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Abstract—Elites have been widely used in many evolutionary 
algorithms. However, only elites in current generation are 
utilized to guide the learning/updating of particles/individuals in 
existing algorithms. Usually, elites in different generations are 
different and elites in the past generations may contain 
experienced knowledge and thus may be helpful for guiding 
particles/individuals to promising areas. Inspired from this, we 
propose a Cross-generation Elites Guided Particle Swarm 
Optimizer in this paper.  Specifically, the swarm in current 
generation is divided into two separate sets: the elite set 
containing the top best particles and the non-elite set consisting 
of the rest particles. Since these elite particles are the most 
promising ones in the current generation, we remain these elites 
unchanged and let them directly enter next generation. Then the 
rest non-elite particles are updated through learning from elites 
in both the current generation and the last generation. Through 
this, a potential balance between exploration and exploitation 
can be achieved. Particularly, the proposed algorithm is applied 
to deal with large scale optimization, which is very challenging 
and difficult and has received a lot of attention in recent years. 
Extensive experiments are conducted on two sets of large scale 
benchmark functions and experimental results verify the 
competitive effectiveness and efficiency of the proposed 
algorithm in comparison with several state-of-the-art large scale 
evolutionary algorithms. 
 
Keywords—Cross-Generation Elites; Elites; Partilce Swarm 
Optimization; Large Scale Optimization; Numerical Optimization. 

I. INTRODUCTION 

Since Particle Swarm Optimization (PSO) [1],[2]  was first 
proposed by Kennedy and Eberhart in 1995, it has received 
plenty of attention in recent years and thus many PSO variants 
[3-8] have been proposed and applied to solve real-world 
problems [9],[10].  

Generally, particles in the classical PSO have two 
properties: the particles' positions X and their velocities V, 
which are updated as follows: 

    1 1 2 2( ) ( )d d d d d d
i i i i ic r pbest x c r gbev v st xw         (1) 

      
d d d
i i ix x v                                                         (2) 

where the ith particle is represented by Xi=[xi
1,…,xi

d,…,xi
D] 

and Vi=[vi
1,…,vi

d,…,vi
D]with D denoting the dimension size. 

pbesti=[pbesti
1,…,pbesti

d,…,pbesti
D]  is the personal best 

position of the ith particle, and the global best position of the 
swarm is gbest=[gbest1,…,gbestd,…,gbestD] . As for the 
parameters, w is termed as the inertia weight [11], 
c1 and  c2 are two acceleration coefficients [1], and  r1 and 
 r2 are two uniformly random numbers within [0,1]. Kennedy 
and Eberhart [2] have taken the second part and the third part 
in the right of Eq. (1) as the cognitive component and the 
social component, respectively. 

The classical PSO has been demonstrated to successfully 
solve low dimensional problems, especially unimodal 
problems. However, when it comes to complicated 
multimodal problems or high dimensional problems, its 
efficiency and effectiveness degrades drastically due to the 
serious loss of diversity, which results from the greedy 
attraction of the global best position gbest. Thus, to locate the 
global optima of different problems efficiently, researchers 
have devoted a lot of attention to putting forward more 
effective learning or updating strategies to aid PSO to escape 
from local optima. 

At first, since the global best position gbest is too greedy, 
researchers proposed to utilize the neighbor best 
position lbest to replace	gbest in Eq. (1) to update particles 
through utilizing different topologies [12],[13]. Then, Chen 
et.al.  transplanted the aging mechanism into PSO, leading to 
a PSO with aging leader and challenger (ALC-PSO) [6]; 
Based on Gaussian or Cauchy distributions, bare bone PSO 
(BBPSO) was developed by sampling the positions of 
particles [4],[14],[15]; Through recording and estimating the 
distribution of each particle’s historical pbests, a composite 
PSO named HM-PSO was brought up [16]. 

 Subsequently, to further enhance diversity, some PSO 
variants came up with generated exemplars, which are 
constructed by some kinds of learning strategies. The two 
most representatives are comprehensive learning PSO 
(CLPSO) [5] and orthogonal learning PSO (OLPSO) [17]. 
The former constructs exemplars through a comprehensive 
learning strategy, which selects each dimension of the 
exemplar from all particles’  pbest , while the latter adopts 
orthogonal experimental design on pbest and gbest (or lbest) 
to obtain more efficient exemplars for each particle. Ren et.al. 
proposed a scatter learning PSO algorithm (SLPSOA) [18]  by 
designing an exemplar pool composed of a fixed number of 
high-quality solutions. A genetic learning PSO (GL-PSO) [19] 
was put forward through using other EAs to generate 
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exemplars for particles. 
Recently, elites, which are defined as the top best 

individuals in the population, have been intensively utilized 
to aid EAs including PSO to solve complicated problems [20-
28], which will be detailed in next section. Observing these 
elite-guided EAs, we find that only elites in current generation 
are utilized. Since elites in different generations may be 
different and elites in past generations may contain 
experienced knowledge and thus may be helpful for particles 
to approach to promising areas, we propose a Cross-
generation Elites Guided PSO (CEGPSO), which utilizes 
elites in both the current generation and the last generation to 
guide the learning of particles. Through this, a potential 
balance between exploration and exploitation can be achieved.  

In particular, the proposed CEGPSO is applied to solve 
large scale optimization problems, which is very challenging 
and difficult to optimize, due to the exponentially increased 
search space and the rapidly increased number of local optima. 
These challenges lead to great degradation of traditional EAs, 
which though are very efficient in low dimensional space. The 
related work on large scale optimization will also be 
elucidated in next section. 

Extensive experiments are conducted on CEC’2010 and 
CEC’2013 large scale benchmark functions to verify the 
effectiveness of the proposed CEGPSO in comparison with 
several state-of-the-art large scale algorithms. 

