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Abstract—An option, a type of a financial derivative, is a
contract that creates an opportunity for a market player to avoid
risks involved in investing, especially in equities. An investor
desires to know the accurate value of an option before entering
into a contract to buy/sell the underlying asset (stock). There are
various techniques that try to simulate real market conditions
in order to price or evaluate an option. However, most of them
achieved limited success due to high uncertainty in price behavior
of the underlying asset. In this study, we propose a new variant of
multi-objective Firefly algorithm to compute the accurate worth
of an American option contract and compare the results with
the popular option pricing models: Binomial Lattice and Monte-
Carlo using the real market data.

In our study, we have first modelled the option pricing as a
multi-objective optimization problem, where we introduced the
pay-off and probability of achieving that pay-off as the main
optimization objectives. Then, we proposed to use a latest nature-
inspired algorithm that uses the bioluminescence of Fireflies to
simulate the market conditions. In this paper, we introduce the
non-dominant sorting Firefly algorithm to find the Pareto optimal
solutions for the option pricing problem. Using our algorithm, we
have successfully computed complete Pareto front of option prices
for a number of option contracts from real market. Also, we have
shown that one of the points on the Pareto front represents the
option value within 1-2% error of the real data (Bloomberg).

Moreover, with our experiments, we have shown that any
investor may utilize the results in the Pareto fronts for deciding
to get into an option contract and can evaluate the worth of a
contract tuned to their risk ability. This implies that our proposed
multi-objective model and Firefly algorithm could be used in real
markets for pricing options at different levels of accuracy. To the
best of our knowledge, modelling option pricing problem as a
multi-objective optimization problem and using newly developed
Firefly algorithm for solving it is unique and novel.

I. INTRODUCTION AND BACKGROUND

Today’s real-world applications have become more com-
plex, dynamic and require fast response time. In this re-
search, we have focused on one such application: financial
option pricing. In financial market, every investor desires rapid
information and accurate solution to earn profits. However,
problems in finance are too complex to be solved by a deter-
ministic algorithm(s) in reasonable computing time. Therefore,
researchers in the field of computational finance are constantly
working towards developing efficient models and algorithms
to help investors in their decision-making process and provide
them with accurate information.

Financial option is a type of derivative contract and is
used for a variety of purposes from risk analysis to portfolio

management. Every investor in the financial market desires
to know the accurate worth of an option contract. However,
due to the dynamic and volatile nature of the financial market,
pricing them accurately and efficiently is very difficult.

In 1973, Fischer Black and Myron Scholes [1] along with
Robert Merton [2] revolutionized the options market by in-
troducing a closed-form solution to price options. However,
this Black-Scholes-Merton (BSM) model did not depict the
market scenario well due to assumptions such as constant
volatility and its restricted applicability to only simple options
such as European option which allows expiration only at the
expiration date. Following this, Cox-Ross Rubenstein [3]
proposed a discrete time approach known as binomial lattice
model to value an option in the risk-neutral regime put forth
by BSM model. Due to time discretization, this model allowed
pricing other styles of options as well, such as an American
option (which allows exercising before the expiration date).
However, in order to estimate the accurate worth of the
option contract using binomial lattice model, we need to do
large amount of computation. Therefore, there is always a
demand for techniques, which prices option accurately and
also within reasonable computing time. There are many other
numerical techniques such as Monte-Carlo simulation, Fast
Fourier transform (see, for example, [4]–[7]) in the literature
to price options. However, these techniques also have some
drawbacks and lack in appropriately capturing the real market
conditions.

Due to lack of accurate and efficient approaches to price
option, researchers started looking for other unconventional
technique (s) aiming to capture real market scenario more
accurately. One such class of technique is nature-inspired
meta-heuristic algorithms [8]. In the recent past, various
meta-heuristic algorithms, such as evolutionary and nature-
inspired algorithms have been proposed to solve the option
pricing problem [9]–[12] and showed satisfactory results. By
getting motivated from these studies, we used another latest
nature-inspired technique, Firefly algorithm to find solution
for option pricing problem. In contrast to previous studies, we
have mapped option pricing problem as a multi-objective op-
timization problem rather than a single objective problem and
have developed a multi-objective variant of Firefly algorithm
to find its solution.

