
Configurational optimizer of Combined Cycle
Propulsion using Genetic Programming

Alessandro Mogavero
Department of Mechanical and Aerospace engineering

University of Strathclyde
Glasgow, UK G1 1XJ

Email: alessandro.mogavero@strath.ac.uk

Abstract—In most engineering applications the optimization is
employed after the conceptual design is already frozen with the
only purpose of perfecting it. Although optimization algorithms
capable of optimizing the configuration exist, their application is
limited to electronics or control design, while for complex systems
the conceptual design is often performed with manual trade off
analyses among few options.

In hypersonic propulsion for instance, the choice of which flow
cycle to use is made mainly by means of experience or in the
best case by a trade off between radically different architectures.
For Combined Cycle Propulsion (CCP) however many flow cycle
possibilities are available and it is very possible that the final
design is influenced by the preconceptions of the engineers rather
than a pure objective judgement. Therefore a configurational
optimization process, not bound to any known configuration,
can potentially deliver totally new engine concepts, aiding the
creativity of the designer.

In this paper the first steps toward a configurational op-
timization of CCP are shown. This optimization is intended
to find the optimal engine design without knowing the engine
conceptual design a-priori. The optimization algorithm is based
on the Genetic Programming (GP) and it was presented for
the first time at the 20th AIAA International Space Planes and
Hypersonic Systems and Technologies Conference. In the present
paper the fitness function has been improved with the addition of
a constraint like penalty function designed to solve a convergence
problem outlined in the previous version.

The results presented in this paper demonstrate that the
optimizer is able to converge to a reasonable configuration, coher-
ent with the engineering practice. Moreover the improvements
proposed in this paper proved to be effective in the mitigation
of the previously detected problem, thus demonstrating that the
optimization algorithm is robust and that the previous problems
were only due to a poorly defined fitness function.

I. INTRODUCTION

Design optimization is becoming a common practice in
engineering, mainly thanks to the advance of computer tech-
nology. The capability of executing complex calculations in
a very short time has enabled the usage of Computer Aided
Engineering (CAE) not only as a verification tool when the
design is frozen, but also as a decision making tool. CAE
analyses are used from simple trade off studies based on
a single aspect of the design, to complex Multi-disciplinary
Design Optimization (MDO) that systematically choose the
optimum solution considering many different aspects of the
problem simultaneously.

In contrast with other industrial fields, such as aviation
propulsion for instance, hypersonic propulsion is a very in-

novative field with no well established standards. In aviation
propulsion the fundamental engine design is well established.
The type of engine is selected depending on the application,
for example bypass turbojet is used for transonic airliner,
turboprop and piston engine for slower and smaller aircraft.
Moreover the industries have accumulated knowledge over
time, so they do not really need to design an engine from
scratch, but they rather proceed by refinements of previous
engines. In hypersonics a flying prototype does not exist yet,
therefore the debate on which will be the best engine in
these conditions is far from over (see [1]–[4]). Moreover, the
possible engine configurations proposed for this application
are diverse, and almost every time a new program is attempted
a new concept is proposed.

For this reason in this research we propose a configura-
tional optimization intended to find the optimal engine design
without knowing the engine conceptual design a-priori. Such
an optimizer has the potential to perform trade-off analyses
minimizing the input required by the designer and therefore
minimizing the possibilities that the design could be affected
by his/her preconceptions. Moreover the optimization process,
not bound to any known configuration, can potentially deliver
totally new engine concepts.

Many examples of propulsion system optimization are
present in the recent literature. Jahingir et al. in [5] and
Pastrone et al. in [6] for instance performed optimization of a
Rocket-Based Combined Cycle (RBCC) engine using evolu-
tionary techniques, while in [7] an example of optimization of
Turbine-Based Combined Cycle (TBCC) engine can be found.
In [8] an example of optimization of a single part of an engine,
the geometry of the ejector, can also be found.

Often in hypersonic propulsion, especially when applied to
space access vehicles, the engine optimization is performed
at the same time as vehicle optimization. Bayley et al. in
[9] for instance performed a full vehicle optimization of a
classical solid propellant rocket. While more recently Gong et
al. in [10] completed a full vehicle and trajectory optimization
of a suborbital vehicle powered by an RBCC engine. In
this case the full potential of cutting edge High Performance
Computing (HPC) is exploited to include into the optimization
also high fidelity tip to tail Computational Fluid Dynamic
(CFD) analyses of the vehicle.

