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Abstract—Research in the synthesis of antenna is starting to
pay attention to optimize the multiobjective problems. While
evolutionary algorithms has obtained some satisfactory perfor-
mance, there still be necessary to make further improvements
especially on the suppression of premature. In this paper, we
introduce the multi-swarm technique into the multiobjective
particle swarm optimization and present a MOP approach to
linear array antenna design. Two objective functions concerning
sidelobe level and nulls control is considered in the optimization.
The result of comparison experiments proves that the proposed
method can achieve better performance in multiobjective antenna
synthesis, meanwhile, indicates the advantages and applicability
in practical MOP applications.

I. INTRODUCTION

With the increasing demands of antenna engineering, in-
cluding the electromagnetic-based geometry design and un-
conventional antenna array design, there has been a growing
interest in solving the synthesis optimization problems. An-
tenna synthesis is introduced in determining the parameters in
antenna engineering for a desired shape in radiation pattern,
which corresponds to the antenna application. Many synthesis
standards are concerned with suppressing the sidelobe lev-
el(SLL) while maintaining the main beam, meanwhile setting
up deep or broad null areas as targeted anti-interference
measures. As a result, antenna synthesis become a multi-
objective optimization problem(MOP). In recent years, with
more efficient computational algorithms and faster processors,
these complex nonlinear synthesis problems can be solved.
Among the optimization techniques, evolutionary algorithm-
s(EAs) becomes widely used in antenna design.

EAs are famous for the simplicity, versatility and robustness,
and the introduction of genetic algorithm(GA), particle swarm
optimization(PSO), differential evolution(DE) and other EAs
have achieved positive results in antenna synthesis. Howev-
er, the premature in convergence and parameter tuning in
initialization are still drawbacks especially in some sensitive
situations. Moreover, due to the high nonlinearness, large-
scale or medium-scale decision variables and multi-demand
during synthesis designs, the traditional and introduced EA
approaches always start from the simplified model or com-
bined fitness evaluations, which leads to a lower precision
and a incomplete solution space. Most of the multi-demand
synthesis problem are transformed into single-objective opti-
mization using a set of weight coefficients. These techniques
has been proved to achieve satisfied compromise solutions [1]–

[3]. The combination of objective functions leads to the miss
of most feasible solutions, and can not give various options
for decision maker. Aim at this problem, the multiobjective
evolutionary algorithms(MOEAs) such as NSGA-II, MOEA/D
and MOPSO, are introduced to solve these multiple criteria
decision making in antenna design [4]–[7]. As the number
of decision parameters becomes large, the nonlinear becomes
more complex. In these situations, the traditional MOEAs gets
into the local extremum points easily and the convergence and
diversity become poor in the evening of evolution.

Compared with other EAs, PSO choose developing direc-
tions based on similar reference solutions and group optima.
Benefit from the group intelligence, PSO has faster searching
speed and relatively accurate intuition, especially for solutions
with non-uniform distribution. However, the possibility of
premature also increases because of the directional learning.
Antenna synthesizes are complex non-uniform problems which
fit the PSO procedure. Aim at antenna synthesis MOPs and
solving premature phenomenon, a multi-swarm multiobjective
particle swarm optimization(MSMOPSO) is proposed in this
paper. This work use the radiator parameters (amplitudes and
phase) as the decision variables and pattern performance(SLL
and null control) to constitute the objective vector. According
to the experimental results, MSMOPSO can achieve better or
competitive performance in both convergence and diversity
than the other comparison algorithms.

The rest part of this paper is presented as the following.
Section II give the brief overview of multi-objective problem
and the particle swarm optimization in MOPs. The proposed
algorithm MSMOPSO is detailed in Section III. The formula-
tion of the array synthesis as the optimization task is discussed
in Section IV. The comparative simulations and results are
provided in Section V. Finally, the conclusions are in Section
VI.

II. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

Multiobjective optimization, also known as an area of mul-
tiple criteria decision making, is concerned with mathematical
optimization problems involving more than one objective
function to be optimized simultaneously. A multiobjective
optimization problem can be stated as follow:

Min F (X) = (F1(X), F2(X), . . . , Fm(X))

Subject to X ∈ Ω
(1)



Here Ω =
∏n

i=1[ai, bi] ⊆ Rn is the decision space, X =
(x1, x2, . . . , xn)

T ∈ Ω is the candidate solution, and F ∈ Rm

is the objective space, which constitutes m objective func-
tions. For most MOPs, the objectives are conflicting, and
there does not exist a single solution that simultaneously
minimize each objective. A Pareto optimal set is exist contains
all nondominated solutions which have considered equally
good performance. The goal of MOP methods is to find the
representative set of Pareto optimal solutions.