The rest of this paper is organized as follows: In the next



three sections, we briefly describe the option pricing and
Firefly algorithm followed by the related work in the general
topic of nature-inspired algorithms for financial applications.
In section V we explain our proposed strategy to map the
Firefly algorithm to option pricing, and describe the design
of our algorithm. We implement this algorithm and explain
the results of our implementation in section VI along with
evaluation and error analysis. We conclude our study in
section VII.

II. FINANCIAL OPTIONS

Financial option is a standard derivative contract that gives
a holder the right without any obligation to buy or sell an
underlying asset (such as a stock) at a predetermined price
(called the strike price) for a specific period of time (contract
period with an expiration time). The person who buys the
contract is called the buyer/holder of the option and the
person who sells the contract is called the writer. Options are
categorized into two types: call and put. With call (put) option,
the buyer holds the right to buy (sell) the underlying asset at a
specific price during the contract period. Depending on when
and how the option is exercised (i.e., style), options can be
categorized as either vanilla (European, American) or exotic
options (Asian, Russian, etc). In this paper, we focus on the
American option that allows the holder to exercise the option
anytime before the maturity date.

The goal of option pricing is finding the worth of a contract.
Five basic parameters that influence the price of an option are:
underlying stock price (S), strike price (K), interest rate (r),
volatility (σ) and time until expiration (T). The local pay-off
or the worth of a contract is computed as max(S-K,0). In the
European style of an option, S is the price of stock during the
expiration where as in American style of an option, S is the
maximum value of stock during the contract period.

Volatility is the degree of price movement over the contract
period measured using the standard deviation of the underlying
asset price. Interest rate is the rate of return of an investment
with zero risk.

For further description of options and other basic models
(such as BSM, binomial lattice model, Monte-Carlo simula-
tion, etc.), the readers may refer to [4], [13].

III. FIREFLY ALGORITHM

Firefly algorithm introduced in [8] is inspired by the flashing
lights of Fireflies. Flashing light emitted by Fireflies is used
as a communication system to attract mating partners or warn
potential predators. First signalers are typically males to attract
females, which in turn respond by emitting continuous flashing
lights. Both the mating partners emit distinct flashing signals
that are precisely timed to encode information like sex or
species identity.

There are two important issues defined in the Firefly
algorithm [8]: variation of light intensity (brightness) and
attractiveness. Brightness and attractiveness of Fireflies are
proportional to each other. A Firefly moves towards a brighter
Firefly. The intensity of the light (I) varies with respect to the

distance r. As r increases, the intensity (and attractiveness)
decreases and vice versa. The intensity is found to be inversely
proportional to the square of the distance I(r) = Ioe

−γr2,

where I0 denotes the initial light intensity and γ, the fixed
light absorption coefficient. Attractiveness, β is therefore,
β = βoe

−γr2, where βo is attractiveness at r=0. In addition, we
can view the brightness of light intensity as being connected
with the objective function. That is, the light intensity is
proportional to the solution‘s fitness value.

In this paper, the distance between two fireflies i and j
at xi and xj , respectively, is calculated using the Euclidean
distance:

rij = |xi − xj | =

√√√√k=n∑
k=1

(xik − xjk)2 (1)

where n is the dimensionality of the problem. The position of
the ith firefly is updated using the position of the jth firefly,
the attractiveness β and a randomization parameter α:

xi = xi + βoe
−γr2(xj − xi) + αεi (2)

where εi in our algorithm, is a random number obtained from
a random number generator of uniform distribution [0,1].

