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Abstract—This paper presents insights into the proportions
between the k-means clusters of successful Differential Evolution
(DE), donor generating vectors. This is demonstrated by the high
certainty that these proportions are similar – and thereby, that
these cluster size proportions regularly appear. A characteristic of
these proportions is that they are observed at the same specific
values in different test functions. It is also shown that, when
varying the number of dimensions for a fitness function, the
proportions are constant. However, some of the possible dynamics
of these proportions are reported later on, in the situation where
the optimization algorithm is changed – for instance, control
parameters like the population size parameter. This parameter
significantly changes, the proportions of the most frequently
successful and most unsuccessful vectors. Insights like this are
useful for an understanding of the inter-generational complexity
that appears within evolutionary algorithms and would thus
benefit future algorithm design; for example, plausible metrics
for on-line control.

Index Terms—Differential Evolution, Clustering, Complex Net-
work, Success History, k-means.

I. INTRODUCTION

This paper provides an insight into Differential Evolution
(DE) [1] donor vector generation of successful indexes cluster,
and choosing and testing the following hypotheses: 1) The
ratios between the success of clusters sizes, (most success-
ful, averagely successful, less successful), are statistically
insignificant from one function to another, with the same DE
settings; 2) The ratios between clusters are also statistically
insignificant when compared to different dimensions of the
same function; 3) The dependence on population size is
occasionally statistically significant for all these functions,
with different dimensions; and so as to obtain insights into
information about inter-generational complexity that appears
in evolutionary algorithms.

The motivation behind this, is the aim of implementing
such reported insights into DE algorithm design in order to
contribute to performance, e.g. for on-line control; or, possibly
as a population size control mechanism; or, control of explo-
ration/exploitation phases; or, historical archive management;
and many more possibilities.

The following section presents work related to DE. Sec-
tion 3 defines the success clusters for DE used to test the
hypotheses. Section 4, presents reports and discussions of the
experimental results; while Section 5 is the Conclusion, with
suggestions for future work.

II. RELATED WORK

DE [1]–[5], is a well-known evolutionary computation tech-
nique for continuous optimization purposes. DE has been mod-
ified and extended several times by means of new proposals of
versions; and the performances of different DE variant instance
algorithms have been widely studied and compared with other
evolutionary algorithms - including in various major scientific
conference competitions; where, over recent decades, DE has
won almost all of the evolutionary algorithm competitions [6]–
[18], as well as being applied to several applications [19], [20].

However, there are still plenty of unanswered challenges
needing to be tackled - like, understanding control parame-
ters [21] - and their on-line effects in DE [22]; and especially,
due to the existing abundant room-for-improvement - and this
merely in the adaptation possibilities of the search for the best
DE optimization schemes [23]. An EA behavior descriptor
(sometimes called observable or monitor) - as suggested by
[21], and exemplified for DE in [22], reports insights like this
and is useful for an understanding of the inter-generational
complexity that appears in evolutionary algorithms, and would
thus benefit future optimization algorithm design, possibly as
metrics plausible for the on-line control of operating mecha-
nisms and their parameters.

The basic concept of DE is to work with a randomly
initialized population of ”vectors” - also known as ”candidate
solutions”, and which - in an evolutionary manner, produce
better solutions in future generations. This is due to mutation,
crossover, and elitism. In order to control the evolutionary
process, DE uses four control parameters – number of gen-
erations Gmax, population size NP , crossover rate CR, and
scaling factor F . Mutation, crossover, and elitism operations
are repeated NP times to produce the next generation G + 1
of candidate solutions until the final generation Gmax, is
reached.

1) Initialization: The control parameters are set by the DE
user, and the initial population of NP candidate solutions is
randomly generated from an objective space.