The rest of this paper is organized as follows. In Section II, 
related work on both elite-guided EAs and large scale 
optimization are reviewed. Section III elaborates the proposed 
CEGPSO in details, following which is the experiments in 
Section IV to verify the effectiveness and efficiency of 
CEGPSO in dealing with large scale optimization. Finally, 
Section V concludes this paper. 

II. RELATED WORK 

Without loss of generality, in this paper, we consider 
minimization problems formulated as follows: 
  min ( )x x RDf     (3) 

where f(x) is the function to be minimized and x is the variable 
vector containing D dimensions. In this paper, the function 
value is considered as the fitness value of a particle. 

A. Elites Guided EAs 

Elites are defined as the top best individuals in the 
population. They usually contain the most promising 
information to guide the learning or updating of particles or 
individuals. Currently, the elite mechanism is usually utilized 
in multi-objective optimization algorithms (MOEAs) 
[20],[23-25],[29],[30] to evolve the population, especially 
dominance-based MOEAs, such as NSGA-II [31]. 

The two most representatives that utilize elites to evolve 
the population in single objective optimization are  estimation 
of distribution algorithms (EDA) [32],[33] and a DE variant 
named JADE [34] respectively. In most of the current EDAs, 
the distribution of the population is estimated based on the top 
best individuals in the current generation, namely the elites. 
JADE is a popular DE variant, which uses a mutation strategy 
called DE/current-to-pbest/1 to update individuals. In this 

strategy, the top p best individuals responsible for the 
generation of the offspring are just the elites in the current 
population. 
 Subsequently, Cui et. al. [26] developed an artificial bee 
colony algorithm with a depth-first search strategy, which not 
only exploits the information of the elite solutions but also 
employs the current best solution in the onlooker bee phase. 
In [21], a Genetic Algorithm (GA) variant was proposed by  
employing a hybrid memory and random immigrants scheme 
and a hybrid elitism and random immigrants scheme to handle 
dynamic optimization problems. In [22], an elite group guided 
quantum-inspired evolutionary algorithm (EQIEA) was 
brought up through introducing an elite group guidance 
updating strategy to solve knapsack problems. An elite-
guided binary DE (EGBDE) in [27] and an elite-group guided 
DE (EMGDE) in [28] were respectively developed through 
using elites to guide the update of individuals to solve discrete 
and continuous optimization problems. 
 Observing these elite-guided EAs, we find that only elites 
in current generation are utilized. In general, elites in different 
generations are different and elites in the past generations may 
contain experienced knowledge and thus may be helpful for 
guiding particles to promising areas. Inspired from this, we 
develop a Cross-generation Elites Guided PSO (CEGPSO) 
through using elites in both the current generation and the last 
generation to guide the learning of particles. 

B. Large Scale Optimization 

When the dimension size of problems defined in Eq. (3) 
increases, the problems become more and more difficult to 
optimize due to the explosively increased search space and 
the exponentially increased number of local optima. Under 
such harsh environment, traditional EAs [4],[18],[35] usually 
drastically lose their efficiency and effectiveness.  

Thus, to deal with high dimensional problems efficiently, 
researchers attempted to seek solutions in two aspects: 1) 
cooperative coevolution (CC) approaches, which divide the 
whole dimensions into several groups and evolve each 
dimension group separately; and 2) new learning or updating 
strategies, which evolve all dimensions as a whole like 
traditional EAs. Since the proposed method is a PSO variant, 
we mainly review PSO variants in dealing with large scale 
optimization in this section. 

Utilizing the divide-and-conquer technique, Potter [36] 
proposed a cooperative coevolution (CC) framework to 
decompose problems into smaller sub-problems and then 
evolve them separately. Such a framework provides a 
promising approach for large scale optimization. Hereafter, 
researchers have embedded different EAs into this framework, 
leading to different CCEAs, such as cooperative co-
evolutionary PSO (CCPSO) [37],[38], and cooperative co-
evolutionary DE (DECC) [39-41].  

In [37], CCPSO-ܵ௄ was developed by randomly dividing 
the whole D dimensions into D/K subcomponents and then 
each subcomponent is separately optimized by the classical 
PSO. Further, CCPSO- ௄ܪ  was developed through 
alternatively using the classical PSO and CCPSO- ܵ௄  to 
update the swarm. To deal with the dilemma that the optimal 
number of subcomponents may be different for different 
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problems, Li and Yao [38] proposed CCPSO2 by designing a 
group size pool containing different group sizes. When gbest 
is not updated, a group size is randomly selected from the pool, 
resulting in a dynamic decomposition strategy. 

Since CCEAs optimize each subcomponent separately, the 
ideal decomposition strategy should put interdependent 
variables into the same group, while place independent 
variables into different groups [38],[39]. Currently, the most 
accurate grouping strategies for static variable dependency 
are differential grouping (DG) [39] and its variants, XDG [40] 
and GDG [41]. Though CCEAs show great potential in large 
scale optimization, they usually needs a lot of function 
evaluations to obtain satisfactory performance, due to 
optimizing each sub-component separately, especially when 
the number of groups is large. Besides, to get a good 
decomposition on dimensions, the decomposition technique 
usually needs a large number of function evaluations, which 
results in great reduction in the number of function 
evaluations used for evolution [39-41]. 

To alleviate the above situation, researchers attempt to 
develop new learning strategies for traditional EAs, which 
treat the problems as a whole like the classical PSO. Usually, 
special techniques are needed in the learning strategies to 
preserve high diversity, which is very important for high 
dimensional optimization [42]. 