IV. RELATED WORK

Heuristics and meta-heuristics approaches have been used
to find solutions for problems in finance such as: determin-
ing implied volatility [14], time series forecasting of stock
prices [15], or portfolio selection [16]. These problems are too
complex to be solved by deterministic or analytic approaches
in reasonable time. Hence, non-deterministic approaches like
nature-inspired algorithms were tested on these problems and
got appropriate results.

In 1994 Hutchinson et al. [17] applied artificial neural net-
work for solving the option pricing problem. Chidambaran et
al. [11] used genetic programming to calculate the value of an
option. They tried to find the relationship between option price,
option contract term and the properties of underlying asset.
The authors randomly generated functions (programs) relating
the set of input (properties of options contract) and underlying
asset with one single output (option price). This approach had
one benefit that incorporated previously known formulas such
as BSM in its search to find better approximated results. Also,
the authors claimed that in most of the trials their algorithm
performed better than BSM model. Yin and Brabazon [18] pro-
posed an improved adaptive genetic programming algorithm to
price option and claimed that their strategy was more efficient
than using fixed genetic programming for option pricing.

One of the most important and continuously studied prob-
lems in derivatives market is to find the accurate worth of an
option contract. Some of the studies (see for example, [4],
[5], [7]) were able to capture the parameters required to
evaluate the option contract and to find accurate worth of these
contracts. However, most of these techniques incurred high
computational cost, or were not able to find accurate solutions
for the option contract.



Keber and Schuster [19] used swarm-intelligence technique
called generalized ant programming for valuation of American
put options for non-dividend paying stocks. They claimed to
have found accurate approximation results. Kumar et al. [9]
studied the suitability of ant colony optimization (ACO) [20]
algorithm for options valuation. The authors developed two
new ACO based algorithms for pricing options namely sub-
optimal path generation algorithm and dynamic iterative algo-
rithm. They also studied the efficiency of their techniques to
price exotic options (Asian or barrier option) and claimed their
algorithm performed better than other numerical techniques
like binomial lattice and Monte-Carlo simulation. However,
due to some limitations with ACO in finding a path rather
the best node (time) to exercise the option, the authors in
[10] considered another popular and efficient meta-heuristic
algorithm, particle swarm optimization (PSO) [21] for pricing
options. The authors [10] mapped each particle of PSO
to capture both the profit (pay off) and the exercise time.
They also incorporated varying volatility in their algorithm to
represent real market conditions to price both European and
American style options.

In this paper, we model the option-pricing problem as a
multi-objective optimization problem, solve the problem using
multi-objective Firefly algorithm and validate our results using
real market data. To the best of our knowledge this is a unique
and novel model for pricing options.

V. OPTION PRICING: MULTI-OBJECTIVE OPTIMIZATION
MODEL AND FIREFLY ALGORITHM

In this section, we model American option pricing as a
multi-objective optimization problem and describe the solution
methodology used to find it’s solution. In an earlier work
we reported results from our preliminary model for simple
European option pricing, which were quite encouraging. This
motivated us to carry on with this work for improving the
model that can handle more complicated options such as
American option. In section V-A, first we present the mapping
of option pricing as multi-objective optimization. Then, in
section V-C, we explain the non-dominant sorting Firefly
algorithm in detail. Moreover, we not only extend our pre-
liminary model for the current study but also devise a new
non-dominated sorting Firefly algorithm to price American
options.

A. Mapping Firefly to Option Pricing problem

This is one of the most important contribution of our
research. In our previous work [22], we used a similar model
for pricing European option and found very promising results.
This model is a novel idea and has multiple advantages as
compared to other traditional techniques.

We consider an optimization search space for option pricing
problem as a 2-dimensional space where each point in search
space represents a solution equal to the worth of an option
contract (maximum possible profit expected on exercising the
contract).

Fig. 1. Mapping

Each solution in the search space consists of two option
parameters (dimensions): value of the underlying asset and
exercise time. The first dimension, the value of the underlying
asset, represents any feasible value that the underlying asset
can reach during the life of an option. The second dimension,
the exercise time, represents any value between the start of
the contract and expiration time.