In all the previous examples however, the engine conceptual



configuration is defined and fixed, while the optimizer can
change the design by tweaking a set of parameters.

An attempt to automatically select the best conceptual
engine design is given by Steele in his PhD work [11]. In
[11] a pool of predefined engine configurations is considered
and then the optimizer acts on the number of engines installed
aboard, their type and the sequence in which they are used.
In his literature review Steele also noticed that other attempts
to do that have been only trade-off analyses between different
solutions. Brock et al. in [12] performed several studies for
a Two Stage to Orbit (TSTO) vehicle considering different
propulsion solutions, such as RBCC, TBCC and simple rock-
ets, in order to determine which one would have been the best
choice. In [13] similarly to [11] the study considered first a
pool of different engine types and then the performance of the
space access vehicle was evaluated changing the combination
of engine type, the sequence of their usage, the fuel option
and also the possibility to take off horizontally or vertically.
In all these studies however the configuration of the propulsion
system had to be defined a-priori, the optimization procedure
(where present) was only able to choose between a pool of
engines with fixed design.

In this paper instead the updates of a novel engine op-
timization procedure are described, the engine conceptual
configuration does not need to be defined a-priori, but it is
the actual result of the optimization process. The modularity
and flexibility of a previously developed engine model, called
HYbrid PRopulsion Optimizer (HyPro) (see [14], [15] and
section II), is employed here by a configurational optimizer
to create randomly generated engine configurations later op-
timized by means of an Evolutionary Algorithm (EA). The
scope of the optimizer is therefore to define how the HyPro
modules are interconnected, thus potentially being able not
only to choose between TBCC or RBCC (as done in previously
cited examples) but also to propose new engine concepts.

In contrast with the examples of engine optimization cited
above, in this study the optimization has only been performed
at a single operative point, since the optimizer is not mature
enough to be used for a full mission optimization. The opti-
mization at a single point is however considered by the author
an important milestone to be developed before attempting a
full mission study.

The optimization algorithm described in this paper was pre-
sented for the first time at the 20th AIAA International Space
Planes and Hypersonic Systems and Technologies Conference
in [16]. In this paper the aforementioned algorithm is improved
with respect to that presented in [16] with the addition of a
constraint like penalty function (see section III-B) designed to
solve one of the problems encountered in [16].

II. PROPULSION MODEL

In this work an in house developed tool for propulsion sys-
tem analysis, dubbed HYbrid PRopulsion Optimizer (HyPro)
has been employed for the evaluation of the fitness function.
The propulsion model has been specifically designed to be
included in the optimization loop described in this paper. The

Inlet Injection
Combustion

chamber
NozzleFree stream Thrust

Command Fuel mass

Propulsion system

Feedback

Fig. 1. Example of the modular structure of the propulsion model for a
Scramjet/Ramjet.

model is targeted especially toward the analysis of combined
cycle configurations such as TBCC or RBCC (see [14], [15]).
The model is designed to be flexible enough however to model
almost any possible engine configuration, from a simple rocket
or ramjet to an almost arbitrary combination of propulsive
components.

The HyPro software is written in C++, and has a structure
that takes advantage of the intrinsic modularity of the object
oriented programming paradigm that is embodied within this
programming language (see [17]). This modularity brings
an innate flexibility to the software and allows it to be
configured easily to model many different kinds of propulsion
systems. Moreover, thanks to the object oriented structure of
the software, it is possible to implement every module in
terms of a defined set of properties and parameters that can be
changed easily at any time during the execution of the model.
Indeed, every engine component is characterised in terms of a
dedicated C++ class and each component can be connected to
any other in any possible pattern. Using advanced C++ features
such as inheritance and template classes, different physical
models can be combined easily to generate more complex
modelling without the need to develop dedicated C++ classes.
This maximizes the code re-utilization, facilitates the code
readability and maintainability and improves the flexibility
of the software. For all the aforementioned reasons, HyPro
is particularly well-suited to be used within optimization
studies and also as a sub-model within a more comprehensive
computational representation of the entire vehicle system (see
[18]).

The modules are connected between each other by means of
nodes, each node contains a set of physical quantities that are
then actually shared by contiguous modules. A node represents
the thermo-kinetic state at a certain station within the engine,
thus it contains all the information required to define the
thermodynamic state (for example the composition, pressure
and temperature for a mixture of ideal gases), the speed of the
flow and the area of the section.