In [43],[44], a dynamic multi-swarm PSO (DMS-PSO) was 
proposed by randomly dividing the whole swarm into 
multiple small sub-swarms. Then, a local version PSO is 
utilized to evolve each sub-swarms. Recently, in [45], [42], 
[46], a novel competitive learning strategy was put forward. 
By combining this learning strategy with different exemplar 
selection methods, different optimizers were developed. First, 
a multi-swarm PSO based on feedback evolution (FBE) [45] 
was proposed, where pairwise competition is performed 
between two particles randomly selected from two swarms, 
and then the loser is updated by a convergence strategy, while 
the winner is updated through a mutation strategy. 
Subsequently, a competitive swarm optimizer (CSO) [42] was 
developed, where the pairwise competition is executed among 
particles in a single swarm, and only the loser is updated, 
while the winner enters the next generation directly. The 
update of the loser is presented as follows: 

                        1 2 3( ) ( )l l w
d d d d d d

l lrv r x x r x xv       (4) 

l l
d d d

lx x v    (5) 

where Xl=[xl
1,…,xl

d,…xl
D]  and Vl=ൣvl

1,…,vl
d,…vl

D൧  are the 
position and speed of the loser respectively; the position of 
the winner is 	Xw=[xw

1 ,…,xw
d ,…xw

D]  and xത=[xത1,…,xതd,…,xതD]  is 
the mean position of the swarm,  r1 ,  r2 , and r3 are three 
random variables ranging within ሾ0,1ሿ and ϕ is the control 
parameter in charge of the influence of xത. 

Further, a social learning PSO (SL-PSO) [46] was 
developed, where all particles are sorted according to their 
fitness values. Then, for each particle, the first exemplar is 
randomly selected from all better particles, while the second 
exemplar is also the mean position of the whole swarm. 

In this paper, to solve large scale optimization efficiently, 
we propose CEGPSO through utilizing elites in both the 

current generation and the last generation to guide the 
learning of particles, which will be elaborated in next section. 

III. THE PROPOSED ALGORITHM 

Elites are usually different in different generations and 
elites in the past generations may contain experienced 
knowledge and thus may be helpful in guiding particles to 
promising areas. Inspired from this, we develop a cross-
generation elites guided PSO (CEGPSO) to deal with large 
scale optimization. Specifically, elites in both the current 
generation and the last generation are utilized to guide the 
learning of particles. 

In particular, in this paper, elites are defined as the top M 
best particles in the swarm. Before evolution, the swarm is 
partitioned into two separate sets: the elite set ES containing 
the top M best particles and the non-elite set NES containing 
the rest particles. Since elites are usually the most promising 
particles in the swarm, we remain these elites unchanged and 
let them directly enter next generation. Thus, in each 
generation, only particles in NES are updated. 

In this paper, we use elites in two consecutive generations 
to guide the learning of particles. Thus, two sets of elites exist, 
namely ESG and ESG-1, with the former denoting the elites in 
the current generation, while the latter representing the elites 
in the last generation. To update the ith particle in NESG, two 
elites are first randomly selected with one randomly selected 
from ESG ( Xelrand,	G ) and the other selected from ESG-1 

(Xelrand, G-1). Then, these two elites compete with each other 
and the winner acts as the first exemplar to replace pbest in 
Eq. (1) and the loser acts as the second exemplar to replace 
gbest in Eq. (1) to guide the learning of particles. Specifically, 
the update formula of particles in NESG is presented as 
follows: 
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where Xi=[xi
1,…,xi

d,…xi
D] and Vi=ൣvi

1,…,vi
d,…vi

D൧ respectively 
denote the position and speed of the ith particle in NESG. 
Xel1=[xel1

1 ,…,xel1
d ,…,xel1

D ] and Xel2=[xel2
1 ,…,xel2

d ,…,xel2
D ] are the 

first and second elites respectively used to guide the learning 
of particles. These two elites are determined by Eq. (8) where 
Xelrand,G  is an elite randomly selected from ESG while 
Xelrand,G-1is an elite randomly selected from ESG-1. As for the 
parameters,  r1, r2 , and r3 are three random variables ranging 
within ሾ0,1ሿ and ϕ is a control parameter in charge of the 
influence of the second elite. 
 In Eq. (6), the second part in the right is mainly responsible 
for guiding particles to promising areas, while the third part is 
mainly to enlarge the diversity of the swarm, so that 
premature convergence can be avoided. Thus, the better one 
between the two selected elites acts as the first exemplar in 
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Eq. (6) while the worse one acts as the second exemplar, 
because the better elite usually has more powerful 
exploitation ability while the worse one generally has more 
powerful exploration ability. 
 Even though Eq. (6) ~ Eq. (8) have already characterized 
the proposed CEGPSO, some detailed techniques should be 
mentioned here: 
1) In the initial stage, ES0 is set to be empty. Thus, for the 

update of particles in NES1 in the first generation, only 
one set of elites exists, namely ES1. Therefore, for 
particles in NES1, the two random elites are both 
selected from ES1 with the winner acting as the first 
exemplar, while the loser acting as the second exemplar. 

2) As for the selection of elites, in this paper, we utilize the 
roulette wheel selection strategy to respectively select 
one elite from ESG and ESG-1. The probability of each 
elite in ESG is computed as follows: 

 

1

1
j

j
el M

k

M rk

k
p









   (9) 

 where pelj
 is the probability of the jth elite, M is the elite 

set (ESG) size, and rkj is the ranking of the jth elite, 
which is determined by its fitness value.  

3) In this paper, we adopt the following repair mechanism 
when the position of one particle is out of the bounds: 

  max max max

min min min

( ),

( ),

d d d d d
i id

i d d d d d
i i

x x x if x x
x

x x x if x x

    
  

   (10) 

  where xmax
d  and xmin

d  are the upper and lower bounds of 
the dth dimension respectively. 