2) Mutation: The mutation strategy used in canonical DE
is “rand/1” and uses three mutually different donor vectors at
indexes r1, r2, and r3 (w.r.t. r1 6= r2 6= r3 6= i for vectors at
∀i ∈ {1, 2, ...,NP}) from the current generation G population.
The three vectors at those indexes, using scaling factor F , are
combined to produce mutated vector vi,G :



Fig. 1: Population score history for Schwefel’s function, D =
10, NP = 20.

vi,G = xr1,G + F (xr2,G − xr3,G) . (1)

3) Crossover and Elitism: Binomial crossover with the help
of the CR value is used to produce trial vector ui,G out of
the original vector xi,G and trial vector vi,G , where index
j is an index of a component of a D-dimensional vector,
∀j ∈ {1, 2, ..., D}, U [0, 1] and a floating point uniform
random number generator between 0 and 1, and where j rand
is a randomly-generated index of a component which has to
be selected from the mutated vector:

uj,i,G =

{
vj,i,G if U [0, 1] ≤ CR or j = jrand
xj,i,G otherwise

. (2)

The objective function value of the trial vector, f (ui,G), is
then compared with the objective function value of original
vector, f (xi,G); and if it is lower (in case of minimization),
the trial vector demonstrates elitism and is placed in the next
generation G + 1 ; otherwise, the original vector xi,G survives
to the next generation:

xi,G+1 =

{
ui,G if f (ui,G) < f (xi,G)
xi,G otherwise

. (3)

III. SUCCESS CLUSTERS IN DIFFERENTIAL EVOLUTION

In order to implement success-based clustering, the score
had to be added to the canonical DE algorithm. Each individual
in the population was extended by a score value and this score
value was set at 0 in the initialization phase. Whenever trial
vector ui,G demonstrated elitism, the score of three donor
generating vectors xr1,G, xr2,G, and xr3,G was increased by
1 point. The score of each individual in the population was
recorded in each generation, thus creating a population score
history of the generations. An example of the score history
can be seen in Fig. 1.

A. Data preparation

Simple linear regression was performed for each in-
dividual score history, so as to obtain its slope value;

Fig. 2: Clustering of population (colors denote clusters) for
Schwefel’s function with D = 10, for the accumulating
success scores at NP = 20 population vector indexes.

which was then used as an input to the cluster-
ing algorithm. The example vector of 20 slope val-
ues for the data depicted in Fig. 1, is as follows:
(0.0702333, 0.311772, 0.139396, 0.274322, 0.526086, 0.1921,
0.0659274, 0.0115435, 0.0891675, 0.304226, 0.185942,
0.423253, 0.358715, 0.12338, 0.792863, 0.620304, 0.405396,
0.224345, 0.210787, 0.336079).

B. Clustering and the k-means algorithm

Clustering of the population was performed using the k-
means algorithm and linear regression slopes, (using Wolfram
language NonlinearModelFit function), of the score his-
tory of each individual in a population and then used as an
input.

In an attempt to avoid any unnecessary correlations between
the clustering mechanism and the resulting sizes of clusters,
one of the simplest clustering methods was used – the k-means
algorithm, proposed by Lloyd in 1957 – but only published in
1982 [24]. For a recent survey on this topic see [25].

As previously mentioned, the score history slopes of each
individual in the population were used as a set of observations
(x1 , x2 , ..., xNP ), and then divided into three clusters:
• Successful – The cluster with the higher slope values

(most successful individuals in the population)
• Average – The cluster with average slope values
• Unsuccessful – The cluster with the lower slope values

(least successful individuals in population).
The pseudo-code of the implementation of the k-means

algorithm used in this paper is depicted in Algorithm 1. An
example of the clustering results for the data from Fig. 1 is
depicted in Fig. 2. All score values of an individual in the
first 200 generations for the linear regression were also used.
So the result of the linear regression is:

score = a ∗G+ b , (4)

Where, a is the slope value used in clustering (as described
in the previous subsection); G is the generation number; and
b is the line offset - which was neglected for this clustering
(Note: In Fig. 2, the regressed lines are drawn with the offset



Fig. 3: Unsuccessful cluster size statistics for 5 test functions
with D = 5 and NP = 20

Fig. 4: Average cluster size statistics for 5 test functions with
D = 5 and NP = 20.

Fig. 5: Successful cluster size statistics for 5 test functions
with D = 5 and NP = 20.

b, hence the signs of minor overlapping on the left-hand side
of the image).