Every module does not see directly the other modules it
is connected to, but it only stores a pointer to the nodes
connected to it, that in turn are connected with other modules.
Each module is connected to at least two nodes, an input node
hereafter called N1 and an output node called N2.

In Fig. 1, for instance, a schematic of the model, structured
in order to represent a scramjet/ramjet engine, is depicted. The
modules can easily be changed and re-arranged to represent
alternative engine configurations. Combined cycle engines can



Inlet Injection
Combustion

chamber
NozzleFree stream Thrust

Fuel mass

Propulsion system

Mixer

Rocket

Command
Feedback

Fig. 2. Example of the modular structure of the propulsion model for a RBCC
engine.

be modelled by collating and interconnecting all the required
modules, then switching on/off certain modules according to
a pre-defined schedule of operation. In Fig. 2 an example of
the model configured to represent a RBCC propulsion system
is illustrated.

In HyPro the flow within the engine is solved module
by module iteratively. Usually the calculation proceeds from
upstream to downstream, but when choking phenomena occurs
within the system then information has to be propagated in
the opposite direction to let the upstream flow path adapt
to its presence. In this case a ‘choking feedback’ needs to
be defined a-priori in order to properly handle the required
iterative procedure (see dashed lines in Fig. 1 and Fig. 2).

III. CONFIGURATIONAL OPTIMIZATION

The problem of optimising the structural layout or config-
uration of an engine can be handled very efficiently using
Genetic Programming (GP) [19]–[21].

GP has indeed been applied successfully to various engi-
neering problems, where the structure of the design needed
to be optimized. In many of these cases, similarly to HyPro
(see section II), a block diagram approach is used to model
the physics of the problem and its structure is then optimized
with GP. Examples of this approach can be found for dy-
namical systems [22], [23], control systems development [24],
electronic circuit design [25] and also to various problems in
aerospace engineering such as the design of an antenna for the
NASA Space Technology 5 spacecraft [26], [27].

GP has been selected for this application, due to the simi-
larity with all the aforementioned application examples. Other
completely different approaches to solve the same problem
might be however possible. A direct comparison against GP
is at the moment not possible due to the absence in literature
of any other attempt to perform configurational optimization
of this kind of engines.

A. Cellular encoding

In the case of the aforementioned antenna optimization the
correspondence between GP tree and the antenna structure
is clear, because the shape of the antenna is also a tree.
Other design models such as an electric circuit, a control
system with feedbacks and also the flow structure of an engine,
cannot be sketched as a tree. Despite this difficulty also these
problems can be optimized using GP with the addition of a
computational step, called genotype to phenotype decoding

Inlet Injection
Combustion

chamber
Nozzle

Free

stream 
ThrustMixer

Rocket

Feed-0 Inlet

Injection

Combustion
Chamber

Nozzle

Feed-0

Feed-1

MixerRocket

Feed-1

Module
Addition

Feedback

De nition

Legend

GP tree

Mapped HyPro model

Fig. 3. Mapping between an example GP tree chromosome (top) and its
corresponding HyPro engine model (bottom).

[20], to map the physical model starting from the GP tree
(see for instance [22]–[25]).

Due to the similarities between the engine flow network of
HyPro and an electrical circuit scheme, the approach used by
Koza in [25] to optimise the layout of electronic circuits is
most appropriate for this application, but some modifications
to account for certain specifics of the engine modelling prob-
lem need first to be accounted for. As anticipated above, not all
engine configurations can be represented directly in terms of
a tree-shaped chromosome. This is particularly the case when
the possibility of feedback between the modules that comprise
the engine must be accommodated in the HyPro model. To
obviate this problem, Koza introduced a method called cellular
encoding [20], in which the GP genes represent a list of
instructions that modify an initial simple prototype structure
for the individual [20], [25], rather than representing directly
the structure of the individual itself. In the automated design
of a complex electronic circuit many different instruction gene
types need to be coded for (for instance the addition of
parallel components, serial components, and so on), in this
work only two types of operation are defined: the addition
of one specified HyPro module, and the addition of feedback
between two specified modules.

The ‘module addition’ gene’s value is the HyPro module to
be added, therefore the number of child required depends on
the value’s type of module. For each input node of the module
(see section II) the ‘module addition’ gene will have a child
of type ‘module addition’, that in turn will add the module
connected with the aforementioned input node. In Fig. 3 for
example, the gene with value equal to ‘Mixer’ has two child
of type ‘module addition’ that provide the modules ‘Rocket’
and ‘Inlet’ connected with the ‘Mixer’ input nodes. If its
value needs to be the source of a choking feedback (i.e. it
can experience choking, see section II and [15]), the ‘module



addition’ gene has also one ‘feedback definition’ gene as a
child.