To capture appropriate behavior and accurate solution, we
consider maximum possible pay-off from the contract and
probability of attaining that payoff as two main objectives for
the problem. Pay-off is the profit earned on exercising the
contract and probability is the chance of earning that profit in
current market conditions. Pay-off is calculated using max(S-
K, 0) where S is the asset price at the time of exercise,
K is the strike price and probability is calculated using the
algorithm explained in the next section. To the best of our
knowledge, none of the nature-inspired techniques in the past
have considered probability of achieving a particular pay-off
as an objective in pricing options. Therefore, our aim is to
maximize the combination of both pay-off and probability
in a holistic way accurately price an option. This makes
our approach unique. We construct the fitness function of
a solution representing maximum profit as function of two
optimization objectives: profit (pay-off) and probability of
achieving that profit.

FitnessV alue(F (x)) = F (Payoff, Probability) (3)

In this function we aim to maximize both the profit and
probability of achieving the pay-off simultaneously, to obtain
the accurate worth of the option. This is modelled as a multi-
objective optimization problem. Interesting phenomenon to
note is that these two objectives behave in such a manner
that when probability is high, the rate of change in pay-off is
low and vice-versa.

Therefore, to efficiently optimize both the objectives and
compute accurate solutions, we designed and developed a
novel and efficient multi-objective non-dominant sorting Fire-
fly algorithm to find trade-off between these objectives and



compute Pareto optimal solution for American option pricing
problem. This is explained further in Algorithm 3 in the
following subsection.

B. Probability Computation

Investors would like to get as accurate information as
possible on the probability of any underlying asset reaching
a particular value in future (during the contract period).
However, according to efficient market hypothesis [23], it is
assumed that asset prices in financial market follow a random
walk, making it very difficult to predict the future value of an
asset. In this work, we use Monte-Carlo simulation, to compute
the probability of an asset reaching a particular value in future.
This is described in Algorithm 1.

Algorithm 1 Probability estimation using Monte-Carlo simu-
lation

1: Input : Intial Value(So), Target Value(V ), Number of
Trading Days(T ), Volatility (σ), Drift rate(µ)

2: procedure PROBCAL
3: Initialize number of Simulation
4: t=0, counter=0
5: while t < NumberofSimulation do
6: Generate a Normally Distributed Random Number

(ε) from range (0,1)
7: Calculate Asset Value using equation S(T ) =

Soe
(σ
2 )(2(1+ε

√
T )−σ)

8: if S(T ) ≥ V then
9: Counter = Counter +1

10: end if
11: end while
12: Probability = Counter / Total Simulations
13: return Probability
14: end procedure

The input to the algorithm consists of five parameters: initial
asset value, target asset value for which probability is to be
calculated, number of trading days and volatility. To estimate
the probability, we compare the target asset value to the final
simulated price from Monte-Carlo simulation (Line 7). Line
8, records the number of times the simulated random walk of
an asset exceeds the target asset value. This value is divided
by the total number of simulations giving the probability
of an asset to reach or exceed the target value (Line 12
and 13). This approach of using Monte-Carlo simulation to
compute the approximate value of probability is one of the
most popular techniques in the literature [13] and is used by
many real practitioners to make decision in their day-to-day
trading cycle.

C. Non-dominant sorting Firefly algorithm for pricing Amer-
ican option (NSFA)

In this section we explain our newly designed non-
dominated sorting Firefly algorithm (NSFA) to find Pareto op-
timal solution for multi-objective option pricing problem. This
algorithm is inspired from NSGA-II (non-dominant sorting

genetic algorithm) [24] in a way that we use non-dominated
sorting and crowding distance approach to find Pareto optimal
solution for multi-objective option pricing problem. Non-
domination sorting is the sorting of the population on the basis
of their non-domination and crowding distance metric is a
technique used to main the diversity within the population. But
as Firefly algorithm is very different from Genetic algorithm,
the way these approaches are used is quite different in my
aproach.