In CEGPSO, the elites are preserved and remain unchanged. 
During evolution, the elites in the current generation are 
generally much better than those in the last generation as a 
whole. Therefore, we can see that during evolution, the elites 
in the swarm become better and better, and finally these elites 
could converge together at the global optima or local optima 
of the problems to be optimized.  

Overall, the complete framework of the proposed CEGPSO 
is presented in Algorithm 1. Comprehensively, we can see 
that CEGPSO is simple to implement due to its maintenance 
of the classical framework of PSO. In terms of the time 
complexity, compared with the classical PSO, CEGPSO only 
needs extra O(NPlog(NP)) to sort the population according to 
fitness values and then gets the elites in the current generation. 
As for the space complexity, CEGPSO needs much less space 
than the classical PSO, because it only needs O(M*D) space 
to keep the elites in the last generation, which is much smaller 
than O(NP*D) to store the personal best position of each 
particle in the classical PSO. Together, we can see that 
CEGPSO is both time and space efficient. 

IV. EXPERIMENTAL STUDIES 

A. Experiment Setup 

1) Benchmark Functions 
To verify the performance of the proposed CEGPSO, we 

conduct experiments on CEC’2010 [47] and CEC’2013 [48] 

benchmark functions with 1000 dimensions. Functions in the 
latter set are the extensions of those in the former set, but they 
are much more difficult to optimize than the former ones. For 
the detailed description of these benchmark functions, readers 
can be referred to [47],[48]. 

2) Compared Algorithms 
To comprehensively demonstrate the performance of 

CEGPSO, several state-of-the-art evolutionary algorithms 
dealing with large scale optimization are selected to make fair 
comparisons. These compared algorithms are 1) CSO [42], 
SL-PSO [46] and DMS-L-PSO [43], which evolve all 
variables together like traditional EAs; 2) CCPSO2 [38], 
DECC-G [49], MLCC [50], and  DECC-DG [39], which are 
all CCEAs and thus decompose the dimensions into several 
groups and evolve each group separately. These two kinds of 
EAs in coping with large scale optimization are selected, so 
that a comprehensive comparison can be achieved 

3) Parameter Settings 
As for the parameter settings, the main parameter settings 

of CEGPSO are listed in Table I. For the compared algorithms, 
the main parameters are set according to the corresponding 
papers.  

In terms of the maximum number of function evaluations, 
without otherwise stated, it is set as 3×106 , at which the 
comparison results are reported in Table II and Table III.  

Algorithm 1: The pseudo code of CEGPSO 
Input: Swarm size NP, Maximum number of function evaluations 
Max_Fes, Number of elites M, Control parameter ϕ;  
        
1: Fes = 0, G=0 and set ES0 to be an empty set; 
2: Initialize the swarm randomly; 
3: Evaluate particles in the swarm P; 
4: Fes = Fes + NP; 
5: While Fes < Max_Fes   
6:       G=G+1; 
7:     Sort particles in the swarm and put the indexes of the top best M 

particles into ESG and the others into NESG; 
8:       For i = 1: | NESG | 
9:            If G==1 
10:              Randomly select two elites from ESG: Xel1 and Xel2; 
11:          Else 
12:            Randomly select one elite from ESG: Xel1 and one elite from 

ESG-1: Xel2; 
13:          End If 
14:          If f(Xel2)<f(Xel1)          
15:              Swap Xel1 and Xel2; 
16:          End If 
17:          Update this particle according to Eq. (6) and Eq. (7); 
18:          Repair the position of this particle according to Eq. (10); 
19:          Evaluate this particle; 
20:          Fes= Fes +1;  
21:      End For     
22:      Put the elite particles in ESG into ESG-1;  
23: End While 
Output: The global best fitness and the global best individual. 

TABLE I 
PARAMETER SETTINGS FOR CEGPSO 

 

NP M Φ 
500 0.2NP 0.6 
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Table II 
COMPARISON RESULTS OF THE COMPARED ALGORITHMS ON 1000-D CEC'2010 FUNCTIONS WITH 3×106 FITNESS EVALUTIONS 

 
F Quality CEGPSO CSO SL-PSO DMS-L-PSO CCPSO2 DECC-G MLCC DECC-DG 

F1 
Median 2.10E-21 4.40E-12 7.90E-18 1.61E+07 7.80E-01 3.53E-07 1.66E-14 1.42E+02
Mean 2.06E-21 4.50E-12 8.73E-18 1.63E+07 2.96E+00 3.54E-07 8.65E-13 1.88E+04
Std 2.86E-22 5.94E-13 3.30E-18 1.41E+06 6.68E+00 1.44E-07 2.97E-12 4.66E+04

p-value - 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F2 
Median 1.47E+03 7.33E+03 1.93E+03 5.53E+03 4.25E+00 1.32E+03 2.43E+00 4.46E+03
Mean 1.48E+03 7.42E+03 1.93E+03 5.45E+03 4.30E+00 1.33E+03 2.89E+00 4.43E+03
Std 7.67E+01 2.86E+02 1.12E+02 5.38E+02 1.11E+00 2.55E+01 1.52E+00 1.87E+02

p-value - 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11- 1.21E-10- 3.02E-11- 3.02E-11+