The ‘feedback definition’ gene’s value is an integer, that de-
fines the feedback destination, the value indicates the number
of modules to be counted upstream of the feedback source.
In Fig. 3 for instance, the ‘feedback definition’ gene ‘Feed-
1’ (i.e. with value equal to 1) child of the gene ‘Combustion
Chamber’ defines a feedback from the ‘Combustion Chamber’
module to the ‘Injection’ module, that is placed one position
upstream. The gene ‘Feed-0’ instead defines a feedback loop
with the same source and destination, since the destination
is zero positions upstream of the source. In the case that
the ‘feedback definition’ value would set the destination past
the most upstream module, the latter is assumed as feedback
destination. The aforementioned counting strategy however, is
not unequivocal in the cases where the engine flow path is a
branching structure (i.e. there is at least a ‘Mixer’ module). In
Fig. 3 for instance, when counting past the ‘Mixer’ module, it
is not clear if the module upstream the ‘Mixer’ is the ‘Inlet’
or the ‘Rocket’. This problem is solved introducing an iterator
that counts by branches, such an iterator moves only on the
branch linked to the node N1 of the ‘Mixer’ and then, once
the most upstream module of that branch is reached, it moves
on the other branch starting from the module connected with
node N3 (in the ‘Mixer’ module N1 and N3 are the input nodes
while N2 is the output node as for any other module). That is
why in Fig. 3 the gene ‘Feed-1’ child of the ‘Mixer’ defines
a feedback pointing to the ‘Inlet’ and not to the ‘Rocket’,
because the former is linked to the node N1 of the ‘Mixer’.
In the end it is worth noticing that the ‘feedback definition’
gene requires no child, therefore it is always a terminal.

The aforementioned GP formalism is implemented in HyPro
using the Genetic Programming C++ Class Library (GPC++)
that is based upon the work of Koza [20], [21], [28]. The
library has been integrated into HyPro after some modification
to allow strongly typed GP of the form described above.

B. Fitness function

In [15], [16] the fitness function chosen was the specific
impulse of the engine. This choice represents the simplest
possible optimization for an engine, because it does not take
into account many other requirements such as the specific
thrust for example. In detail the fitness function ft is defined
as follow:

ft =


g0ṁf

F
, if calculation is correct

∞, if exception is thrown or F < 0
(1)

where g0 is the gravitational acceleration at sea level, ṁf is the
mass flow rate of propellant consumed and F is the net thrust.
In case the calculation performed in HyPro is not successful
an exception is thrown and the fitness is assumed infinite.
The handling of exceptions during the fitness evaluation is
important because during the evolution is possible to generate
individuals that cannot actually be run in a stable manner
to produce thrust. These non-viable engines however are not

discarded out-of-hand from the population, since they might
merely correspond to an intermediate stage in the evolution
of an engine configuration that might prove very successful in
later generations.

In this work the fitness definition has been improved with
respect to the previous calculations (see [15], [16]) in order
to make more realistic the optimization process (see section
IV for more details). Beside the specific impulse a parameter
linked with the size of the engine has been added, leading to
the following formulation:

ft =

{
ft, if Ain ≤ Amax

ft +KAin, if Ain > Amax

(2)

where Ain is the cross section area of the engine’s air-
breathing intake and K is a constant big enough to guarantee
KAin � ft. Eq. 2 is designed to behave as a constraint penalty
function on the maximum size of the engine (i.e. Amax in
Eq. 2).

C. Algorithm initialization

In order to start the evolution the GP search space need to
be defined. The search space consists of a pool of genes that
will be used to randomly generate the population at generation
zero and to randomly generate sub-trees during the mutation
operation. The pool of ‘feedback definition’ genes simply
consists of a gene for each integer number between zero and a
sufficient high value chosen by the user. The pool of ‘module
addition’ genes consists instead of a gene for each propulsive
module, which the user wants to consider in the optimization.
The parameters of a module cannot be changed by the GP
optimizer, which acts only on the interconnection between
modules present in the pool.

