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Abstract—As financial future markets offer coexistent con-
tracts that only differ in their maturities, trading mandatorily
induces the task of selecting a specific contract. Assuming the
objective of maximal profit, an analysis of the current market
situation is inevitable. Among immediate and upcoming trading
costs and market liquidity, even possible market inefficiencies
might be taken into consideration. This research introduces
a future selection strategy that minimizes trading costs by
dynamic programming. The strategy is evaluated by Monte Carlo
simulations on sets of arbitrary trading instructions on three
commodity classes. The results allow the conclusion of market
inefficiencies in the analyzed future markets.

I. INTRODUCTION

Since their first launch in the 1860s at the Chicago Board
of Trade, numerous future contracts have been released. There-
fore, modern future markets offer a vast number of commodi-
ties and financial assets. As high liquidities and volumes yield
attractive trading conditions, future markets are undoubtedly
an important trading vehicle in many investment sectors.

Due to the nature of future markets, a single asset is
generally represented by several future contracts with different
maturities. Thus, applying conventional trading strategies to
future markets yields the additional challenge of selecting spe-
cific contracts to be traded – a nontrivial task because different
contracts might benefit from varying market circumstances.
Figure 1 exemplarily shows quotes for different WTI future
contracts during the period from June to December 2015.
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Fig. 1. Prices of three WTI future contracts with different maturitites

Considering short-term maturities, long-running positions
require the expiration to be extended by closing and reopening
longer-term positions for the same underlying asset – this so
called future rolling result in additional trades and thus, trading

costs. However, the trading volume of contracts tremendously
rises with a decreasing period to maturity in the common case.
Accordingly, spreads tend to be the lowest for the nearest
future contracts.

That is the reason why the so called front month strategy
has become an established way to open and roll future con-
tracts [1]. It focuses on the trade of the nearest future contract
whose maturity month is not reached yet. After exceeding that
point in time, contracts are rolled to the subsequent maturity.
Next to the advantage of most likely addressing liquid markets,
it is simple to use and backtesting requires only the two nearest
future contracts to be comprised.

Nevertheless, this strategy disregards several factors. Be-
sides the evaluation of future contracts with more distant matu-
rity dates, the current portfolio as well as statistical parameters
of the trading strategy might be taken into consideration. But
even if the point of interchange is reasonably adapted to the
trading characteristics, the constant period may be to rigid
to fit the needs of the underlying system. Especially highly
varying holding times or partial reorganizations of a long-
running portfolio may cause the necessity of future rolls.
Correspondingly, this research introduces a procedure that
optimizes the selection of futures by investigating the influence
of a larger set of parameters. The described problem will be
formalized in the following section.

II. OPTIMAL FUTURE SELECTION

The problem that is addressed in this study is the optimal
selection of specific future contracts for settled trading deci-
sions on an asset class. It is targeted at the maximization of
wealth by evaluating immediate and upcoming trading costs
and possible market inefficiencies.

As the selection process is intended to work with arbi-
trary trading strategies on a single asset class, the latter are
sufficiently characterized by their trading decisions. Thus, we
expect a finite sequence of trading decisions (Dt)t∈T with
Dt ∈ Z and time t ∈ T to be given. The value Dt represents
the number of future contracts to be traded (bought or sold
depending on sign) at time t.

Let F be the set of all future contracts of the considered
asset class and Fτ ∈ F be a future contract with maturity
τ ∈ T. Let Ω be the set of all possible market scenarios and the
finite sequence (Ft)t∈T be a filtration on the space Ω, so that
the element Ft represents the known and relevant information
at time t.



The future selection strategy can then be understood as a
function q : F × D → F that returns a specific future contract
Fτ for a trading decision Dt by interpreting the information
Ft. Let Q be the set of all possible future selection strategies.

Let w : D × Q → R be the function that calculates the
wealth after the execution of all ordered trades.

The problem is then to find a future selection strategy
q̂ ∈ Q at time t that maximizes the expected wealth after the
execution of all trading decisions:

w (D, q̂) = maxq∈Q (w (D, q)) (1)

The examination of the optimal selection strategy q̂ consists
of three steps that are introduced in the following:

1) modeling trading costs (and future roll costs) by an-
alyzing observed spreads of different futures (section
III-A)

2) introducing temporal uncertainty of trading decisions
to the prediction by evaluating statistical information
of the underlying trading strategy (section III-B)

3) assignment of specific future contracts to trading
decisions and evaluation of all possible combinations
(section III-C)

III. MINIMIZING TRADING COSTS

The relationship of a forward price to its underlying spot
price is complex and several defining models have been
proposed [2][3][4]. The cost-of-carry model explains the price
Ft,τ of a future contract with maturity τ at time t as a function
of the spot price S given by

Ft,τ = St · e(r+s−c)·(τ−t) (2)

with risk-free interest rate r and storage cost s. The conve-
nience yield c is an additional parameter that includes market
expectations to the formula. It allows the model to explain
different market situations like contango and backwardation.
It can be seen as the most volatile part of the interest rate and
strongly depends on the maturity.

