. After a short introduction into the topic and
the presentation of the model family and identification process,
general purpose test signals are discussed, some of which are
manipulated in order to achieve suitable data for the identifica-
tion of nonlinear dynamic TS-models. Before this contribution is
concluded, a case study is presented.

I. INTRODUCTION

Since the most powerful methods for simulation, prognosis
and control design are model-based, high quality models
are needed. Due to the ever rising complexity of technical
systems as well as the need for nonlinear description of their
components, theoretical modeling has become a difficult task
that requires a lot of effort an expert knowledge. Therefore
system identification is a more than valid alternative. However,
identified models can in principle only describe the behavior
that is present in the data used for identification and not
be used for extrapolation like high quality physical models
can. This directly leads to the task of generating suitable
data for nonlinear system identification by exciting the system
appropriately. Since Takagi-Sugeno-(TS-)Fuzzy models are
universal approximators, they have been selected as the model
class. The nonlinear behavior of locally affine TS-models is
solely described by the partitioning, which emphasizes the
importance of the structure identification.

The Design of Experiments (DoE) can be categorized in the
following way: DoE can be done offline and in real time. If the
design is done offline the complete system input will designed
before the experiment is conducted. In an real time design
the input will be adapted during the experiment. Since there
are distinct computational difficulties with nonlinear model
approaches, DoE approaches are distinguished between linear
and nonlinear model approaches. In contrast to static systems
where each design point can be chosen independently from
each other, the system input of a dynamic systems is a time
series and the system dynamics have to be considered as a
side condition. Test signal design is a part of the DoE. The
last major distinction is whether knowledge about the model
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and its structure is used in the process. If the design is done
without considering the model structure, it is called model-
free, otherwise it is model-based.

The model-based designs are typically based on the approach
to optimize scalar measures on the Fisher Information Matrix
(FIM). The FIM is constructed from the global model’s first
derivatives with respect to the model parameters. Exploiting
the Cramér-Rao-Inequality the FIM is used to estimate the
covariance of the parameters. Therefore the criteria can be
interpreted as a way to minimize the model parameter uncer-
tainty. The model structure often is assumed to be known [1].
The membership functions that determine the weighting of the
locally-affine models mostly depend on the model prototypes
nonlinearly. Since the partitioning is used to model system
nonlinearities it is not sufficient to design the excitation signal
without considering the prototypes. In contrast to FIM for
models that are linear in their parameters, the FIM for models
that are nonlinear in their parameters depends on the model
parameters. They are however unknown at this stage of the
experiment design. Experiments show that FIM-based design
approaches are very sensitive to parameter mismatch [2], so
a sequential robust design was proposed [3]. Therefore the
current research investigates the application of manipulated
general purpose test signals for the identification of nonlinear
TS-models. This model-free approach was used to generate
broadband test signals that were manipulated to achieve a
specific amplitude distribution either in the time or frequency
domain [4].

II. MODEL FAMILY AND IDENTIFICATION PROCESS

As mentioned before, locally affine TS-models are used.
TS-models are a superposition of local models weighted by
their respective normalized membership functions. In case of
(N)ARX-type models the i-th local model can be described
like:
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9 (k) is the output of the i-th local model, a;, ; and b; ; are the
coefficients of the inputs and outputs as well as their lags, n,.
and n,,. are the maximum lags, k is the discrete time and a; o
is the affine term. The difference equation (1) can be rewritten
as:
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where ¢(k — 1) and ©; are the regression vector and the i-th
local model parameter vector. To get the global model, the
local models (2) are superposed by their fuzzy basis functions
functions ¢;(z(k — 1)). To emphasize the dependance of the
regression vector and the scheduling variable z(k — 1) from
past values of the in- and output, the argument (k — 1) is
carried along. The fuzzy basis functions are:
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The membership functions p; are functions of the scheduling
variable z(k—1). The scheduling variable is often a function of
the regression vector but can be chosen to be entirely different
if a priori knowledge is available. ¢ is the number of local
models, the v; are the partition’s prototypes and v € R>!
is the fuzziness parameter. The membership functions have
been chosen to be of the same type as in the Fuzzy c-means
(FCM) clustering algorithm, because they fulfill the orthogo-
nality condition (5). Besides the prototypes and the fuzziness
parameter there is no need for further parametrization. When
using Gaussian or triangular membership functions, more
parameters have to be specified like the covariance matrices
for the Gaussians. Since additional degrees of freedom are
most helpful when used with additional knowledge and can be
detrimental if not, the calculation of the membership functions
in the simulation and optimization is done in the same way
they are obtained in the first place.
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Then the fuzzy basis functions are equal to the membership
functions:

¢i(z(k —1)) = pi(z(k — 1)) (©)

Therefore the global model can be given as:
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With the abbreviations j1;(z(k — 1)) = u;, and T (k — 1) =
¢} follows from (7):
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®g is the extended regression matrix, ® the vector of all local
model parameters and y the regressand. With known v; the
estimation problem is linear in the parameters and the solution
to the least squares method can be given as follows when using
a quadratic cost function for identification:

6 = (2]®:) ' Bly (10)
The solution (10) is optimal with respect to the one-step-
ahead-prediction (OSAP). To calculate it, ¢ and v; have to
be known. Therefore structural decisions like the selection
of the scheduling variable, number of local models and type
of membership function have to be made before the param-
eter estimation. The FCM algorithm is used to determine
the prototypes v;. The resulting prototypes are not optimal
with respect to the prediction error. The estimated parameter
vector © minimizes the squared sum of the deviations of the
one-step-ahead-prediction. For simulation purposes it is more
important to have a model with good predictions qualities
when the model is evaluated recursively. This obviously is a
harder criterion. Because of that the parameters are optimized
with a nonlinear optimization algorithm with respect to the
prediction error while the model is evaluated recursively. The
local model parameters ®; and prototypes v; are aggregated
to a parameter vector for the complete local model:
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The local model parameters and the partition are now op-
timized simultaneously. With a quadratic cost function the
following holds:

N
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The optimization problem is solved with the MATLAB-function
1lsgnonlin which by default uses a Trust-Region-Reflective-
Algorithm. The optimization is initialized with the local model
parameters from (10) and the prototypes from the FCM
clustering. The choice of v is discussed in detail in [5].



III. DESIGN OF THE EXCITATION SIGNALS

This section is divided into two parts. In the first part
standard test signals are discussed. The second part is about
how some of these signals can be parametrized to obtain better
identification data. The described methods of designing exci-
tation signals in general can be used to identify the parameters
of different model families but from the results of identifying
TS-models there can be no generalization. The structure of
TS-models is such that local model parameters need data near
the center of the model and partition parameters need data near
the borders which can be targeted with experimental design.

A. Standard test signals

Standard test signals are used to excite a system without
any prior knowledge. These signals are generally obtained by
using two basic signal types. On the one hand there are signals
based on sinusoids like swept sines or multisines. On the other
hand multi-level signals are used. Furthermore different kinds
of signals based on random noise are used. Different standard
test signals are compared in table I that bases on [6]. The crest
factor [6] for a signal xj, is defined as:
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It is used to assess how well the available signal range is used.
The main difference between a design for linear and nonlinear
system identification is that one amplitude level is sufficient
in the linear case since the choice of the amplitude levels does
not yield any additional information. In the nonlinear case the
amplitudes represent a degree of freedom that can be used to
obtain a test signal that is better suited for identification.

B. Parametrization of test signals

As it was mentioned in the last section, multi-level and
harmonic signals can be parametrized very comfortably, be-
cause the parameters can be interpreted easily. The signals that
will be discussed here are multisine and APRBS (Amplitude-
modulated Pseudo-random binary sequence) signals. The pa-
rameters of a multisine are the used frequencies, the corre-
sponding phases as well as the amplitudes. While the used
frequencies are determined by the frequency band of interest,
the choice of the phases and amplitudes is not straightforward.
When parametrizing a signal without special knowledge of
the underlying system, goals can include to transfer as much
energy into the system as possible. A uniform distribution
in the scheduling space might yield better partitioning since
there is no weight on certain regions. Due to the obvious
lack of knowledge about the real system, these properties
can only be approached indirectly. Without prior knowledge,
the starting point for the design is to achieve a uniform
amplitude distribution. Since a signal in the time domain
always faces certain boundaries on maximum (and minimum)
values, the phases are used to achieve such a distribution such
that the amplitudes of the used frequencies can be scaled up
to guarantee the maximal possible energy inserted into the
system. A method for homogenization will be presented. For

multi-level signals the impact of the parametrization is not that
easy to interpret anymore. The values of the held amplitudes
can be adjusted as well as the holding time. The amplitudes
are chosen randomly.