IV. RESULTS

In [15], [16] two test cases were analysed to verify this
optimization algorithm, one in supersonic engine operative
conditions and the other in subsonic. In subsonic conditions
the optimization algorithm was not able to converge to a
solution supposedly due to the absence of any size constraint,
leading to unrealistic engine configurations. In this section
the results obtained with the new constrained fitness function,
defined in section III-B, are compared with the previous
one showing a clear improvement and the resolution of the
aforementioned issue.

The initial pool of ‘module addition’ genes (see section III)
has been constructed starting from the modules used to rep-
resent a typical RBCC engine (see [14]–[16] for details). The
list of modules considered comprises: an inlet, an ejector
mixer, a fuel injection module, a combustion chamber, a rocket
injection module, a nozzle and a simple duct (see [14], [15]
for detailed description of each module).

The fitness function described in Eq. 2 has been calculated
considering a maximum cross section area of Amax = 3m2

and K = 100 1
sm2 .

The principal parameters of the optimization algorithm are
listed in Tab. I. A population of 300 engines is evolved for 40



TABLE I
PARAMETERS FOR THE GP ALGORITHM [21].

Population Size 300
Number of Generations 40

Maximum Tree Depth for Creation 6
Maximum Tree Depth for Crossover 17

Selection Type tournament
Tournament Size 20

Swap Mutation Probability 3.0%
Shrink Mutation Probability 3.0%

subsequent generations. A maximum depth for the tree struc-
ture of the chromosome of each individual was imposed simply
in order to limit the complexity of the configurations that
might emerge through evolution from the initial population.
The probability of mutation in the examples presented here
was kept non-zero but small in order to increase the diversity
of the population.

The optimised configuration that emerges in subsonic oper-
ational conditions (Mach 0.5) at sea level (temperature 288.15
K and pressure 101.325 kPa) is shown in Fig. 5, where the
feedback loops have been removed for clarity. With a little bit
of puzzling it is apparent that, in its essence, the configuration
is that of an ejector ramjet, albeit with multiple inlets and a
very complex internal flow path.

As was demonstrated in [15], [16], the algorithm has
introduced additional complexity into the engine configuration
in order to accommodate the inherent deficiencies in the
modelling procedure, namely the inability of the optimizer to
tune directly the parameters of the engine’s modules. In this
case the various additional inlets seem to have been introduced
as a way of augmenting the flow of air trough the secondary;
the human designer would have achieved the same end simply
by increasing the size of a single inlet.

In Fig. 7 the evolution of the fitness of this new test case
is compared against the old unconstrained test showed in
[15], [16]. It is evident that, while with the previous case the
evolution has not converged to a definitive solution, in the
new test case the fitness reaches a plateau at about generation
5 separating drastically from the previous curve.

The reason why an optimum solution is not possible without
a constraint, is that, in the frame of the mathematical model
used in HyPro for the Ejector RamJet (ERJ), the greater the
secondary flow (i.e. the air flow through the inlets) is compared
with the primary (i.e. the rocket exhaust) the greater is the
performance of the engine. Without a constraint the amount
of inlets (i.e. the size of the engine) increases iteration after
iteration, leading to a very complex configuration at generation
20 (see Fig. 4) and to a configuration at generation 40 so
complex that it is actually impossible to show here. This
behaviour is after all physically reasonable if we assume
that the mixing is always possible no matter how much
the secondary flow is bigger than the primary, indeed the
propulsive efficiency of an air-breathing engine increases if the
mass of air used increases. This design optimization process
resembles the design trend in turbofan engines to progressively

0 5 10 15 20 25 30 35 40
10

−4

10
−3

Generation #

F
it
n
e
s
s
 [
1
/s

]

 

 

Fitness with cross section constraint

Fitness without constraints

Fig. 7. Optimization results. Evolution of fitness of the best individual.
Comparison between old results obtained with an unconstrained fitness and
new results obtained with the max cross section area constraint.

increase the bypass ratio. In order to obtain practical results,
the addition of other considerations beside the pure engine
performances are therefore required and here a first attempt,
consisting in the addition of a constraint on the engine size,
has demonstrated to be effective.

If compared against an existing engine concept, the results
of this optimization loop perform much better. The Hyperion
engine studied by Olds in [29] for instance has a specific
impulse of 400s at Mach 0.5, that translates into a fitness
function of 0.0025 accordingly with Eq. 2. Even if this demon-
strate that the optimized configuration performs better than the
engineering practice, the results here presented must be taken
with caution, since the complex multi-inlet configuration of
Fig. 5 might be impractical for many other points of view.