In order to obtain basic statistics, clustering was performed
for 30 independent runs of 5 test functions – (De Jong’s,
Ackley’s, Schwefel’s, Rastrigin’s, and Rosenbrock’s); in three
dimensional settings (D = 5, D = 10, or D = 20); and for
two sizes of population: (NP = 20 or NP = 30).

While the experiment setup might seem simple, the results
obtained in this way are valuable for further analysis and
for a deeper understanding of population clustering in DE.
Perhaps, what one would initially intuit without conducting
experiments, is that due to the uniform selection of r1, r2, r3,
the donor generated successful indices would be distributed

Fig. 6: Unsuccessful cluster size statistics for 5 test functions
with D = 20 and NP = 30.

Fig. 7: Average cluster size statistics for 5 test functions with
D = 20 and NP = 30.

Fig. 8: Successful cluster size statistics for 5 test functions
with D = 20 and NP = 30.

evenly (uniformly) through the index space. Or, on the basis
of a more educated guess, one would perhaps argue that
most improvements might be clustered around the current
best vectors (that is why they would form clusters in the
index space). But these guesses would be inaccurate, since it
would be hard to imagine that these cluster proportions would
be non-uniform and stable with specific values per function
(their proportions re-appear steadily) – as reported in the next
section.

IV. RESULTS

For demonstrative purposes, and in order to support the
above-mentioned hypotheses, analyses and conclusions, two



(a) D = 5. (b) D = 10. (c) D = 20.

Fig. 9: Successful cluster size ratios with varying NP over values {20, 30, 40, ..., 100} for 5 test functions with D = {5, 10, 20}.
The lines colors denote successful (purple color), average (green color), and unsuccessful (red color) clusters.

TABLE I: Wilcoxon signed-rank test p-values, D = 5, NP =
20.

De Jong Schwefel Ackley Rastrigin Rosenbrock

1. cluster - Unsuccessful

De Jong 1. 0.076 0.508 0.516 0.136
Schwefel - 1. 0.217 0.147 0.773
Ackley - - 1. 0.807 0.36
Rastrigin - - - 1. 0.76
Rosenbrock - - - - 1.
2. cluster - Average

De Jong 1. 0.111 0.13 0.025 0.174
Schwefel - 1. 1. 0.873 0.764
Ackley - - 1. 0.962 0.689
Rastrigin - - - 1. 0.258
Rosenbrock - - - - 1.
3. cluster - Successful

De Jong 1. 0.516 0.091 0.003 0.676
Schwefel - 1. 0.113 0.057 0.409
Ackley - - 1. 0.797 0.048
Rastrigin - - - 1. 0.016
Rosenbrock - - - - 1.

TABLE II: Wilcoxon signed-rank test p-values, D = 5, NP =
30.

De Jong Schwefel Ackley Rastrigin Rosenbrock

1. cluster - Unsuccessful

De Jong 1. 0.817 0.952 0.036 0.837
Schwefel - 1. 0.712 0.012 0.777
Ackley - - 1. 0.064 0.796
Rastrigin - - - 1. 0.033
Rosenbrock - - - - 1.
2. cluster - Average

De Jong 1. 0.918 0.269 0.966 0.973
Schwefel - 1. 0.321 0.741 0.793
Ackley - - 1. 0.736 0.434
Rastrigin - - - 1. 0.778
Rosenbrock - - - - 1.
3. cluster - Successful

De Jong 1. 0.876 0.228 0.3 0.676
Schwefel - 1. 0.516 0.466 0.904
Ackley - - 1. 0.139 0.31
Rastrigin - - - 1. 0.374
Rosenbrock - - - - 1.

box-plot triplets are depicted in Figs. 3–8. These box-plot
triplets show the proportional clusters sizes – relative to the

TABLE III: Wilcoxon signed-rank test p-values, D = 10,
NP = 20.

De Jong Schwefel Ackley Rastrigin Rosenbrock

1. cluster - Unsuccessful

De Jong 1. 0.29 0.509 0.116 0.932
Schwefel - 1. 0.492 0.92 0.501
Ackley - - 1. 0.277 0.99
Rastrigin - - - 1. 0.205
Rosenbrock - - - - 1.
2. cluster - Average

De Jong 1. 0.024 0.065 0.025 0.242
Schwefel - 1. 0.597 0.949 0.208
Ackley - - 1. 0.609 0.492
Rastrigin - - - 1. 0.166
Rosenbrock - - - - 1.
3. cluster - Successful

De Jong 1. 0.032 0.03 0.054 0.158
Schwefel - 1. 0.936 1. 0.385
Ackley - - 1. 0.951 0.337
Rastrigin - - - 1. 0.563
Rosenbrock - - - - 1.