1) Multisine Signals: The used homogenization method [7]
iteratively adjusts the phases in the frequency domain until the
signal in the time domain meets a criterion that is linked to
the distribution. In this case a uniform distribution is used but
the extension to arbitrary distributions is straightforward. As
a measure of how well the signal distribution meets its target
distribution a coverage index Jcy is introduced:
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ns is the number of intervals of equal length of the range of
the signal in the time domain, n; is the number of data points
within the i-th interval and njqe, is the target number of data
points per interval which with respect to a uniform distribution
simply is:

N

Nideal = —
ng

(16)

where N is the total number of data points of the signal.
The strategy of this method is to generate a timeseries of the
same length of the signal within the upper and lower bounds
of the signal. Since the sorted input signal can be viewed
as the cumulative distribution function (cdf), the phases of
the signal are replaced with the phases of the inversely (with
respect to the sorted test signal) sorted ideally distributed
signal until the distribution of the test signal reaches its target.
Because the coverage index J¢y is not invariant for different
N or ng and therefore has no absolute meaning, a convergence
oriented criterion is used. The simplest method is to check the
convergence based on the difference between two consecutive
iteration steps:

Ader = Jerk+1 — Jerk (17)
So the applied termination criterion is
AJC] S € (18)

where € has to be chosen by the user. Alternatively or in
addition cost-based criteria such as the number of iterations
can be used. With the established termination criterion one
iteration runs as follows:

1) Calculate Jcy for a signal [ux] = u and check the
criterion (18).

2) Sort the timeseries u. The sorting can formally be
expressed with the permutation matrix T: u’ = Tu

3) Define a timeseries u”’, which is a line.

4) Sort back the timeseries u” with q = T~ 'u”

5) Calculate the discrete fourier transforms (DFT)
Q = DFT(q) and U = DFT(u)

6) Generate new DFT R = [Ry],
Ry = |Us| - exp (j - arg (Qx))

7) Apply the inverse discrete fourier transform (IDFT) to
R, r = IDFT(R)



Signal

| Definition

[ Crest Factor

[ Comment

Swept Sine/Chirp

u(t) = A - sin((at +b)t) with
0 < t < Ty where Ty is the
period. With f(t) = at + b and
the constraints f(0) = 2wk fo
and f(To) = 2mkafo the co-
efficients are calculated as a =
2 (k2 — k1) f2 and b = 27ky fo

The crest factor is comparable to
that of an ordinary sine wave. It is
typically cg = 1.45.

The amplitude spectrum is not flat because a swept
sine is not a superposition of single well defined
sine waves but rather a smooth transition from the
starting frequency to the end frequency. If the ground
frequency fo is chosen to be 1/7Tp and k1 and ko are
integers, this signal has no leakage

Schroeder Multi-
sine

F
w(t) = > Ag-sin (27 frt 4 ¢p)

=1

where Alfk are the Amplitudes of
the excited frequencies fi. ¢y are
the phases of the corresponding sine
waves. I’ is the number of excited
frequencies. The Schroeder phases

are defined as ¢ = —w

The crest factor is typically cg =
1.7 when all amplitudes are chosen
to be identical. In general the crest
factor of a multisine depends on the
choice of amplitudes and phases.

Since the amplitudes, phases and frequencies are
independent of each other, many signal properties can
be defined without any inherent constraints. Most of
the time, the frequencies as well as the amplitudes
are chosen with respect to the system in question. The
phases then can be used to achieve a better crest factor.

(A)PRBS

A PRBS excitation signal is ob-
tained from a pseudo random bi-
nary sequence. To obtain an APRBS
signal the binary states are given
individual amplitude levels.

For a PRBS signal the crest factor is
equal to cg = 1 if all power is con-
sidered. For an APRBS signal the
crest factor depends on the choice
of the amplitude levels.

The choice of a multi-level signal versus a harmonic
signal often depends on the plant friendliness. It can
be bad for the actuators to be constantly excited so
that a multisine signal cannot be used.