The recent years saw the development of many different
evolutionary algorithms working on the MOPs [8]–[10], and
these evolutionary technique based MOP algorithms are called
multi-objective evolutionary algorithms(MOEAs). Among the
evolutionary techniques, the population-based metaheuristic
methods with logical simplicity are proved to be efficient
and feasible. Particle swarm optimization(PSO) is one of the
outstanding and popular swarm intelligence, which has been
transformed into multiobjective usage. If in the d dimensional
search space, the velocity and position of particle i are
Xi = (xi1, xi2, . . . , xid) and Vi = (vi1, vi2, . . . , vid), in each
iteration, record the particle i′s best position it has ever been
(pBest), and the global optimum position all particles have
ever been (gBest). Based on the following equations updating
the particles velocity and position.

vi(k + 1) =ωvi(k) + c1r1(pBesti − xi(k))

+ c2r2(gBest− xi(k))

xi(k + 1) =xi(k) + vi(k + 1)

(2)

Although the past decades has witnessed several efficient
approaches to enhance the performance of PSO [11], the study
of PSO applied in MOPs are relatively few. MOPSO [12]
proposed by Coello is the most famous PSO emerged into
MOPs, which proposed a secondary repository(REP) for elite
collecting and global best selection, and introduced adaptive
hypercubes in repository maintenance as well as diversity
maintaining. The brief outline of a traditional MOPSO is
provided in Algorithm 1.

Algorithm 1 MOPSO
1: Initialization: Generate and evaluate a population POP of design vectors,

select the nondominated ones into REP and generate grids for each elite.
2: while computational budget is not exhausted do
3: for each individual p in POP do
4: Choose gBest from REP according to the distribution grid.
5: Update the velocity and position according to Equation (2).
6: Update pBest
7: end for
8: Update REP and the grids.
9: end while

However, when the dimension of decision space increases,
the neighborhood relations among particles become various.
Since in higher dimensional space each particles have more
choices to settle down, many feasible positions are neglected
and never been visit through the whole evolution. Under this
environment, the earliest elites in repository, which depend
on the initialization position, has more change to form the
direction of the following evolutions. As a serious result, the

algorithm will trapped in local extremums. Furthermore, at late
stage of the algorithm, particles gather around the considered
optimums, the performance of diversity is limited. The prema-
ture phenomenon appears in MOPSO involved array antenna
application, especially when the number of elements increases
or taking more radiator parameters into consideration.

III. THE MULTI-SWARM MULTIOBJECTIVE PARTICLE
SWARM OPTIMIZATION

MOPSO needs to be improved to against premature and
poor diversity in special cases. First of all, we should analyse
the the cause of this drawback. We can illustrate the premature
phenomenon with the help of the diagrams in Figure 1.
The black solid lines in the figures represent the possible
solutions between the found area and the undiscovered optima.
Assume that at iteration k, p1 is an nondominated solution
and collected into the repository; at iteration k + 1, another
nondominated solution is found, we call it p2, and p2 domi-
nates p1 (denoted as p2 ≻ p1, Figure 1(a)). According to the
archive selection strategy, only the nondominated ones go to
the repository, p1 is removed and the solution in repository
decreases. The elite replace behaviors happen frequently at
early iterations with the number of found elite remains the
same or decreases. Because of the delete of some dominated
solutions, the corresponding discovery areas are locked and
limited. After several iterations, particles gathered around p2
and the corresponding local area, and many new nondominated
solutions are emerging, accelerate the speed of elite discovery.
Back to iteration k+ 1, suppose p1 is the only particle in the
corresponding local optimal area, affected by this adjustment,
p1 will turn to learn from p2, and leave the local optimal
area empty. After sever iterations, the PF which connected
to the skipped local area has great change be uncultivated
because of the remove of solution p1, which leads to the loss
of diversity(Figure 1(b)).

To solve the drawbacks above, the multi-swarm strategy is
introduced in antenna synthesis. In previous studies, multi-
swarm strategy has been used to maintain diversity [13], [14]
and improve the PSO performance [15]. Assume that under
the whole population, sub-swarms containing parts of particles
exist, and the solution p1 and p2 happen to be assigned into
different swarms(Figure 1(c)). The sub-swarm works as a semi
isolated local neighborhood, where an exclusive repository is
built to keep it own elite solutions. Under this structure, p1
won’t be deleted and has chances to make better evolution.
A rectification is proposed and carried out every defined
period. If the repository of sub-swarm calculated have no
contribution to the global REP, the sub-swarm repository will
be replaced by the leaders in other sub-swarms randomly;
otherwise, the sub-swarm will be maintained unchange until
the next rectification. A brief outline of the generalized multi-
swarm multiobjective particle swarm optimization algorith-
m(MSMOPSO) is presented in Algorithm 2.
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Fig. 1. The diagram of premature in MOP optimization

Algorithm 2 MSMOPSO
1: Initialization: Generate and evaluate a population POP of design vectors,

average distribute particle into sub-swarms, select the nondominated ones
into repositories.