F3 
Median 4.13E-14 2.53E-09 1.85E+00 1.56E+01 4.16E-03 1.14E+00 6.24E-10 1.66E+01
Mean 4.13E-14 2.60E-09 1.88E+00 1.56E+01 4.51E-03 1.10E+00 2.10E-07 1.66E+01
Std 1.81E-15 2.62E-10 3.30E-01 1.08E-01 1.66E-03 3.35E-01 1.12E-06 3.02E-01

p-value - 1.46E-11+ 1.46E-11+ 1.46E-11+ 1.46E-11+ 1.46E-11+ 1.46E-11+ 1.46E-11+

F4 
Median 2.88E+11 7.26E+11 3.04E+11 4.32E+11 1.45E+12 2.46E+13 1.78E+13 5.08E+12
Mean 2.93E+11 7.25E+11 2.99E+11 4.42E+11 1.70E+12 2.59E+13 1.71E+13 5.22E+12
Std 7.12E+10 1.23E+11 7.16E+10 8.05E+10 1.04E+12 8.14E+12 5.47E+12 1.89E+12

p-value - 3.34E-11+ 6.10E-01= 1.31E-08+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F5 
Median 2.86E+08 2.00E+06 3.29E+07 9.35E+07 3.76E+08 2.50E+08 5.11E+08 1.52E+08
Mean 2.83E+08 2.86E+06 3.17E+07 9.25E+07 4.14E+08 2.69E+08 4.99E+08 1.55E+08
Std 1.28E+07 1.79E+06 6.21E+06 9.04E+06 1.38E+08 6.84E+07 1.07E+08 2.15E+07

p-value - 3.02E-11- 3.02E-11- 3.02E-11- 6.28E-06+ 2.42E-02- 5.57E-10+ 3.02E-11-

F6 
Median 4.00E-09 8.23E-07 2.15E+01 3.66E+01 1.97E+07 4.71E+06 1.97E+07 1.64E+01
Mean 4.12E-09 8.21E-07 2.08E+01 3.78E+01 1.71E+07 5.00E+06 1.78E+07 1.63E+01
Std 6.55E-10 2.68E-08 2.63E+00 1.21E+01 5.20E+06 1.03E+06 4.37E+06 3.45E-01

p-value - 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F7 
Median 1.19E+00 2.04E+04 4.06E+04 3.47E+06 2.67E+06 6.57E+08 1.15E+08 9.20E+03
Mean 1.33E+00 2.01E+04 6.49E+04 3.47E+06 2.06E+08 8.14E+08 1.51E+08 1.41E+04
Std 6.98E-01 3.86E+03 5.60E+04 1.16E+05 4.31E+08 5.40E+08 1.45E+08 1.26E+04

p-value - 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F8 
Median 2.99E+07 3.87E+07 7.43E+06 2.02E+07 2.00E+07 9.06E+07 8.82E+07 1.62E+07
Mean 2.99E+07 3.87E+07 7.81E+06 2.03E+07 4.13E+07 8.56E+07 6.59E+07 2.75E+07
Std 2.39E+05 6.81E+04 1.56E+06 1.88E+06 3.84E+07 2.64E+07 3.40E+07 2.63E+07

p-value - 3.02E-11+ 3.02E-11- 3.02E-11- 1.86E-01= 8.48E-09+ 6.77E-05+ 3.99E-04-

F9 
Median 4.24E+07 7.05E+07 3.22E+07 2.08E+07 1.14E+08 4.35E+08 2.48E+08 5.52E+07
Mean 4.20E+07 7.03E+07 3.30E+07 2.08E+07 1.02E+08 4.40E+08 2.43E+08 5.59E+07
Std 3.36E+06 5.73E+06 4.46E+06 1.58E+06 3.30E+07 4.87E+07 2.16E+07 6.45E+06

p-value - 3.02E-11+ 7.77E-09- 3.02E-11- 3.02E-11+ 3.02E-11+ 3.02E-11+ 8.15E-11+

F10 
Median 1.55E+03 9.59E+03 2.60E+03 5.09E+03 5.14E+03 1.02E+04 3.97E+03 4.47E+03
Mean 1.56E+03 9.60E+03 2.56E+03 5.24E+03 5.09E+03 1.03E+04 4.24E+03 4.49E+03
Std 6.22E+01 7.67E+01 2.17E+02 4.26E+02 7.81E+02 3.13E+02 1.45E+03 1.29E+02

p-value - 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F11 
Median 1.95E+01 3.80E-08 2.30E+01 1.68E+02 1.98E+02 2.59E+01 1.98E+02 1.02E+01
Mean 1.56E+01 4.02E-08 2.32E+01 1.68E+02 1.98E+02 2.59E+01 1.98E+02 1.02E+01
Std 7.84E+00 5.12E-09 2.10E+00 1.90E+00 2.12E+00 1.73E+00 1.12E+00 8.71E-01

p-value - 9.51E-06- 7.38E-10+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 6.77E-05-

F12 
Median 2.20E+04 4.23E+05 1.31E+04 2.83E+01 2.78E+04 9.69E+04 1.01E+05 2.58E+03
Mean 2.21E+04 4.37E+05 1.75E+04 2.39E+01 3.39E+04 9.55E+04 1.03E+05 2.84E+03
Std 1.86E+03 6.22E+04 9.07E+03 9.88E+00 1.19E+04 9.55E+03 1.57E+04 1.08E+03

p-value - 3.02E-11+ 1.37E-03- 3.02E-11- 6.53E-07+ 3.02E-11+ 3.02E-11+ 3.02E-11-

F13 
Median 5.89E+02 5.47E+02 8.48E+02 1.03E+05 1.36E+03 4.59E+03 2.12E+03 5.06E+03
Mean 6.13E+02 6.29E+02 9.59E+02 1.05E+05 1.34E+03 5.96E+03 4.22E+03 6.27E+03
Std 1.72E+02 2.32E+02 3.74E+02 6.18E+04 1.72E+02 4.16E+03 4.70E+03 3.65E+03

p-value - 8.19E-01= 2.15E-06+ 3.02E-11+ 9.92E-11+ 3.02E-11+ 4.08E-11+ 3.02E-11+

F14 
Median 1.24E+08 2.52E+08 8.45E+07 1.25E+07 3.42E+08 9.72E+08 5.71E+08 3.46E+08
Mean 1.24E+08 2.49E+08 8.41E+07 1.19E+07 3.06E+08 9.78E+08 5.70E+08 3.42E+08
Std 8.13E+06 1.53E+07 6.31E+06 1.62E+06 1.19E+08 7.52E+07 5.50E+07 2.42E+07