Assuming the future markets to be efficient in regard to
the market-efficiency hypothesis [5], we do not expect over-
or undervaluations of specific future contracts – in other
words, we expect the interest rates of future contracts not
to be cointegrated. Therefore, the maximization of wealth
corresponds to the minimization of immediate and upcoming
trading costs.

A. Trading cost analysis

While commissions follow a clear pattern and can be
regarded as exactly predictable, spreads depend on market
liquidity and may be notably fluctuating. According to this
principle, a precise investigation of trading costs requires
the relationship between spread and the maturity time to be
explored.

Figure 2 shows average spread evolutions for six WTI
contracts during the last 180 trading days (maturities from July
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Fig. 2. Spread over the last six months to maturity for WTI Mini contracts

to December 2015). Obviously, spreads and their volatilities
decrease with an approaching maturity. This circumstance ac-
cords to typical future evolutions [6]. The periodic oscillation
is constituted by the alternating liquidity between regular and
after-hours trading. The minimum spread of about 1‰ of the
price is reached with a distance of about 90 days, yet with
a high volatility. However, this investigation shows that the
trading costs of the nearest three monthly contracts might
temporary be regarded as similar.

Obviously, the contract selection has a tremendous impact
on emerging trading costs. The Figure can be understood as
a clear recommendation to trade short-term future contracts
as the spread commonly decreases with the remaining trading
period. However, this conclusion has restricted validity. Open-
ing long-term positions in near future contracts yields a high
probability of necessary future rolls and results in additional
costs.

For a more detailed view on future roll costs, let D ⊂ Z be
the set of time intervals. Let dτ : T → D with dτ (t) = τ − t
be the time interval between a time t to the maturity date τ
of a future contract Fτ .

Let dτ ∈ D be the time interval between maturities of two
consecutive future contracts. It is assumed to be constant for
a future class (e.g. 1 month for WTI).

Let c : D → R with c(d), d ≥ 0 then be the average
observed trading costs that incur d time steps before the
maturity.

Further, let

c(d) = c(0) + c(dτ)︸ ︷︷ ︸
Future roll cost

+ c(d+ dτ)︸ ︷︷ ︸
Liquidation cost

∀ t < 0. (3)

be the trading costs for an exceeded maturity. The overall
cost arise from three trades: firstly, the costs for closing the
expiring position at the last possible point in time (c(0)) and re-
opening one position with a dτ more distant maturity (c(dτ))
must be considered. Secondly, the in either case upcoming
liquidation cost must be payed. It is delayed by dτ to c(d+dτ).
These additional trades result increase the expected trading
costs for exceeded maturities (see Figure 3).

On the whole, decreasing spreads oppose the increasing
risk of future rolls. As the probability of their occurrence
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Fig. 3. The average trading costs c(d) over the last 50 days for WTI Mini
contracts are displayed. An exceeded maturity results in additional trades by
future rolling. Therefore, the expected trading costs increase considerably for
t < 0.

depends on the relationship between maturity and trading
frequency, we include statistical information about the trading
strategy to improve the rating quality of future contracts.

B. Prediction of trading costs

In this section, liquidation costs of a portfolio of future
contracts are analyzed with regard to the future selection
problem. A minimization procedure is proposed that requires
the following information to be known:

• trading costs in relation to the distance to maturity (as
described in III-A)

• future contract positions in portfolio

• statistical information about trading decisions

In the following, we suppose that statistical information of
the trading decisions are available in form of a distribution
function of the number of trades per time. Although this
approach is not limited to special distributions, we assume the
number of trades per time period to be normally distributed
with an average interval between two trades µ and standard
deviation σ. This model allows estimations of the trading
interval of upcoming trades. Assuming t to be the time of the
last trade, the time of the n-th upcoming trade is displayed as
a random variable tn ∼ N (t+ nµ, nσ).