TABLE IV: Wilcoxon signed-rank test p-values, D = 10,
NP = 30.

De Jong Schwefel Ackley Rastrigin Rosenbrock

1. cluster - Unsuccessful

De Jong 1. 0.141 0.274 0.044 0.331
Schwefel - 1. 0.402 0.86 0.368
Ackley - - 1. 0.51 0.909
Rastrigin - - - 1. 0.428
Rosenbrock - - - - 1.
2. cluster - Average

De Jong 1. 1. 0.399 0.232 0.569
Schwefel - 1. 0.608 0.247 0.837
Ackley - - 1. 0.847 0.726
Rastrigin - - - 1. 0.691
Rosenbrock - - - - 1.
3. cluster - Successful

De Jong 1. 0.167 0.727 0.871 0.781
Schwefel - 1. 0.106 0.131 0.123
Ackley - - 1. 0.97 0.936
Rastrigin - - - 1. 0.981
Rosenbrock - - - - 1.

NP for 30 independent heuristics runs; all 5 test functions;
and 2 different experiment types involving opposite boundary



TABLE V: Wilcoxon signed-rank test p-values, D = 20,
NP = 20.

De Jong Schwefel Ackley Rastrigin Rosenbrock

1. cluster - Unsuccessful

De Jong 1. 0.273 0.262 0.903 0.689
Schwefel - 1. 1. 0.579 0.352
Ackley - - 1. 0.416 0.394
Rastrigin - - - 1. 1.
Rosenbrock - - - - 1.
2. cluster - Average

De Jong 1. 0.406 0.855 0.567 0.289
Schwefel - 1. 0.314 0.254 0.076
Ackley - - 1. 0.637 0.432
Rastrigin - - - 1. 0.627
Rosenbrock - - - - 1.
3. cluster - Successful

De Jong 1. 0.869 0.196 0.319 0.111
Schwefel - 1. 0.068 0.136 0.061
Ackley - - 1. 0.613 0.673
Rastrigin - - - 1. 0.546
Rosenbrock - - - - 1.

TABLE VI: Wilcoxon signed-rank test p-values, D = 20,
NP = 30.

De Jong Schwefel Ackley Rastrigin Rosenbrock

1. cluster - Unsuccessful

De Jong 1. 0.182 0.119 0.031 0.397
Schwefel - 1. 0.832 0.003 0.361
Ackley - - 1. 0.005 0.344
Rastrigin - - - 1. 0.022
Rosenbrock - - - - 1.
2. cluster - Average

De Jong 1. 0.174 0.979 0.862 0.056
Schwefel - 1. 0.414 0.183 0.982
Ackley - - 1. 0.614 0.138
Rastrigin - - - 1. 0.151
Rosenbrock - - - - 1.
3. cluster - Successful

De Jong 1. 0.303 0.289 0.117 0.104
Schwefel - 1. 0.31 0.673 0.523
Ackley - - 1. 0.292 0.034
Rastrigin - - - 1. 0.76
Rosenbrock - - - - 1.

scenarios. Figs. 3–5 are related to the case of D = 5, and
NP = 20; whereas Figs. 6–8 depict D = 20, and NP = 30.
The ordering of the image triplets is as follows: Unsuccessful,
Average, and Successful clusters. The differences between
mean values and standard deviations are mostly observable in
the case of the successful cluster (Figs. 5 and 8); but, for the
other two types, the statistical characteristics clearly overlap.
Therefore, it was decided to test the per-function stability
hypothesis.