p-value - 3.02E-11+ 3.02E-11- 3.02E-11- 4.98E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F15 
Median 1.08E+04 1.01E+04 1.12E+04 5.48E+03 1.04E+04 1.24E+04 8.67E+03 5.86E+03
Mean 1.08E+04 1.01E+04 1.12E+04 5.54E+03 1.08E+04 1.23E+04 8.90E+03 5.86E+03
Std 9.75E+01 5.23E+01 8.65E+01 3.46E+02 1.35E+03 8.24E+02 2.07E+03 1.05E+02

p-value - 3.02E-11- 3.02E-11+ 3.02E-11- 4.68E-02- 3.02E-11+ 1.09E-05- 3.02E-11-

F16 
Median 2.15E+00 5.75E-08 2.21E+01 3.18E+02 3.97E+02 6.92E+01 3.96E+02 7.50E-13
Mean 2.40E+00 5.89E-08 2.51E+01 3.17E+02 3.96E+02 6.96E+01 3.81E+02 7.53E-13
Std 1.89E+00 5.61E-09 1.16E+01 2.04E+00 5.73E-01 6.43E+00 5.76E+01 6.25E-14

p-value - 1.10E-06- 3.00E-11+ 3.00E-11+ 3.00E-11+ 3.00E-11+ 3.00E-11+ 1.10E-06-

F17 
Median 2.06E+05 2.22E+06 8.92E+04 4.75E+01 8.99E+04 3.11E+05 3.47E+05 4.02E+04
Mean 2.06E+05 2.20E+06 9.00E+04 4.29E+01 1.25E+05 3.11E+05 3.49E+05 4.03E+04
Std 1.37E+04 1.55E+05 1.58E+04 1.15E+01 5.25E+04 2.24E+04 3.11E+04 2.29E+03

p-value - 3.02E-11+ 3.02E-11- 3.02E-11- 5.46E-09- 3.02E-11+ 3.02E-11+ 3.02E-11-

F18 
Median 1.81E+03 1.76E+03 2.66E+03 2.50E+04 3.10E+03 3.54E+04 1.59E+04 1.47E+10
Mean 2.16E+03 1.73E+03 2.77E+03 2.43E+04 3.07E+03 3.83E+04 1.81E+04 1.47E+10
Std 8.05E+02 5.22E+02 8.33E+02 1.10E+04 2.45E+02 1.53E+04 9.48E+03 2.03E+09

p-value - 4.21E-02- 1.77E-03+ 3.02E-11+ 1.86E-06+ 3.02E-11+ 4.50E-11+ 3.02E-11+

F19 
Median 5.72E+06 1.00E+07 5.11E+06 2.03E+06 1.51E+06 1.14E+06 2.04E+06 1.75E+06
Mean 5.72E+06 1.01E+07 5.10E+06 2.02E+06 1.52E+06 1.14E+06 2.04E+06 1.75E+06
Std 4.92E+05 5.64E+05 7.05E+05 1.41E+05 7.10E+04 6.23E+04 1.42E+05 1.10E+05

p-value - 3.02E-11+ 1.32E-04- 3.02E-11- 3.02E-11- 3.02E-11- 3.02E-11- 3.02E-11-

F20 
Median 1.54E+03 9.85E+02 1.79E+03 9.82E+02 2.10E+03 4.34E+03 2.27E+03 6.53E+10
Mean 1.56E+03 1.05E+03 1.85E+03 9.87E+02 2.11E+03 4.58E+03 2.30E+03 6.41E+10
Std 2.27E+02 1.49E+02 2.59E+02 1.40E+01 1.79E+02 8.25E+02 2.26E+02 6.97E+09

p-value - 5.57E-10- 1.39E-06+ 3.02E-11- 1.55E-09+ 3.02E-11+ 3.16E-10+ 3.02E-11+

w/l/t - 13/6/1 12/7/1 11/9/0 15/4/1 17/3/0 17/3/0 12/8/0 
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Additionally, it is worth mentioning that all experiments are 
conducted 30 independent runs for statistical analysis. During 
the comparison between two algorithms, Wilcoxon rank sum 
test at a significance level of  α=0.05 is conducted, and the 

corresponding p-values are reported. Based on the statistical 
test results, in Table II and Table III, the best results are 
highlighted in bold and the symbols “൅”, “െ” and “ൌ” above 
p-values indicate that CEGPSO is significantly better than, 

Table III 
COMPARISON RESULTS OF THE COMPARED ALGORITHMS ON 1000-D CEC'2013 FUNCTIONS WITH 3×106 FITNESS EVALUTIONS 

 
F Quality CEGPSO CSO SL-PSO DMS-L-PSO CCPSO2 DECC-G MLCC DECC-DG

F1 

Median 2.23E-21 7.78E-12 1.04E-17 1.97E+09 2.79E+01 2.06E-06 9.07E-14 6.03E+02
Mean 2.38E-21 7.71E-12 1.09E-17 1.98E+09 4.11E+01 3.14E-06 8.60E-10 6.42E+03
Std 4.67E-22 1.31E-12 2.50E-18 1.27E+08 3.14E+01 4.27E-06 4.38E-09 1.81E+04

p-value - 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F2 

Median 1.62E+03 8.55E+03 2.13E+03 8.61E+03 3.48E+01 1.30E+03 3.57E+00 1.28E+04
Mean 1.61E+03 8.55E+03 2.13E+03 8.65E+03 3.50E+01 1.31E+03 3.82E+00 1.27E+04
Std 8.89E+01 2.65E+02 1.36E+02 4.88E+02 4.85E+00 3.63E+01 1.73E+00 7.20E+02