In this case, the expected number of trades from time s
to time t is t−s

µ with a standard deviation of t−s
µ · σ. The

method identically works on short and long positions but must
be applied separately. In the following, the term liquidation
is used by either meaning the liquidation of short or long
positions.

Let v : T × T × T → R be a function so that v(τ, t, s)
yields the expected trading costs for a trade of a future contract
Fτ at time t estimated at time s with s < t. As a first approach,
these costs are the average observed trading costs and actually
independent from s:

v (τ, t, s) = c (τ − t) . (4)

The statistical information combined with the estimate v
can be used to predict future trading costs. The function

Cτ : T → R illustrates this relationship and enables the
estimation of transaction costs of prospective trades at an
approximate time t with the information of time s by

E (Cτ (t) | Fs) =

∫ ∞
−∞

1√
2π
(
t−s
µ · σ

)2
· exp

− x2

2
(
t−s
µ · σ

)2
 · v (τ, t+ x, s) dx

(5)

The temporal uncertainty of s is then modeled by folding
the given probability density function with the observed trading
costs. In this manner, all observed trading costs as well as the
future roll costs are weighted with their probability to assure
a reasonable prediction.
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Fig. 4. Estimated trading costs E (Cτ (t) | Fs) for future Fτ 55 days before
its maturity and σ

µ
= 1

5
. Normal distributions for three exemplary points (45,

25 and 5 days left) are schematically figured to denote the uncertainty of the
effective trading time.

Figure 4 exemplarily shows a trading cost estimation for a
future contract 48 days before its expiry. While short-term pre-
dictions apparently reflect temporal trading cost fluctuations,
more distant predictions strongly smooth the observed trading
costs. The considered quotient σ

µ = 1
5 denotes the standard

deviation to rise and the minimum trading cost estimate is
located approximately 20 days before the maturity. The risk of
an occurring future roll increases the estimated trading costs
for liquidation points near the maturity.

These predictions can be applied to future contracts with
different maturities to compare the development of their trad-
ing costs. Since this method allows us to estimate these costs
for all contracts In the following, we address the question,
whether and how this forecast method can be used to reduce
these costs. Therefore, a minimization procedure is proposed
that targets that objective by finding an optimal order in which
the future contracts are to be liquidated.

C. Minimizing of portfolio liquidation costs

Trading costs are evaluated by analyzing possible future
selections according to the dynamic programming principle.
Starting with the portfolio at the current time, trading costs
of all possible trading paths are evaluated by successively
removing positions up to an empty portfolio. The optimal



t 1 2 3 4 5 6

E (C (t) | F0) 0.14% 0.13% 0.17% 0.13% 0.12% 0.18%

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

L1 = 0 0.0% 0.0% 0.0% 0.0%

L1 = 1 0.14% 0.13% 0.13% 0.13%

L1 = 2 0.27% 0.27% 0.26% 0.25%

L1 = 3 0.44% 0.40% 0.38% 0.38%

Fig. 5. Minimization example in which all possible combinations of three liquidations during the next six trading events are examined for a single future.
Trading costs differ from 0.12% to 0.18%. This trivial and conflict-free example evaluates every possible trading path according to the dynamic programming
principle using Equation 9. The backtracked resulting path recommends to liquidate at times 2,4 and 5 yielding an average cost per trade of 0.38%

3
= 0.127%.

Conflicts may arise in higher order tables with more than just one future.

liquidation order is then revealed by the path with minimum
trading costs.

Let Lt = {L1
t , L

2
t , . . . , L

N
t } ∈ NN0 the set of transactions

that are necessary to fully liquidate the portfolio with N futures
at t ∈ T. Let Cs (Lt) ∈ R at time s ∈ T, s ≤ t be the
estimate of the trading costs for all transactions in Lt. As these
transactions occur at sequent points in the future, the costs can
be described recursively. Obviously, no further trading costs
are expected if there are no positions left:

Cs (Lt) = 0 if Ljt = 0 ∀ j ∈ [1, N ]. (6)

If the portfolio is not fully liquidated yet, each trading
decision may lead to one of N + 1 possible actions:

• liquidate an existing position of Lt of the N futures
to lower the chance of future rollings (actions will be
indexed by j = [1, N ])

• choose a transaction with minimal trading costs that is
not part of the set of necessary liquidations (indexed
by j = 0)

In the latter case, the number of necessary liquidation steps
remain from t to the next trading decision at time t + µ.
Therefore, Lt+µ = Lt and accordingly

Cs (Lt+µ) = C (Lt) if j = 0. (7)

holds. In the case that future contracts of the future with
maturity τj are liquidated (j = [1, N ]), the emerging costs
E
(
Cτj (t) | Fs

)
must be added to the liquidation costs of the

partially liquidated portfolio.