Hypothesis 1 can be accepted: (Tabs. I–VI, bold font, above
5%), in almost all function case comparisons, when using the
Wilcoxon signed-rank test [26] in Tabs. I–IX. The Wilcoxon
signed-rank test yields a p-value; which needs to be under
significance level, in order to reject a null hypothesis (in this
case, a value above α = 0.05 was chosen for bold-facing

Algorithm 1 The k-means algorithm with parameters applied.
1 Input: x1 , x2 , ..., xNP

2 Cluster count: k = 3
3 Clusters: S1 = S2 = S3 = ∅
4 For each x from input
5 Assign x to randomly (uniform dist) selected

cluster (S1 ,S2 ,S3 )
6 End
7 Do
8 Count centroids of each cluster ci = 1

|Si |
∑

xj∈Si
xj

9 For each x from input
10 Assign each x to a cluster based on the distance

to centroids
11 Calculate distance to i-th cluster di = (x − ci)

2

12 End
13 While no further change in clusters S1 ,S2 ,S3

the non-rejected null hypotheses – and, if rejected ... p ≤ α;
then, the cluster sizes’ values in such cases would be marked
as different). In Tabs. I and II, the p-value is less than 5%
in only 4/30 and 3/30 cases to reject the null hypothesis on a
function-to-function basis (thus, 88.333% cases in these tables
confirm the hypothesis). An example setting is, D = 5 with
NP = 20 (i.e. Tab. I); here, the values of p are only below
5% in Rastrigin vs. De Jong for the average and successful
clusters; or for Rosenbrock vs. Ackley or vs. Rastrigin for the
successful cluster. For the remaining tables in this set, the
rejection rate is 4/30 (Tab. III); 1/30 (Tab. IV); 0/30 (Tab. V);
5/30 (Tab. VI).

Similar conclusion rates can be observed for per-dimension
cluster differences (that is to say hypothesis 2) comparisons, as
reported in Tabs. VIIa–VIIj. The null hypothesis 2 is rejected
only in 4/9 cases for Tab. VIIa (for NP = 20 and NP = 30);
and in no other case (0/9 cases, all Tabs. VIIa– VIIj) in our
per-dimension comparisons analysis.

More often however, the hypotheses are rejected when
varying the population size (NP = 20 to NP = 100). Here,
reported values for the De Jong function outcomes: 28/36,
10/36, and 29/36 – (together: 67/108); or 28/36, 14/36, and
32/36 (together: 74/108); for D = 5 and D = 10, respectively.

As the first two hypotheses are well confirmed, we would
currently suggest the plausibility of the application these
three hypotheses outcomes as an insight metric (EA behavior
descriptor, as suggested by [21] and exemplified for DE in
[22]).

With regard to hypothesis 3, this is rejected in several
cases (see Tabs. VIII–IX). As such, it might need further
analysis – but this hypothesis might nevertheless be useful
as an insight metric in an on-line run: for the classification
of the fitness space or of the optimization function challenge
class and its features – in order to control the optimization
algorithm components, like variation mechanisms and their
control parameters – e.g., population sizing or structuring
in population-based optimization algorithms – including DE.



TABLE VII: Wilcoxon signed-rank test p-values for different functions and their dimensions.

(a) De Jong, NP = 20.

5 10 20

1. cluster - Unsuccessful

5 1. 0.772 0.692
10 - 1. 0.516
20 - - 1.
2. cluster - Average

5 1. 0.871 0.049
10 - 1. 0.021
20 - - 1.
3. cluster - Successful

5 1. 0.746 0.012
10 - 1. 0.004
20 - - 1.

(b) De Jong, NP = 30.

5 10 20

1. cluster - Unsuccessful

5 1. 0.239 0.768
10 - 1. 0.067
20 - - 1.
2. cluster - Average

5 1. 0.105 0.955
10 - 1. 0.108
20 - - 1.
3. cluster - Successful

5 1. 0.847 0.798
10 - 1. 0.666
20 - - 1.

(c) Schwefel, NP = 20.

5 10 20

1. cluster - Unsuccessful

5 1. 0.932 0.946
10 - 1. 0.899
20 - - 1.
2. cluster - Average

5 1. 0.523 0.355
10 - 1. 0.819
20 - - 1.
3. cluster - Successful

5 1. 0.184 0.114
10 - 1. 0.673
20 - - 1.

(d) Schwefel, NP = 30.