The optimization with this new fitness has been run several
times in order to have an assessment of the repeatability. In
Fig. 7 it can be noted that, even if the convergence history is
different, all the runs converge to very similar values of fitness.
In Fig. 5 and Fig. 6 the configuration of the best individual
at the last generation is depicted for two test repetitions.
Even if the two structures represent an ejector ramjet in both
cases, they are sensitively different. The fact that their fitness
is almost equal however, demonstrate they the two different
configurations are equivalent in the frame of this analysis, thus
it can be stated that the optimizer converged to two equally
performing optimums.

The algorithm has been run on a machine mounting an
Intel(R) Core(TM) i7 CPU at 2.93GHz, although the CPU has
8 cores, here the optimization was run in serial, since for now
no parallel computing is implemented. The run time for the test
case presented in this work varies sensitively, mainly due to the
stochastic nature of the GP. Most of the time 40 generations
are completed in 30-40 seconds, but in same isolated cases the
run can take more than 2 minutes. The reason of this variance
is that the run time of a single engine model evaluation
drastically depends on the complexity of the model, and



especially during the first generations, where the GP is still
far from the final solution, some very complex engine models
might be evaluated. The computational complexity of a single
engine model can be assumed proportional to the total number
of the modules that comprise the engine. This assumption is
however strictly true only in case no feedback iteration has to
be performed, so generally a certain computational overhead
has to be accounted any time a feedback loop is present. A
clear dependency on the total number of feedback loops is
however impossible to outline, since the actual complexity of
the loop depends on many factors. In any case, given the very
low time cost of this first test case, it is possible to speculate
with a fair degree of confidence that a full optimization will
be still possible with the addition of more modules and more
complicated engines.

V. CONCLUSION

In this work a GP optimization algorithm has been applied
to the design of CCP engines. Such an approach is innovative
because it does not optimize a set of engine’s parameters as
it is commonly done in literature, but it is an optimization
of the engine configuration, that therefore is not fixed during
the process. The optimizer uses the GP optimization algorithm
in order to optimize how the engine components are intercon-
nected. The user does not need to define the conceptual design
of the engine prior the start of the optimization loop, since it
will be the outcome of the optimization process.

In this paper an upgraded fitness function definition has
been successfully integrated into the algorithm and tested.
Beside pure engine performance in terms of specific impulse
a constraint like penalty function on the size of the engine
has been added. With this improvement the algorithm was
able to converge to a solution also in subsonic operative
conditions, whereas a convergence could not be reached with-
out the aforementioned improvement. The obtained optimized
configuration is that of an ejector ramjet, which is in line
with the engineering experience for RBCC engines in subsonic
conditions.

The outcome of the optimizer can seem quite obvious
in this case, since the result does not find any innovative
propulsion concept. This is however due to the limited amount
of propulsive modules available in this version of the code, so
here the results have to be considered only as a verification of
the optimization procedure. The fact that a solution is found
confirming engineering practice demonstrate that the optimizer
is well designed and that practical and innovative results could
be obtained with extension of the modelling capabilities of
the code. These results have to be considered as the first
step toward an engine configurational optimizer that to the
knowledge of the author has not been attempted before.

After this first step, further work is required to deliver all
the potentialities of this configurational optimizer. In order to
allow the optimizer to propose configurations beyond those
shown in this paper the applicability range has to be extended
with the addition of modelling for few other propulsion com-
ponents such as heat exchangers, turbines and compressors.

To make sure the optimized design is viable, other disciplines
will have to be added beside pure performance analysis. The
development of a component-based mass model is probably
the most urgent analysis to be added, followed by structural
and thermal analyses.

Beside the pure physical modelling, also the GP algorithm
needs further improvements. First of all access to modules’
parameters has to be granted to the optimizer. In GP this
is possible in the frame of cellular encoding with typed
GP and it has already been used in other areas, such as
electric circuit design. Also, the addition of multi-objective
optimisation will be important as soon as other disciplines are
added to the engine model. Subsequently the optimization has
to be implemented also for more than one operative condition
and eventually the optimization should be performed for a
whole vehicle trajectory.