p-value - 3.02E-11+ 3.34E-11+ 3.02E-11+ 3.02E-11- 3.02E-11- 3.02E-11- 3.02E-11+

F3 

Median 2.16E+01 2.16E+01 2.16E+01 2.08E+01 2.00E+01 2.02E+01 2.00E+01 2.14E+01
Mean 2.16E+01 2.16E+01 2.16E+01 2.08E+01 2.00E+01 2.02E+01 2.00E+01 2.14E+01
Std 5.99E-03 6.15E-03 1.45E-02 1.66E-01 1.25E-04 6.18E-03 2.76E-04 1.45E-02

p-value - 7.73E-01= 2.68E-06+ 3.02E-11- 2.19E-11- 3.02E-11- 3.02E-11- 3.02E-11-

F4 

Median 7.72E+09 1.28E+10 4.54E+09 2.97E+11 3.20E+10 2.00E+11 1.99E+11 7.33E+10
Mean 7.91E+09 1.32E+10 4.35E+09 2.93E+11 3.49E+10 2.35E+11 2.34E+11 7.70E+10
Std 2.48E+09 2.54E+09 9.48E+08 7.25E+10 2.17E+10 1.22E+11 1.26E+11 2.82E+10

p-value - 7.77E-09+ 4.57E-09- 3.02E-11+ 1.56E-08+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F5 

Median 7.57E+05 6.04E+05 8.23E+05 3.92E+06 1.30E+07 8.44E+06 1.17E+07 5.81E+06
Mean 7.39E+05 5.91E+05 8.41E+05 3.95E+06 1.40E+07 8.26E+06 1.27E+07 5.78E+06
Std 9.55E+04 1.07E+05 1.75E+05 5.82E+05 4.81E+06 1.14E+06 3.46E+06 3.83E+05

p-value - 2.88E-06- 1.08E-02+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F6 

Median 1.06E+06 1.06E+06 1.06E+06 9.98E+05 1.05E+06 1.06E+06 1.05E+06 1.06E+06
Mean 1.06E+06 1.06E+06 1.06E+06 1.00E+06 1.05E+06 1.06E+06 1.05E+06 1.06E+06
Std 1.11E+03 1.10E+03 1.48E+03 5.20E+03 5.24E+03 1.84E+03 4.13E+03 1.07E+03

p-value - 4.21E-02+ 5.01E-01= 3.02E-11- 3.02E-11- 1.37E-03- 4.08E-11- 3.56E-04+

F7 

Median 4.22E+06 5.26E+06 1.40E+06 1.22E+09 1.29E+08 1.04E+09 1.15E+09 4.25E+08
Mean 4.37E+06 5.88E+06 1.63E+06 1.37E+09 4.15E+08 1.04E+09 1.43E+09 4.78E+08
Std 2.15E+06 2.58E+06 7.05E+05 7.64E+08 9.38E+08 4.48E+08 1.07E+09 1.92E+08

p-value - 1.17E-02+ 8.48E-09- 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F8 

Median 7.53E+13 2.85E+14 9.97E+13 1.68E+14 8.16E+14 7.90E+15 8.18E+15 2.89E+15
Mean 7.96E+13 2.60E+14 1.03E+14 2.79E+14 1.18E+15 7.50E+15 9.59E+15 3.57E+15
Std 2.28E+13 5.87E+13 3.62E+13 5.09E+14 9.99E+14 3.18E+15 6.18E+15 1.85E+15

p-value - 3.02E-11+ 1.56E-02+ 5.49E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F9 

Median 1.75E+08 5.79E+07 7.94E+07 3.50E+08 3.63E+09 5.86E+08 8.85E+08 4.95E+08
Mean 1.72E+08 6.06E+07 8.25E+07 3.60E+08 3.76E+09 5.96E+08 9.55E+08 4.90E+08
Std 4.45E+07 1.60E+07 2.03E+07 4.61E+07 1.02E+09 9.76E+07 2.92E+08 3.18E+07

p-value - 4.08E-11- 2.87E-10- 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F10 

Median 9.40E+07 9.40E+07 9.36E+07 9.11E+07 9.29E+07 9.30E+07 9.27E+07 9.45E+07
Mean 9.40E+07 9.40E+07 9.25E+07 9.17E+07 9.30E+07 9.29E+07 9.27E+07 9.45E+07
Std 3.05E+05 1.51E+05 1.67E+06 1.06E+06 7.01E+05 6.16E+05 6.07E+05 2.46E+05

p-value - 2.17E-01= 5.56E-04- 3.69E-11- 8.84E-07- 1.29E-09- 1.61E-10- 3.65E-08+

F11 

Median 9.20E+11 9.35E+11 9.35E+11 9.44E+10 9.38E+11 1.26E+11 1.90E+11 3.81E+10
Mean 9.22E+11 9.30E+11 9.33E+11 1.05E+11 9.37E+11 1.28E+11 2.28E+11 4.83E+10
Std 6.57E+09 1.03E+10 1.46E+10 7.53E+10 1.53E+10 7.15E+10 1.53E+11 4.33E+10

p-value - 4.64E-03+ 1.89E-04+ 3.02E-11- 5.19E-07+ 3.02E-11- 3.02E-11- 3.02E-11-

F12 

Median 1.54E+03 1.04E+03 1.75E+03 5.22E+04 2.10E+03 4.19E+03 2.36E+03 1.68E+11
Mean 1.55E+03 1.07E+03 1.78E+03 6.99E+04 2.10E+03 4.35E+03 2.49E+03 1.71E+11
Std 1.66E+02 7.78E+01 1.74E+02 5.52E+04 1.78E+02 7.83E+02 7.51E+02 2.24E+10

p-value - 7.39E-11- 1.25E-05+ 3.02E-11+ 1.21E-10+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F13 