5 10 20

1. cluster - Unsuccessful

5 1. 0.125 0.323
10 - 1. 0.076
20 - - 1.
2. cluster - Average

5 1. 0.356 0.195
10 - 1. 0.791
20 - - 1.
3. cluster - Successful

5 1. 0.087 0.365
10 - 1. 0.303
20 - - 1.

(e) Ackley, NP = 20.

5 10 20

1. cluster - Unsuccessful

5 1. 1. 0.235
10 - 1. 0.194
20 - - 1.
2. cluster - Average

5 1. 0.801 0.819
10 - 1. 0.919
20 - - 1.
3. cluster - Successful

5 1. 0.808 0.36
10 - 1. 0.585
20 - - 1.

(f) Ackley, NP = 30.

5 10 20

1. cluster - Unsuccessful

5 1. 0.762 0.265
10 - 1. 0.319
20 - - 1.
2. cluster - Average

5 1. 0.124 0.202
10 - 1. 0.863
20 - - 1.
3. cluster - Successful

5 1. 0.125 0.673
10 - 1. 0.458
20 - - 1.

(g) Rastrigin, NP = 20.

5 10 20

1. cluster - Unsuccessful

5 1. 0.4 0.927
10 - 1. 0.472
20 - - 1.
2. cluster - Average

5 1. 0.837 0.642
10 - 1. 0.486
20 - - 1.
3. cluster - Successful

5 1. 0.342 0.079
10 - 1. 0.746
20 - - 1.

(h) Rastrigin, NP = 30.

5 10 20

1. cluster - Unsuccessful

5 1. 0.172 0.929
10 - 1. 0.091
20 - - 1.
2. cluster - Average

5 1. 0.461 0.775
10 - 1. 0.683
20 - - 1.
3. cluster - Successful

5 1. 0.854 0.658
10 - 1. 0.541
20 - - 1.

(i) Rosenbrock, NP = 20.

5 10 20

1. cluster - Unsuccessful

5 1. 0.314 0.85
10 - 1. 0.311
20 - - 1.
2. cluster - Average

5 1. 0.603 0.627
10 - 1. 0.819
20 - - 1.
3. cluster - Successful

5 1. 0.375 0.922
10 - 1. 0.483
20 - - 1.

(j) Rosenbrock, NP = 30.

5 10 20

1. cluster - Unsuccessful

5 1. 0.871 0.99
10 - 1. 0.852
20 - - 1.
2. cluster - Average

5 1. 0.399 0.154
10 - 1. 0.321
20 - - 1.
3. cluster - Successful

5 1. 0.211 0.058
10 - 1. 0.187
20 - - 1.

Nevertheless, when the population size was changed, the
proportional sizes of average cluster remained comparable
(for Tab. VIII: 10 out of 36; and for Tab. IX: 14 out of 36,
respectively are rejections). This might suggest that a linear
increase in population size also linearly increases the size of
average clusters, but the rest of the individuals is unevenly
divided between the successful and unsuccessful clusters. Such
phenomena are also supported by Fig. 9, where the proportions
of clusters for 5 test functions are plotted against population
size. As reported in Tabs.I–IX, the hypotheses results are
largely invariant – regardless of the change in test function

or dimension.

V. CONCLUSION

This paper presented an insight into proportions between k-
means clusters of successful Differential Evolution (DE) donor
generating vectors. It also demonstrated that the probability
of these proportions being similar is high – and thereby, that
these cluster proportions appear regularly and are observed in
different test functions and their dimensions. The algorithm
was run, in several independent runs, and the success clusters
proportions remained similar. It was also shown that the



TABLE VIII: Wilcoxon signed-rank test p-values, function De Jong, D = 5.