REFERENCES

[1] J. C. Mankins, “Highly reusable space transportation: Advanced
concepts and the opening of the space frontier,” Acta Astronautica,
vol. 51, no. 10, pp. 727 – 742, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0094576502000206

[2] S. Ueda, S. Tomioka, T. Saito, K. Tani, and M. Yoshida, “R&d on
hydrocarbon-fueled rbcc engines for a tsto launch vehicle,” in 20th AIAA
International Space Planes and Hypersonic Systems and Technologies
Conference, 2015, p. 3611.

[3] R. Varvill and A. Bond, “A comparison of propulsion concepts for
ssto reusable launchers,” JOURNAL-BRITISH INTERPLANETARY SO-
CIETY, vol. 56, no. 3/4, pp. 108–117, 2003.

[4] M. Sippel, T. Schwanekamp, O. Trivailo, and A. Lentsch, “Progress
of spaceliner rocket-powered high-speed concept,” in 64th International
Astronautical Congress, 2013.

[5] M. N. Jahingir and Z. Huque, “Design optimization of rocket-based
combined-cycle inlet/ejector system,” Journal of propulsion and power,
vol. 21, no. 4, pp. 650–655, 2005.

[6] D. Pastrone and M. Rosa Sentinella, “Multi-objective optimization
of rocket-based combined-cycle engine performance using a hybrid
evolutionary algorithm,” Journal of Propulsion and Power, vol. 25, no. 5,
pp. 1140–1145, 2009.

[7] J. A. Clough, “Modeling and optimization of turbine-based combined-
cycle engine performance,” Master’s thesis, University of Maryland,
2004.

[8] T. T. Takahashi and G. Gibson, Multi-Disciplinary Design of a
Rocket Engine Thrust Augmentation Ejector for Endoatmospheric
Flight, ser. AIAA Aviation. American Institute of Aeronautics and
Astronautics, 06 2014, doi:10.2514/6.2014-3091. [Online]. Available:
http://dx.doi.org/10.2514/6.2014-3091

[9] D. J. Bayley, R. J. Hartfield, J. E. Burkhalter, and R. M. Jenkins, “Design
optimization of a space launch vehicle using a genetic algorithm,”
Journal of Spacecraft and Rockets, vol. 45, no. 4, pp. 733–740, 2008.

[10] C. Gong, B. Chen, and L. Gu, Design and Optimization of
RBCC Powered Suborbital Reusable Launch Vehicle, ser. AIAA
Aviation. American Institute of Aeronautics and Astronautics, 06
2014, doi:10.2514/6.2014-2361. [Online]. Available: http://dx.doi.org/
10.2514/6.2014-2361

[11] S. C. W. Steele, “Optimal engine selection and trajectory optimization
using genetic algorithms for conceptual design optimization of resuable
launch vehicles,” Ph.D. dissertation, Virginia Tech, 2015.

[12] M. Brock and M. Franke, “Two-stage-to-orbit reusable launch vehicle
propulsion performance study,” in 40th Joint Propulsion Conference and
Exhibit, AIAA Paper, vol. 3903, 2004, p. 2004.

[13] J. M. Hank, M. E. Franke, and D. R. Eklund, “Tsto reusable launch
vehicles using airbreathing propulsion,” in 42nd AIAA/ASME/SAE/ASEE
Joint Propulsion Conference & Exhibit, vol. 4962, 2006.

[14] A. Mogavero, I. Taylor, and R. E. Brown, “Hybrid propulsion parametric
and modular model: a novel engine analysis tool conceived for design
optimization,” in AIAA Aviation - 19th AIAA International Space Planes
and Hypersonic Systems and Technologies Conference. American



Institute of Aeronautics and Astronautics, 06 2014, doi:10.2514/6.2014-
2787. [Online]. Available: http://dx.doi.org/10.2514/6.2014-2787

[15] A. Mogavero, “Toward automated design of combined cycle propulsion.”
Ph.D. dissertation, University of Strathclyde, 2016.

[16] A. Mogavero and R. Brown, “An improved engine analysis and optimi-
sation tool for hypersonic combined cycle engines,” in AIAA Aviation
- 20th AIAA International Space Planes and Hypersonic Systems and
Technologies Conference. American Institute of Aeronautics and
Astronautics, 07 2015.