Random Noise

Filtered Noise Sequence

typically cr =2...3

TABLE I
STANDARD TEST SIGNALS
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Fig. 1. Multisine signals with Schroeder phases (top) and after homogeniza-
tion (bottom)

Figure 1 shows the impact of the homogenization of a full
multisine with 50 frequencies between 0Hz and 5Hz and
Schroeder phases [8]. It can be seen that both signals remain
within the values of +1. Furthermore figure 2 shows the

Schroeder multisine  homogenized multisine
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Fig. 2. Impact of the homogenization (frequency domain)

amplitude distribution of the multisines shown in figure 1.
It can be seen that due to the homogenization the amplitudes
can be scaled up while still satisfying the boundary conditions
of max |ug| < 1. This allows a higher energy transfer while

keeping the shape of the amplitude spectrum, the excited
frequencies and the experiment time as it was in the initial
signal. If Schroeder phases are used, the gain in amplitude
level is very small, because Schroeder phases already have
a good crest factor (Schroeder Phases: cg = 1.89, after
Homogenization: cg = 1.77). Also the initialization with
Schroeder phases leads to a homogenized signal that closely
resembles the initial signal so that it can be assumed that the
phase configuration is in the region of a local optimum.

2) APRBS signals: To generate an APRBS-Signal a shift
register is used [9]. At first a Pseudo-Random Binary Sequence
has to be generated. This sequence depends on the structure of
the given shift register and the used seed. To obtain the multi-
level signal from this sequence a change of the binary state is
used to determine the change of the signal levels. The number
of following equal states determines how long a level is held.
By considering the holding time 7Ty and the sampling time
Ts and the choice of the amplitude levels, the signal can be
generated. An example of a pseudo-random binary sequence
is given:

SPRBS — |:]. 00 1 11 0] (19)

The sequence sprps (19) is generated from a shift register with
n = 3 states and therefore the repeating sequence has 27!
elements. Consecutive equal states are contracted to indicate a
single held amplitude with a weight that will be proportional
to the length of this amplitude. In this example, the first
amplitude will be held for one Ty, the second one for two
Ty and so on.

s=[1 2 3 1] (20)

The length of S determines the number of amplitudes A;
needed to generate a real signal. With a holding time Ty,
the sampling time 75 and the amplitudes A;, the timeseries



is constructed by repeating the amplitudes A4; S(7) - %‘ times.
Figures 3 shows the difference between APRBS signals with
identical amplitudes but different holding times, which has
been exaggerated to show the effect in the frequency domain.
If a shorter holding time is used, higher frequencies are
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Fig. 3. Impact of the holding time Ty

excited. Since the amplitude levels and ratios between the
lengths of held levels are identical for both inspected holding
times, the amplitude spectra can be compared. Figure 3 shows
that the shape of both spectra is identical. It is only stretched
by the same factor that relates the holding times. A longer
holding time results in longer signals and therefore in more
data points given identical sampling times.

C. Assessment Criteria

The assessment criteria are divided into two groups. On the
one hand test signal properties are analyzed. These include the
coverage in the time domain, the crest factor and the signal
energy. On the other hand it is of great interest whether the
used signals can be used to obtain suitable identification data.
Therefore two measures of the prediction error are used. The
RMSE is used as an averaging measure as well as the MAE
as a localized measure.

It is obvious that the crest factor is lower for a signal that
is distributed more uniformly. A measure proportional to the
energy of a signal {x;} is calculated in the frequency domain
from the fourier transform {X} = DFT ({x}):

N
E=Y X}
k=1

For a measured signal y; and its prediction g of length N
the root mean squared error (RMSE) is calculated as follows:

21
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The maximum absolute error (MAE) is defined as:
= —q 2
JImaE 12€3~§XN|yk Y| (23)

The definitions of (22) and (23) are taken from [10].

IV. CASE STUDY

As a case study an electro-mechanical throttle is used [11].

A. Test stand

potentiometer throttle plate return spring

Fig. 4. Test stand schematic

Figure 4 shows a schematic of the test stand. The input
signal u is the duty cycle for the pulse width modulator
(PWM). The output signal y is the potentiometer signal. The
throttle is actuated by a DC motor. Even though the setup is
relatively simple, the modeling task is difficult because of the
state-dependent friction as well as the nonlinear characteristic
of the return spring. In addition physical parameters like
moments of inertia are typically not known. The test stand
is operated with a sampling time of 7Tg = 0.01s.