2: while computational budget is not exhausted do
3: /******************* The rectification ********************/
4: if rectification condition is met then
5: Combine all sub-swarm repository into REP, remove the dominat-

ed ones.
6: for each swarmi do
7: if no solution in REP belongs to swarmi then
8: Replace the repository in swarmi with the elite solutions

in other swarms.
9: end if

10: end for
11: end if
12: /******************* End of rectification *****************/
13: for each individual p do
14: Choose gBest from the corresponding repository.
15: Update the velocity and position according to Equation (2).
16: Update pBest
17: end for
18: Update repositories and the grids.
19: end while

IV. FORMULATION OF THE ANTENNA ARRAY

An antenna array is consist of some antenna elements with a
geometrical arrangement of a deliberate relationship between
their currents, and always can achieve a desired radiation
pattern. Phased array is a kind of antenna array to gain
a directional pattern, in which the antenna elements have
modified phases, amplitudes and distributions.

For a linear phased antenna array, assume that we have N
isotropic radiators placed uniformly along the x-axis, whose
geometry is shown in Fig.2. Each radiator element has inde-
pendent current amplitude and phase. The array factor in x-y
plane can be expressed as Equ.3 [2].
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Fig. 2. Geometry of 2N-element linear array

AF (θ, I⃗, ϕ⃗) = 2
N∑

n=1

In cos(k
2n− 1

2
d sin θ + ϕn) (3)

where In and ϕn are, respectively, the excitation amplitude
and phase of the nth element, and I⃗ , ϕ⃗ are the corresponding
vectors to be determined. k = 2π

λ , k is the wavenumber, and
λ is the signal wavelength. d is the distance between two
neighbouring elements. The array factor expressed in dB can
be written as

AFdB(θ, I⃗, ϕ⃗) = 20 log | AF (θ, I⃗, ϕ⃗)

AF (θ0, I⃗, ϕ⃗)
| (4)

where θ0 is the direction of the maximum.
For sidelobe level(SLL) suppression, the objective functions

are defined to be minimized and can be written as

Min f1 = max
θ∈S

AFdB(θ) (5)

where S is the region that the sidelobes are suppressed, which
has obvious impact on the optimization. For nulls control, we
use the average broad null level (ABNL) minimization, and
the fitness can be written as

Min f2 =
1

B

∑
θ∈SB

AFdB(θ) (6)

where SB is the required broad null region and B is the length
of SB .

V. EXPERIMENTAL STUDIES

We use MSMOPSO, comparing with MOPSO and NSGA-
II in the array antenna design. The two PSO-based algorithms
share the same parameters: c1 = 1.2, c2 = 1.2, ω = 0.2, and
ω is multiplied by a damping of 0.99 during every iteration.
To all three comparison algorithms, the population size is set
to be 100. The computational budget is 500 iterations. As a
preliminary investigation, the number of sub-swarm K is set
to be 5 For MSMOPSO in this paper. The rectification periods
is 50 iterations.

Settings of antenna: 2N-element uniform linear array, N =
16, d = 0.7λ. Objective f1 is corresponding to the sidelobe
level, where the mainlobe range is θ ∈ [−7, 7]. Objective f2 is
set to control the broad nulls level, and the broad null area is
[−60,−40]∪[40, 60]. The decision vectors are I⃗ = [I1, ..., IN ]
and ϕ⃗ = [ϕ1, ..., ϕN ], amplitudes and phases respectively.



The optimal fronts found by the three algorithms are shown
in Figure 3, each point of PF represents a potential array design
case, the optimal sets provide flexible choice for different
situations. The solutions found by MSMOPSO range from
-25.2 to -19.3 on sidelobe level, and from -59.1 to -44.8
on average broad null level. It can be seen that NSGA-II
has a better diversity performance than MSMOPSO, but the
weakness in convergence indicates the occurrence of prema-
ture. The curve of MOPSO is almost overlapped by NSGA-II
but has much small range, which indicates that the particles
are crowed and trapped in one local optimal. Moreover, the
parallel coordinate plots of the related REPs’ decision spaces
are shown in Figure 4, among which the curves of MSMOPSO
is colour-coded according to the contributions of each swarm.
In the parallel coordinate plots, the lines located above are the
optimal amplitude values of antenna elements, and the lines
located below are the optimal phase values. It can be seen
from (a), the result of MSMOPSO, that the traces of lines are
distinguished by the colors related to different swarms, which
indicated the diversity progress made by the multi-swarm. As
contract, in MOPSO(b) and NSGA-II(c), all the lines gathered
together and the solutions are limited in single discovery
direction, which lead to premature and poor diversity.
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Fig. 3. The distribution of solutions optimized by MSMOPSO, MOPSO and
NSGA-II

Figure 5 presents the radiation patterns of three example
cases found by MSMOPSO, and Table I presents the corre-
sponding optimized array parameters of the three cases. The
first design case present a lower SLL value than case 3 and
a better broad null control than case 2; case 2 has best SLL
value among the three cases, but the ABNL performance is
comparatively poor; case 3 presents the best ABNL value and
a poorest SLL. PF found by NSGA-II range from -23.9 to
-15.2 on SLL, and -60.9 to -43.9 on ABNL.