First, in order to simulate NSFA for option pricing prob-
lem, we have to set the initial values for Firefly parameters
(α, γ, βon, t) and financial option parameters (S, T,K, σ, r).
Then, on the basis of input parameters for financial option,
upper bound and lower bound for both the variable S and T
of a Firefly is set using equation defined in line 3a and 3b
of Algorithm 3. Here, we use volatility to set bounds for the
asset price (S). Explanation behind this approach is that we are
trying to incorporate the real market condition in our search
and volatility is the annualized standard deviation of price
movement for an asset. In our implementation we use twice
the value of volatility (2*σ) rather than using just volatility,
in order to increase the size of the search space.

After initializing all the parameters and variables, we start
NSFA simulation by randomly setting values for the initial
population, where each Firefly represents asset price (S) and
time (T). After setting the initial values, we evaluate the pay-
off and probability for each Firefly. Further, in line 6 and 7
of Algorithm 3, we do the non-domination sorting (Population
sorted according to ascending order of non-domination) [25] of
the initial population and evaluate the fitness for each Firefly
using equation: F (xi) = n − NonDomLevel(xi) in which
n is the size of population and NonDomLevel is the non-
domination level of ith Firefly. Using this equation all fireflies
with better non-domination level will have higher fitness and
will have more significant impact during the simulation, since
in our implementation we are trying to maximise the fitness
(Firefly with more fitness is considered to have higher light
intensity).

Further, we also compute the crowding distance metric
[25] for each Firefly. Crowding distance di of a solution
is a measure of search space around solution i that is not
occupied by any other solution in the population. In other
words, crowding distance is the density estimator of all the
solutions in a population. Therefore, we use this metric in-
order to maintain diversity in the solutions found during the
simulation of NSFA.

In our algorithm of non-dominant sorting multi-objective
optimization, we use an external archive with the name
nonDomPopulation that stores all the non-dominated solution.
This is to retain all the non-dominated solution found during
the simulation of algorithm. This archive is continuously
updated during the simulation and after the completion of
simulation, it is returned as final output for the optimization
problem. This archive is first initialized in line 7 of the
algorithm where all the non-dominated solution from the initial
population are identified and stored in the list nonDomPopu-



Algorithm 2 Procedure FFAMOVE
1: Input: previousPopulation: A List with fireflies as its

member.
2: Output: newPopulation: A List with updated position of

fireflies
3: n= sizeof(previouspopulation)
4: F (xi) and D(xi) denotes Fitness and Crowding distance

respectively for a Firefly xi where i = (1, 2, 3...n)
5: procedure FFAMOVE
6: newPopulation → previousPopulation
7: for i = 1 : n do
8: for j = 1 : n do
9: if F (xi) > F (xj) then

10: Move Firefly j towards Firefly i by updating
it’s position in all the dimensions using
Equation 2.

11: else if F (xi) = F (xj) then
12: if D(xi) > D(xj) then
13: Move Firefly j towards Firefly i by

updating it’s position in all the dim-
ensions using Equation 2.

14: end if
15: end if
16: end for
17: end for
18: return newPopulation
19: end procedure

lation.
In the following, we explain the core working of non-

dominant sorting Firefly algorithm. In line 8 of our algorithm
3, list previousPopulation is initialized with the contents of a
list containing initial population and starts the main part of the
simulation in line 9 where Firefly searches the bounded search
space and continuously updates the contents of the population.
This simulation runs until the stopping criteria is met. In line
10 of our algorithm, newPopulation is constructed using the
algorithm 2 where the position of each Firefly is changed with
an aim to reach a better position. Here, better position means
a position close to the true Pareto front. Position of fireflies
are changed using the equation 2 in which a less fit Firefly is
attracted towards a more fit Firefly. We compare the crowding
distance value for each Firefly when fitness of two fireflies are
same (Line 10 and 11 of Algorithm 2). We do this because
Firefly with higher crowding distance is considered to be in
a position of comparatively less denser area. Therefore, when
a Firefly moves from a more denser area towards a Firefly in
less dense area, probability of finding a more diverse set of
solution increases.