Let the function L : ZN × F → ZN represent contract
liquidation. The number of necessary liquidations of a future
Fτi in Lt is therefore decreased by the call of L (Lt, Fτi). In
this case, trading costs are increased by

Cs (Lt+µ) = Cs (L (Lt, τj))

+ E
(
Cτj (t) | Fs

)
if j ∈ [1, N ]. (8)

So, the emerging costs E
(
Cτj (t) | Fs

)
are added to

liquidation costs of the residual portfolio L (Lt, τj). All in
all, the optimal liquidation costs are given by the following
minimization:

Cs (Lt+µ) = minj∈[0,N ]



0 if Ljt = 0

∀ j ∈ [1, N ]

Cs (Lt) if j = 0

∞ if Lit = 0

Cs (L (Lt, τj)) +

E (Cτ (t) | Fs) else.
(9)

The assumption of infinite trading costs in case of fully
liquidated futures avoids the examination of further transac-
tions. Every partially liquidated portfolio may be reached by
a finite number of different trading combinations. The shown
procedure yields the path with the minimum expected costs.
The task of finding the optimal path for a single future is
trivial, the complexity lies in effecting a compromise between
conflicting future liquidations. As shown in Figure 5, the
resulting path for one future is directly specified by the subset
of trades with the minimal cumulated trading costs. However,
possible collisions in which several transactions seem optimal
at the time yield the problem of selecting specific ones.
Therefore, the actual decision is based on the evaluation of
all further trading steps as well. It is then given by the first
trade of the best trading path.

As virtual transactions of futures after their maturities
yield rolling costs, they are not assumed to be interesting
for the minimization if there are alternative liquidation paths.



Considering k futures with ascending maturities, the recursive
evaluation stops with tmax = max (s+ k · µ, τk). The dimen-
sion of the evaluation table increases with every considered
future, so that O(tmax ·

∏|L|
i=1 L

i
t) table elements must be

calculated. The minimum liquidation path is then evaluated
by backtracking.

IV. MARKET INEFFICIENCIES

In the following, future prices Ft,τ are assumed to converge
to the spot price St with a general interest rate rt,τ :

Ft,τ = St · ert,τ ·(τ−t) (10)

Typically, the interest rate is positive and yields higher
prices for more distant futures. This contango situation is
exemplarily shown in Figure 6 for different WTI futures.
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Fig. 6. Partial yield curve of the WTI Mini future at 11 June 2015.

In asset classes without spot prices, the interest rate may be
approximated by analyzing the relationship between different
future pairs. The following approach calculates the average
differences between interest rates of futures with different
maturities:

rt,τ = avgi 6=j
lnFt,τi − lnFt,τj

τi − τj
(11)
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Fig. 7. Deviations of different interest rates of WTI Mini contracts to their
average are displayed and reveal considerable variances.

Figure 7 shows that interest rates of futures of the same
asset class with different maturities may fluctuate in an
uncorrelated way. These variations represent diverse market
expectations at different maturity dates and are not a sign of
inefficient markets. Nevertheless, even the smallest under- and

overvaluations in these price structures may be used to improve
the overall performance of the future selection. There is no
lower limit for their intensity as it occurs with arbitrage trading
strategies because all trading decisions are already settled.
Thus, the next evaluation approach considers the interest rates
to be cointegrated.

Assuming the existence of inefficiencies in the term struc-
ture, we suppose the deviations from the average interest rate
drt,τ to be explained by over- or undervaluations. As these
mispricings are characterized mean reverse, we further assume
the existence of Ornstein-Uhlenbeck processes that describe
the evolution of drt,τ by

drt,τ = θτ (µτ − drt−µ,τ ) dt+ στdWt (12)

So, the mispricing drt,τ converges to the value µτ with the
mean reversion speed θτ . The overvaluation is expected to be
counterbalanced by the market. (Wt)t∈T is a standard Wiener
process, so that στ represents the influence of random noise.