[17] Cplusplus.com. online. cplusplus.com. [Online]. Available: http:
//www.cplusplus.com/

[18] R. Wuilbercq, F. Pescetelli, A. Mogavero, E. Minisci, and R. E. Brown,
“Robust multi-disciplinary design and optimisation of a reusable launch
vehicle,” in 19th AIAA International Space Planes and Hypersonic
Systems and Technologies Conference, ser. AIAA Aviation. American
Institute of Aeronautics and Astronautics, 06 2014, doi:10.2514/6.2014-
2363. [Online]. Available: http://dx.doi.org/10.2514/6.2014-2363

[19] M. Willis, H. Hiden, P. Marenbach, B. McKay, and G. Montague,
“Genetic programming: an introduction and survey of applications,” in
Genetic Algorithms in Engineering Systems: Innovations and Applica-
tions, 1997. GALESIA 97. Second International Conference On (Conf.
Publ. No. 446), Sep 1997, pp. 314–319.

[20] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to
genetic programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk, 2008, (With
contributions by J. R. Koza). [Online]. Available: http://www.
gp-field-guide.org.uk

[21] J. R. Koza, Genetic programming II: Automatic discovery of reusable
subprograms. 55 Hayward Street, Cambridge, MA 02142 USA: The
MIT Press, 1994.

[22] G. J. Gray, Y. Li, D. Murray-Smith, and K. Sharman, “Structural system
identification using genetic programming and a block diagram oriented
simulation tool,” Electronics Letters, vol. 32, no. 15, pp. 1422–1424,
1996.

[23] P. Marenbach, K. D. Bettenhausen, and S. Freyer, “Signal path oriented
approach for generation of dynamic process models,” in Proceedings
of the First Annual Conference on Genetic Programming. MIT Press,
1996, pp. 327–332.

[24] K. A. Marko and R. J. Hampo, “Application of genetic programming
to control of vehicle systems,” in Intelligent Vehicles’ 92 Symposium.,
Proceedings of the. IEEE, 1992, pp. 191–195.

[25] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane, “Automated
wywiwyg design of both the topology and component values of electrical
circuits using genetic programming,” in Proceedings of the First Annual
Conference on Genetic Programming. MIT Press, 1996, pp. 123–131.

[26] J. D. Lohn, G. S. Hornby, and D. S. Linden, “An evolved antenna
for deployment on nasas space technology 5 mission,” in Genetic
Programming Theory and Practice II. Springer, 2005, pp. 301–315.

[27] G. S. Hornby, A. Globus, D. S. Linden, and J. D. Lohn, “Automated
antenna design with evolutionary algorithms,” in Proc. 2006 AIAA Space
Conference, 2006, p. 8.

[28] A. Fraser and T. Weinbrenner. (1993 - 1997) Genetic programming
c++ class library. online. [Online]. Available: http://www0.cs.ucl.ac.uk/
staff/W.Langdon/ftp/weinbenner/gp.html

[29] J. Olds and J. Bradford, “Sccream (simulated combined-cycle rocket
engine analysis module): A conceptual rbcc engine design tool,” in
33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.
Seattle, WA: American Institute of Aeronautics and Astronautics, 6 -
9 July 1997. [Online]. Available: http://arc.aiaa.org/doi/abs/10.2514/6.
1997-2760



AutoNo…combus…Mixer-45injectio…Mixer-38Mixer-3Duct-1Inlet-0

Inlet-2

Mixer-37Mixer-34Mixer-31Mixer-29combus…Mixer-26Mixer-24injectio…Mixer-13Mixer-8Inlet-4

Duct-7combus…RocketI…

Mixer-12Duct-10Inlet-9

Inlet-11

Mixer-23

Duct-16Inlet-15 Mixer-18

Inlet-17

Mixer-22Duct-20Inlet-19

Inlet-21

Inlet-25

Inlet-28

Inlet-30 combus…

Inlet-32

combus…

Inlet-35

Mixer-44

Duct-41

Inlet-40

Duct-43

Inlet-42

Fig. 4. Optimization results without constraints. Best individual of generation 20.

nozzle-19Mixer-18combus…Mixer-11injectio…injectio…injectio…combus…Mixer-3Duct-1RocketI…

Inlet-2 Mixer-10Inlet-8

Inlet-9

Mixer-17

combus…

injectio…Inlet-13 Inlet-16

Fig. 5. Optimization results with cross section area constraint. Best individual of the last generation. Run 1

Duct-17nozzle-16combus…injectio…combus…Mixer-12Mixer-10Mixer-8combus…Duct-2combus…RocketI…

injectio…Mixer-6Inlet-4

Inlet-5 Inlet-9 Inlet-11

Fig. 6. Optimization results with cross section area constraint. Best individual of the last generation. Run 2