After the creation of new population, both the list new-
Population and previousPopulation are combined into an new
population of size 2n and named combPopulation (line 12
of algorithm 3). Then, this new combPopulation is searched
for any newly found non-dominated solution and if found, is
added to the archive nonDomPopulation (line 13 of algorithm

3). Although this step of combining population and finding
non-dominated solution requires more effort, it allows for the
global non-domination check and leads to an elitist strategy.
Along with adding the non-dominated solution to nonDom-
Population, some solutions are also removed for whom the
status of dominance is changed from non-dominant to dom-
inant on addition of new solution. This process of updating
nonDomPopulation is continued until the stopping criteria for
simulation is reached. Finally, the archive nonDomPopulation
is returned as final solution for the problem representing the
Pareto optimal solution (line 16 of algorithm 3 ).

VI. EXPERIMENTAL RESULTS

In this section we present and discuss the experimental set
up that we have organized for the study and discuss the results
for accuracy and efficiency of our proposed option pricing
model for American options using the multi-objective Firefly
algorithm.

A. Experimental Setup

For the current study we have selected 5 equities: Apple
(AAPL), Google (GOOG), Goldman Sachs (GS), Amazon
(AMZN) and IBM (IBM) and have gathered their data from
Bloomberg [26].

We have tested the efficiency of our algorithm by validating
our results against the real-world data and compared them
with results from binomial lattice model and Monte-Carlo
simulation.

CBOE publishes the market’s expected volatility on five
highly active equities (VXAPL, VXAZN, VXGOG, VXGS,
VSIBM). For our experiments, to estimate the volatility, we
have used volatility indexes from CBOE for Options on Indi-
vidual Equities 1. We did our experiments on 6 months data
ranging from January till June 2015. Exhaustively evaluating
all the contracts on each date (approx 3500 contract/day)is
very difficult. Therefore, in our study, we have selected four
particular days for valuation, i.e. four Mondays in each month
from January till June 2015 to evaluate our algorithm. Consid-
ering only the data for Monday may produce biased results,
however in our approach we are trying to capture whatever
happened (biased or not) in the market that day. Our results
show that we are able to capture real data very accurately,
while the results themselves might show market bias.

Further, to show the efficiency of our model on a broader
scale of contracts we have selected different possible types
of contracts on the basis of time to expiration and moneyness
( S
K ), which is shown in Table VI-A.The selection of parametric

values were done in order to keep track of the market and
stocks in the market. That is, by focusing on limited data set,
we try to establish the power of proposed algorithm using
Firefly. Now that we have shown Firefly can capture real
results very accurately, we might be able to included more
parametric study in the near future.

Decision on parametric value for the firefly algorithm is very
important for it’s efficiency in a given application. Therefore,

1http://www.cboe.com/micro/equityvix/introduction.aspx



Algorithm 3 Non-Dominant Sorted Firefly Algorithm to eval-
uate Call Option

1: FA Input parameter: α (Randomness), γ (Attractiveness),
βo (Light Intensity at source), Population Size (n), Num-
ber of Iteration (t)

2: Option Input Parameters: Initial Asset Value (S), Expira-
tion Time (T), Strike Price (K), Volatility (σ), Risk-free
rate of interest (r)

3: Initialize Upper Bound and Lower bound for each vari-
ables representing a Firefly
a: Smin = S(1− (2 ∗ σ)) and Smax = S(1 + (2 ∗ σ))
b: Tmin = 1 and Tmax = T

4: Initialize position for all fireflies xi where i = (1, 2, ...n)
and store the population in the list initPopulation
a: Each Firefly xi is represented by two variables: Stock

and Time
b: Si is initialised with random real number within range
Smin and Smax

c: Ti is initialised with random Integer within a range
Tmin and Tmax

5: For each Firefly xi evaluate their objective function values
a: Calculate Pay-off for each Firefly xi using equation
max(Si − K, 0), where Si represents asset value of
each Firefly xi

b: For each Firefly xi Call procedure PROBCAL such
that Probabililty(xi)= PROBCAL(S,Si,Ti,σ,r)