In our experiments, we select HV metric and nRep value
as the performance measurements of the MOP algorithm.
The HV metric can measure diversity as well as convergence
performance, and it is particularly recommended for practical
implications without knowing the true Pareto front. The HV
we used is calculated based on the percentage of the area
between the PF known and reference point in the whole
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Fig. 4. The parallel coordinate plots in decision space
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Fig. 5. Optimized radiation patterns by MSMOPSO

TABLE I
OPTIMIZED PARAMETERS BY MSMOPSO

Case1 Case2 Case2

n In ϕn In ϕn In ϕn

1 0.70 0.38 0.69 0.26 0.83 8.68
2 0.69 0.57 0.68 1.73 0.70 -9.34
3 0.60 -1.68 0.60 -1.84 0.83 -17.59
4 0.74 1.76 0.75 1.83 0.99 1.39
5 0.74 -2.58 0.75 -2.76 0.78 -4.78
6 0.61 -3.90 0.61 -0.27 0.52 -16.74
7 0.62 0.33 0.62 -0.90 0.62 -4.41
8 0.61 -0.50 0.61 -0.99 0.60 8.79
9 0.64 -3.83 0.64 -3.94 0.72 1.22

10 0.63 -3.12 0.62 -2.94 0.82 -7.52
11 0.44 0.48 0.44 0.90 0.47 2.46
12 0.46 -8.44 0.46 -8.57 0.68 -1.62
13 0.49 -11.49 0.49 -11.50 0.63 -13.02
14 0.35 0.40 0.36 -0.04 0.30 -3.96
15 0.46 -7.34 0.42 -8.12 0.62 18.99
16 0.34 -10.00 0.35 -10.51 0.41 22.44

hypercube area, and multiplied by a distance factor. The HV



is defined as equation 7.

HV =
m∏
i=1

(−→r −
−−−−−→
minPF )× v

V
(7)

The number of solutions in REP is denoted as nRep,
which can reflect the plumpness and diversity of the feasible
solutions.

The performance results, including the mean and standard
deviation of the metric HV and nRep generated by 20 inde-
pendent simulations performed on the antenna instance, are
summarized in Tab.II, where the best results are highlighted.
MSMOPSO has the best HV score and the nRep value, and
highest stability which inspired by standard deviation values
among the three algorithms. The shortest running time is
expressed by MOPSO, followed by MSMOPSO. NSGA-II has
comparatively long runtime.

TABLE II
THE PERFORMANCES AMONG THE COMPARISON ALGORITHMS

Algorithm HV nRep toc

mean std. mean std. mean std.
MSMOPSO 1.14E+02 2.21E+01 42 8 6.75E+02 1.34E+02
MOPSO 6.23E+01 3.22E+01 20 12 3.88E+02 2.37E+01
NSGA-II 9.83E+01 3.76E+01 33 13 1.97E+03 1.29E+02

The performance curves consisted of performances of every
10 iterations. The randomicity dominates the performances at
early iterations. During the middle evaluation period, the con-
vergence advances stage by stage, where MSMOPSO presents
best speed and potential. MOPSO and NSGA-II ends at local
optima in most simulations, while MSMOPSO achieves sat-
isfied solutions. The nRep values show large fluctuate during
the procedure. MOPSO has poor performance in nRep value,
which indicates the particles gathered together and new elite
solutions are difficult to be found. NSGA-II presents a better
performance in REP maintenance which benefits from the
hybrid process, yet a slower convergence speed as a sacrifice.

VI. CONCLUSIONS

In this paper, a multi-swarm multiobjective particle swarm
optimization is proposed. The MSMOPSO algorithm is used in
the synthesis of linear array antenna with the goals of minimize
sidelobe level and broad null level in a multiobjective ap-
proach. Comparing with MOPSO and NSGA-II, MSMOPSO
obtains satisfied solutions to the antenna parameters in ampli-
tudes and phases simultaneously, greatly improves premature
and the trapping in local optima. Future studies should include
the analysis of the swarm number K and the interactions
between different swarms. With the low complexity and less
timeconsuming, the extension of MSMOPSO can be indicated
in other practical MOP applications.
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