B. Excitation signals

Multisine and APRBS signals have been used to excite the
system. For the multisine signals upper frequency bounds of
fu1 =5Hz, fu2 = 6Hz and f, 3 = 7.5Hz have been used.
They provide for an experiment duration of Tg; = 50s and
Tg2 = 100s. The exited frequencies are 10 times the prime
integers of the respective base frequencies, fy; = 0.01 Hz for
the longer experiment and fy2 = 0.02 Hz for the shorter exper-
iment, up to the upper frequencies. For the longer experiment
the frequency bound of f,, = 6Hz has been dropped. The
amplitudes have been chosen to be identical but scaled up in
a way to use the available range of the input signal as good
as possible. Figure 5 shows an exemplary multisine signal and
its amplitude spectrum.

For the APRBS signals different amplitude realizations
(uniform and normal distribution as well as a sobol sequence)
have been used with different holding times Ty ; = 0.05s,
Ty, = 0.1s and Ty, = 0.2s. Figure 6 shows an exemplary
APRBS signal and figure 7 shows the independent validation
signal. To be able to compare the identification results, the
prediction error on an independent validation set has been
used. This set is used for validation in industrial applications
and also has been introduced as a benchmark set in [11].

C. Identification approach and model evaluation

The number of local models ¢ = 8 has been determined by
cluster validation measures in [12]. All local models have the
same structure. For the input signal the maximum lag is chosen
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Fig. 6. Exemplary APRBS, Ty = 0.1s

to be n,, = 1, the maximum lag of the output signal is chosen
to be n, = 2, because the second order mechanical part is
a lot faster than the electric part. The lags are identical for
the antecedent and the consequent variables. The regression
vector is:

@' (k—1)=[ur—1 Ye-1 Yr—2] (24

Since the friction and therefore a significant nonlinearity is
velocity dependent, the scheduling variable is a linear combi-
nation of the regressor.

1 0
z(k—1)= [0 —1|-¢" =[ux1 yr2—u] 25
0 1

The fuzziness parameters for the clustering, estimation and
model evaluation have been chosen to identically:

(26)

Velust = Vest = Veval = V = 1.1

The models are evaluated in NOE-configuration. Since the
maximum lag is nm.x = 2 the simulations are initialized with
the first two values of the measured signal.
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Fig. 7. Validation signal

D. Identification results

The homogenization method leads to a better coverage of
the scheduling space as is shown in figure 8. In comparison to
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Fig. 8. Scheduling space comparison

the Schroeder multisines the homogenized signals in general
yield better identification results. Figure 9 shows the measured
system response to the multisine from figure 5 as well as
the simulations with initially estimated parameters and the
optimized parameters and the distribution of the residuals.
Figure 10 shows the simulation results on the validation data.
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Fig. 9. Multisine identification signal, measured output (red) and predicted
output for osap parameters (blue) and optimized parameters (green)

The residuals of the validation are larger on average than the
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Fig. 10. Validation of the multisine identification, measured output (red) and
predicted output for osap parameters (blue) and optimized parameters (green)

residuals on the identification data. The identified model is
able to describe the validation data, even though the validation
signal type is completely different from the identification sig-
nal type. The first half of table II shows an array of multisine
identification results. The first column shows whether the used
signal is a Schroeder multisine (S) or a homogenized one (H),
where the number denotes the upper frequency. For the energy
(21) the DC value has been excluded because it is identical
for all signals. The following columns show the various RMSE
values for the recursive model evaluation on the identification
data as well as the validation data with respect to the OLS-
estimated parameters and the parameters resulting from the
nonlinear optimization of the summed squared prediction error
in recursive model evaluation. The lower half of table II shows
the APRBS results where the first column denotes the different
amplitude initializations (A1: uniform distribution, A2: normal
distribution, A3: Sobol-Sequence) Figure 11 shows the system
response and simulations for the APRBS signal in figure 6.
Figure 12 shows the simulation results for the validation data
set. Since the holding time in this example is very small
(Tu = 0.05s), the response doesn’t look like the typical
response to a multi-level signal. Because the APRBS is more
similar to the validation signal, an optimization with respect
to the identification data set is more likely to result in a better
prediction as it can be seen in figure 12.