6: Sort each Firefly according to their Non Domination level
and evaluate their Fitness and Crowding Density
a: Fitness is calculated as F (xi) = n −
NonDomLevel(xi)

b: Crowding Distance is calculated by calling procedure
CrowdingSort(xi)

7: Identify the non-dominated solution from population and
store them in the list nonDomPopulation

8: Assign list previousPopulation → initPopulation
9: while t < MaxGeneration do

10: newPopulation →
FFAMOV E(previousPopulation)

11: Evaluate Fitness and Crowding Distance of newPopu-
lation

12: Combine previousPopulation and newPopulation into
a list combPopulation of size 2n

13: Identify the non-dominated set of solution from the
list combPopulation and update the list nonDomPop-
ulation. Also remove any solution from the list if it
gets dominated by adding new solutions.

14: Assign previousPopulation → newPopulation
15: end while
16: Return the final set of nonDomPopulation as a set of

Pareto optimal solution for Option Pricing Problem

after trying different possible combinations of parameters, final
values used in our experimentation is presented in Table VI-A.

After creating the experimental setup, we did different
types of experiments to validate our model and algorithm for
American option pricing. We did the evaluation of experiments
in two parts: (i) we showed the efficiency of our algorithm to
find the complete Pareto front for the American option prices
and (ii) we did the analysis of the solution from our algorithm
to evaluate the correctness of our model.

TABLE I
VARIATION OF CONTRACTS BASED ON TIME TO EXPIRATION AND

MONEYNESS

Expiration Period Moneyness S/K
1 Week 0.95,0.98,1,1.02,1.05
1 Month 0.95,0.98,1,1.02,1.05
3 Months 0.90,0.95,1,1.05,1.1
6 Months 0.90,0.95,1,1.05,1.1
1 Year 0.90,0.95,1,1.05,1.1

TABLE II
PARAMETER SETTING FOR FIREFLY ALGORITHM

Parameter Value
Population Size 100
Number of Iteration 250
Randomization parameter (α) 0.2
Light absorption coefficient (γ) 1.0
Attractiveness value (βo) 1.0

B. Pareto Front for Option Value
First, we discuss the Pareto front obtained from the imple-

mentation of our model. We have performed non-dominant
sorting firefly algorithm on over 720 contracts with different
combinations of ”maturity” and ”moneyness” on different
possible dates and with different underlying assets. In all the
experiments performed, our algorithm was successful in find-
ing the complete set of Pareto optimal solutions for American
style of option where trade-off solutions have to be searched
for the objectives: pay-off and probability. Some of the Pareto
fronts computed are shown in Figures 2 to 4 where, it is
clearly observable that non-dominant sorting firefly algorithm
was successful in finding the Pareto-optimal solution for multi-
objective option pricing problem. For example, in Figure 2,
which is the representation of the solutions found for 6 months
at-the-money contract on January 5, 2015 for Apple stock, we
can see that the our algorithm (NSFA) successfully found the
solution for maximum and minimum of both the objectives
(represented by maximum payoff and minimum payoff arrow
in figure) and also successfully found the set of all other non-
dominant solutions with respect to both objectives (represented
by all points between the maximum payoff and minimum
pay off arrow). Similar behavior is also observed with other
contracts shown in Figures 3 and 4, which validates the ability
of NSFA to find solution for multi-objective optimization
problem.