Median 8.74E+08 6.28E+08 4.59E+08 1.32E+10 3.21E+09 8.67E+09 9.94E+09 2.08E+10
Mean 9.73E+08 6.67E+08 4.65E+08 1.34E+10 4.02E+09 9.35E+09 1.06E+10 2.05E+10
Std 4.49E+08 2.45E+08 2.35E+08 6.58E+09 2.31E+09 2.78E+09 3.73E+09 5.53E+09

p-value - 1.06E-03- 4.44E-07- 3.02E-11+ 1.46E-10+ 3.02E-11+ 3.02E-11+ 3.02E-11+

F14 

Median 8.01E+08 3.15E+09 1.50E+08 2.21E+11 5.98E+10 1.28E+11 2.06E+11 1.56E+10
Mean 1.34E+09 3.62E+09 3.28E+08 2.46E+11 9.10E+10 1.42E+11 2.21E+11 1.92E+10
Std 1.31E+09 1.44E+09 5.17E+08 1.26E+11 8.53E+10 5.86E+10 8.54E+10 1.44E+10

p-value - 9.06E-08+ 7.09E-08- 3.02E-11+ 3.02E-11+ 3.02E-11+ 3.02E-11+ 9.92E-11+

F15 

Median 2.09E+07 7.72E+07 5.88E+07 1.54E+07 2.72E+06 1.13E+07 1.57E+07 9.52E+06
Mean 2.30E+07 7.87E+07 5.86E+07 1.57E+07 4.75E+06 1.16E+07 1.61E+07 9.90E+06
Std 9.24E+06 6.50E+06 6.11E+06 3.45E+06 5.07E+06 1.26E+06 1.90E+06 2.30E+06

p-value - 3.02E-11+ 3.02E-11+ 4.03E-03- 7.38E-10- 1.70E-08- 8.31E-03- 1.07E-09-

w/l/t - 9/4/2 8/6/1 10/5/0 10/5/0 9/6/0 9/6/0 12/3/0
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worse than and equivalent to the compared methods 
respectively. Specially, the last row in Table II and Table III,   
termed as “w/l/t” counts the number of functions where  
CEGPSO performs better than, worse than and similarly to 
the compared algorithms respectively.  

4) Experimental Results 
Table II and Table III present the comparison results 

between CEGPSO and the compared algorithms on the 
CEC’2010 benchmark set and the CEC’2013 benchmark set 
respectively. From these two tables, we can draw the 
following conclusions:  

1) On the CEC’2010 set, the proposed CEGPSO 
outperforms the compared algorithms on at least 11 
functions. Specifically, CEGPSO performs 
significantly better than CSO, SL-PSO and DMS-L-
PSO on 13, 12 and 11 functions respectively. Besides, 
it is also much better than CCPSO2, DECC-G, MLCC 
and DECC-DG on 15, 17, 17 and 12 functions 
respectively. In particular, we find that CEGPSO 
shows its great superiority to CCPSO2, DECC-G and 
MLCC on this function set.  

2) On the CEC’2013 set, whose functions are much more 
difficult to optimize than those in the former set, the 
developed CEGPSO is still significantly better than 
the compared algorithms on at least 8 functions. More 
specifically, CEGPSO is much superior to CSO, SL-
PSO and DMS-L-PSO on 9, 8 and 10 functions 
respectively and significantly dominates CCPSO2, 
DECC-G, MLCC and DECC-DG on 10, 9, 9, and 12 
functions respectively.  

3) Together, we can see that compared with CCEAs, 
which decompose the high dimensional problems into 
smaller sub-problems, CEGPSO shows its great 
advantages on both CEC’2010 and CEC’2013 
benchmark sets. In terms of large scale EAs that 
evolve all variable together, CEGPSO can achieve 
competitive or even much better performance on both 
benchmark function sets. 

Overall, we can see that the proposed CEGPSO shows 
its great potential in dealing with large scale optimization. 
The great superiority of CEGPSO mainly results from the 
proposed cross-generation elites guided learning strategy. 
On one hand, each non-elite particle is guided by two elites 
randomly selected from the two elite sets between two 
consecutive generations. Since elites are usually the most 
promising particles in the population, the exploitation of 
each non-elite particle can be enhanced, which is beneficial 
for fast convergence. On the other hand, in general, after 
each generation, the elites are usually updated and thus the 
elites between two consecutive generations are probably 
different. Therefore, the diversity of the swarm is very high 
and thus the exploration of non-elite particles can be 
promoted, which is helpful for escaping from local traps. 
Comprehensively, a potential balance between exploration 
and exploitation can be achieved, which leads to the 
promising performance of CEGPSO in dealing with large 
scale optimization.  

V. CONCLUSION 

This paper has proposed a cross-generation elites guided 
particle swarm optimizer (CEGPSO) for large scale 
optimization. Specifically, this optimizer separates the swarm 
into two non-overlapping sets: the elite set and the non-elite 
set. Particles in the elite set remain unchanged and directly 
enter next generation, so that the promising information of the 
swarm can be preserved. Instead, for particles in the non-elite 
set, the elites in both the current generation and the last 
generation are utilized to guide the learning of them. Through 
this strategy, the elites become better and better and thus may 
converge to the global optima or local optima of problems. 

Extensive experiments are conducted on CEC’2010 and 
CEC’2013 large scale benchmark sets. The statistical results 
demonstrate that the developed CEGPSO is promising and 
can obtain competitive performance in dealing with large 
scale optimization in comparison with state-of-the-art large 
scale EAs. 

In particular, we find that the number of elites, namely M, 
has significant influence on the developed CEGPSO. 
Therefore, how to self-adaptively adjust this parameter forms 
a part of future work. 
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