Table II shows the results of the APRBS identification with
respect to different random amplitude realizations as well as
the holding times T, because they directly correspond with
the experiment duration. It can be seen that the amplitude
realization has a great impact on the performance on the vali-
dation data. The optimization on the first amplitude realization
results in a better average prediction error for every holding

JRMSE inV
R duration | energy id/osap id/opt val/osap | val/opt
S1 50 s 342.84 0.11 0.03 0.43 0.29
S2 50 s 342.60 0.07 0.02 0.23 0.28
S3 50 s 473.15 0.06 0.02 0.28 0.85
HI 50 s 342.85 0.07 0.02 0.17 0.14
H2 50 s 342.05 0.06 0.03 0.23 0.65
H3 50 s 494.65 0.05 0.03 0.23 0.13
S1 100 s 324.92 0.09 0.04 0.22 0.24
S3 100 s 364.29 0.14 0.04 0.43 0.29
H1 100 s 364.29 0.07 0.04 0.10 0.14
H3 100 s 325.01 0.06 0.04 0.18 0.11
Al 25 s 233.40 0.12 0.02 0.26 0.13
Al 50 s 234.32 0.12 0.06 0.27 0.21
Al 100 s 23491 0.19 0.09 0.28 0.12
A2 25 s 209.07 0.18 0.03 0.12 0.14
A2 50 s 210.64 0.21 0.08 0.12 0.36
A2 100 s 211.32 0.25 0.07 0.16 0.29
A3 25 s 216.32 0.10 0.03 0.13 0.23
A3 50 s 217.54 0.11 0.04 0.17 0.31
A3 100 s 218.06 0.21 0.08 0.21 0.28
TABLE IT
MULTISINE AND APRBS RESULTS
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Fig. 11. APRBS identification, measured output (red) and predicted output
for osap parameters (blue) and optimized parameters (green)

time. The performance of realizations 2 and 3 gets worse on
the validation data after optimization. It also can be observed
that with an exception for the optimized parameters based on
the first realization on the validation data that a longer holding
time in general results in a worse identification for this case
study. Since the holding time is inversely proportional to the
range of the the excited frequencies it is concluded that the
electro-mechanical throttle is best excited with a short holding
time. The signal energy does not change significantly with
respect to the holding times because for equal amplitude levels
the same work is done. Figure 13 shows that due to the longer
holding time the amplitudes of the excited frequencies have
a major drop off after 1Hz whereas the amplitudes of the
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Fig. 12. Validation of the APRBS identification, measured output (red) and
predicted output for osap parameters (blue) and optimized parameters (green)

excited frequencies of the signal with the very short holding
time only drop off around the experimentally determined upper
band limit of 5 Hz.
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Fig. 13. Amplitude spectrum with respect to holding time

V. CONCLUSIONS & OUTLOOK

In this paper parametrizations of the standard test signals,
multisine and APRBS, have been conducted and analyzed.
Often standard test signals are used with minimum adaptation
to particular applications. The presented standard test signals
have a defined structure. On the one hand this impedes the
ability to adjust the signal properties because they are coupled
with respect to the signal’s parameters. On the other hand is
it very difficult to design an input signal from scratch. In this
contribution properties like the signal length and energy as
well as coverage of scheduling space have been investigated.

It can be concluded from the lower half of table II that the
choice of the amplitude levels has a major impact on the
excitation of a system with APRBS signals. The realizations
of the amplitude levels of the APRBS signals are generated
without considering any metrics beforehand. The design of the
levels still has to be investigated. Since the inserted energy
depends on the choice of amplitudes and not on the signal
duration (when designed as proposed), the holding time can
be used to target the frequency band of interest. The properties
of a multisine are easily adjusted compared to an APRBS
signal. The usage of a multisine or APRBS signal often is
not a choice of the operator because it can be prohibited to
use test signals so that the actuators are in constant motion.
Therefore it is important to be able to tune the signal properties
of an APRBS when multisines cannot be used. Furthermore
the validation data is very similar to an APRBS. It can be
seen in table II that the prediction error of the APRBS-based
models is lower for the initially estimated parameters. When
using standard test signals it is advised to choose a signal type
close to the operational excitation.

To further validate the developed methods will be applied
to other systems with different underlying physics as well as
theoretical systems where the true parameters are known.
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