NP 20 30 40 50 60 70 80 90 100

1. cluster - Unsuccessful

20 1. 0. 0.012 0.159 0.561 0. 0. 0.271 0.001
30 - 1. 0. 0. 0. 0.94 0.002 0. 0.004
40 - - 1. 0.08 0.038 0. 0. 0.006 0.
50 - - - 1. 0.719 0. 0. 0.01 0.
60 - - - - 1. 0. 0. 0.068 0.
70 - - - - - 1. 0.008 0. 0.002
80 - - - - - - 1. 0. 0.
90 - - - - - - - 1. 0.061
100 - - - - - - - - 1.
2. cluster - Average

20 1. 0.039 0.078 0. 0.003 0.001 0. 0. 0.001
30 - 1. 0.992 0.053 0.142 0.411 0.015 0.061 0.13
40 - - 1. 0.053 0.102 0.299 0.021 0.104 0.024
50 - - - 1. 0.381 0.285 0.926 0.727 0.393
60 - - - - 1. 0.689 0.276 0.974 0.975
70 - - - - - 1. 0.086 0.267 0.589
80 - - - - - - 1. 0.673 0.279
90 - - - - - - - 1. 0.853
100 - - - - - - - - 1.
3. cluster - Successful

20 1. 0.003 0. 0. 0. 0.003 0. 0.004 0.405
30 - 1. 0. 0. 0. 0.509 0.758 0. 0.
40 - - 1. 0.957 0.108 0. 0. 0.002 0.
50 - - - 1. 0.122 0. 0. 0.001 0.
60 - - - - 1. 0. 0. 0.008 0.
70 - - - - - 1. 0.249 0. 0.
80 - - - - - - 1. 0. 0.
90 - - - - - - - 1. 0.003
100 - - - - - - - - 1.

TABLE IX: Wilcoxon signed-rank test p-values, function De Jong, D = 10.

NP 20 30 40 50 60 70 80 90 100

1. cluster - Unsuccessful

20 1. 0. 0. 0.829 0.483 0. 0. 0.299 0.
30 - 1. 0. 0. 0. 0.237 0.119 0. 0.
40 - - 1. 0.004 0. 0. 0. 0. 0.
50 - - - 1. 0.902 0. 0. 0.262 0.003
60 - - - - 1. 0. 0. 0.153 0.001
70 - - - - - 1. 0.01 0. 0.
80 - - - - - - 1. 0. 0.
90 - - - - - - - 1. 0.001
100 - - - - - - - - 1.
2. cluster - Average

20 1. 0.002 0.058 0. 0. 0. 0. 0. 0.
30 - 1. 0.032 0.315 0.812 0.381 0.94 0.294 0.299
40 - - 1. 0.032 0.001 0.003 0.021 0.004 0.007
50 - - - 1. 0.845 0.853 0.233 0.829 0.812
60 - - - - 1. 0.797 0.299 0.864 0.846
70 - - - - - 1. 0.188 0.727 0.918
80 - - - - - - 1. 0.168 0.276
90 - - - - - - - 1. 0.984
100 - - - - - - - - 1.
3. cluster - Successful

20 1. 0.009 0. 0. 0. 0.349 0.001 0. 0.028
30 - 1. 0. 0. 0. 0.07 0.294 0. 0.
40 - - 1. 0.003 0.001 0. 0. 0. 0.
50 - - - 1. 0.565 0. 0. 0.008 0.
60 - - - - 1. 0. 0. 0.021 0.
70 - - - - - 1. 0.002 0. 0.001
80 - - - - - - 1. 0. 0.
90 - - - - - - - 1. 0.
100 - - - - - - - - 1.



proportions are steady, even when varying the number of
dimensions for a fitness function. The possible dynamics of
these proportions was however, reported later – in the case
where changing the optimization algorithm for instance –
control parameters like population size: here, the proportions
of the most successful and most unsuccessful vectors changed
more significantly.

The behaviors of these two proportions were presented as
two new metrics, plausible for use with DE algorithms and on-
line control. Therefore, in future work, it would be interesting
to apply these metrics during an evolutionary DE run to control
their behavior, like for instance – with variation operators or
population structuring. The control of population size with
an emphasis on pruning out unsuccessful individuals, would
be especially interesting. Based on the score development of
individuals, one may detect possible scenarios with scores
developments and proportions between cluster sizes, or for
the exploration/exploitation phases of heuristics [27]. From
the insight perspective, it would also be interesting to study
the effects of the fitness improvement occurrences; crossover
(parent vector) variation influences; or per-component and
fitness function parameters separability characteristics’ effects
on successful cluster formation, coupled with per-component
propagation.
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