The parameters of this Ornstein-Uhlenbeck process are
fitted with a maximum likelihood estimation [7]. It has to
be considered that input data for estimates must not cross
maturity dates as the sudden disappearance of single futures
may drastically change the average interest rate that affects
all values drt,τ . These estimations can be used to improve
the performance of the trading cost predictions by adding the
estimated approximation βt,τ with

βt,τ = Ft,τ · edrt+µ,τ−drt,τ (13)

to the average interest rate in the calculation of v(τ, t, x)
(see Equation 5):

v(τ, t, x) =

{
c ((τ − t)− x) + βt,τ for a buy

c ((τ − t)− x)− βt,τ for a sell
(14)

So, trading cost predictions may be altered by mean reverse
expectations. Buying a presumably overvalued future contract
is penalized in the same way in which a sell of such a future
is rewarded. The success of this method does not only require
the existence of mean reverse effects but also their persistence
to ensure a measurable predictability.

V. RESULTS

In this chapter, the three presented future selection strate-
gies are analyzed and compared in regard to their trading costs
and overall performance. This evaluation is based on a Monte
Carlo simulation that benchmarks backtesting results on the
time period from July 2015 to Januar 2016. A random set
of 100 trading decisions is assigned to every simulation and
accordingly creates different trading scenarios.

Figure 8 shows the evolution of the number of contracts
in an exemplary test scenario. The amount changes 100 times
and thus creates 100 future selection problems. Distributions
of different selection strategies are shown in Figure 9 and
discussed in the following.
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Fig. 8. Monte Carlo simulation scenario: exemplarily portfolio size evolution
generated by the random aquisition of 50 long and short positions

TABLE I. PERFORMANCE OF RANDOM SETS OF TRADING DECISIONS
ON THREE COMMODITIES MEASURED IN INDEX POINTS

Return Front Month Minimum Spread Ornstein-Uhlenbeck

WTI 2.6695 2.5692 3.1958
Natural Gas -0.1542 0.0245 -0.0625

Silver 0.6951 1.0625 1.4265

Costs Front Month Minimum Spread Ornstein-Uhlenbeck

WTI 1.4896 1.4126 1.5533
Natural Gas 0.5045 0.3782 0.5913

Silver 1.2405 1.0863 1.5235

The result of the front month rolling strategy in Figure 9
shows a scenario in which the portfolio contains two different
futures at maximum. One month before an upcoming maturity,
all trading decisions that decrease the absolute amount of
contracts are used to lower the number of expiring contracts.
Other trades always enlarge the position of the subsequent
future.

The future selection strategy that minimizes the expected
trading costs leads to more heterogeneous combinations. The
portfolio consists of up to five different futures at the same
time. Therefore, futures are traded up to three months before
their maturity. These results conform to the trading cost
analysis in chapter III that identifies the next three upcoming
WTI Mini futures to have at least temporarily similar trading
costs.

The last chart of Figure 9 displays the result of the future
selection strategy that assumes mean reverse compensations.
Considerable is the relocation of the focus during November
2015. Unlike the previous approach, almost all short positions
have the same maturity (December 2015). The reason lies in
the fact that the interest rate of this future is approximately
0.5% higher than the average (see Figure 7).

Table I shows average returns and trading costs of the
different future selection strategies on three commodities dur-
ing June 2015 to January 2016. The values are created by
a Monte Carlo simulation and show the cumulated results of
100 random and equally distributed trades in each iteration.
Statistical information about the trading decisions is directly
derived from the simulation input data. The minimization
procedure actually reduces the average trading costs in all three
cases compared to the front month strategy and consecutively
increases the average return. The mean reversion approach
yield a further rise for WTI and silver while lowering the
quality for natural gas. However, it is noticeable that these
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Fig. 9. The three charts show partitions of different future selection strategies
for the portfolio development scenario displayed in Figure 8.

partial improvements go along with the highest average trading
costs without exception. These apparently contradicting results
suggest that the consideration of assumed inefficiencies in the
term structure may enhance returns. In this case, this effect is
able to counterbalance the higher trading costs in two of three
cases.



VI. CONCLUSION

The optimal future selection is a non-trivial task that
highly depends on the liquidity of different contracts as well
as on the structure of the underlying trading strategy. This
study indicates noticeable differences in trading costs and
performance between the compared strategies.

A reasonable balance of holding times, maturities and
trading costs have led to significant improvements in the Monte
Carlo simulation. The consideration of mean reverse motions
after over-average fluctuations interestingly yield higher trad-
ing costs as well as a higher return in the reviewed cases.
A plausible interpretation of this result may be given by the
fact that the cost minimization is degraded by the introduction
of further indicators. The assumption of virtual trading costs
composed of spread expectations as well as of additional over-
or undervaluations lead to rising trading costs. However, the
increasing average return suggest their existence and lead to
an improved performance for all examined commodities.
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