Further, in order to analyse the quality (accuracy and
efficiency) of the Pareto front found using our algorithm,



we plotted the pay-off (y-axis), probability (x-axis) and error
(shown using colours: Red for negative error and green for
positive error, brightness resembles the magnitude of error)
for all the solutions on a scatter plot using data visualization
tool, called Tableau 2. Some of the visualization are shown in
Figures 2 to 4. Error is calculated using the actual worth of
the contracts. As we were experimenting on historical data,
it was possible to get actual worth of all the contracts which
was further used to determine the quality of our Pareto front.
One important insight we observed on analyzing all the 600
computed Pareto fronts is that in 98% of the experiments our
algorithm was successful in capturing the actual worth of the
option contract with less than 1% error. For example, let us
consider Figure 4 in which solutions found using NSFA are
shown (at-the-money 6 months contract for Goldman Sachs).
Here, ST =218.39, So=193.06 and K=193. The real option
value of the contract from historical data is noted as 25.4.
In Figure 4 one of the solution represents pay-off as 25.84
which is just 0.44 more than the actual value. This solution
point is identified with an arrow in the Figure 4. Similarly
in other contracts also solutions found using NSFA algorithm
captured the solution with almost 0-1 % error. This observation
shows us the ability that our model of option pricing as multi-
objective optimization is capable of capturing the accurate
worth of the contract in real market conditions.

Finally, we conclude using the observation from this section
that 1) Non-dominant sorting Firefly algorithm efficiently finds
the true Pareto-optimal solution for multi-objective option
pricing problem and can be further extended to optimize any
other multi-objective optimization problem (2) Our model of
mapping probability and pay-off as a multi-objective optimiza-
tion problem is accurate and is successful in capturing the true
behavior of most of the American style of option contracts.

C. Risk-Aware Application of the Model

After validating our algorithm and our model, we analyze
how investor will deploy this study to find the accurate worth
of a contract. In our model each solution on the Pareto front,
represents two variables: the pay-off and probability of getting
that pay-off and an investor is always expected to select a
solution from the Pareto front which gives maximum values
for both these objectives. However, it is difficult to find such
a solution as both the objective has tendency of behaving
in opposite manner. Therefore, the investor has to select a
point, which finds a trades-off between both these objectives.
Our model and algorithm mainly presents a Pareto front of
solutions to the investor and advise investor to select one
particular solution from the Pareto front on the basis of their
decision variable that estimates the accurate worth of an option
with minimum error.

Financial markets are very volatile due to which it is
not possible to have a single value for any option contract.
Therefore, we believe that every option contract has its own
value depending on the level of risk an investor may take. In

2http://get.tableau.com/trial/tableau-software.html

Fig. 2. Pareto Front for at-the-money 6 months contract on January 5, 2015
for Apple Stock

Fig. 3. Pareto Front for at-the-money 6 months contract on January 5, 2015
for Google Stock

other words, value of an option contract varies with the risk
taking capacity of an investor. Therefore, in our algorithm,
we may assume investment risk as the decision variable to
compute the worth of an option. We suggest mapping the risk
taking capacity of an investor with the probability of attaining
a pay-off. On the basis of risk capacity of an investor as a
decision variable, the investor can select a point on the Pareto
front to get an option value for the contract. For example if
an investor is not willing to take any risk, then he/she can
select a solution with high probability (referred as ”Minimum
Payoff” in Figures 2 to 4) that may give less profit to the
investor. Similarly, if an investor is willing to take high risk
then he/she may select a solution with low probability and
high payoff (referred to as high payoff in Figure 2 to 4) that



Fig. 4. Pareto Front for at-the-money 6 months contract on January 5, 2015
for Goldman Sachs Stock

Fig. 5. Pareto Front for at-the-money 1 Year contract on 4 Mondays in
January, 2015 for Apple Stock

may give high profit to the investor but chances of getting
that profit is very less. Investor usually select the risk factor
on the basis of volatility and current market condition. In the
next section we have introduced a strategy for investor to select
risk variable on basis of historical data that may help investors
to approximate the accurate worth of the contract.

D. Strategy to evaluate current risk level

We have analyzed all our experiments done on the historical
data, in order to identify the relation between the risk level
and worth of an option contract. In Figures 5 - 7, the degree
of similarity in Pareto fronts for similar type of contracts
is clearly visible. Therefore, in this section we proposed a
strategy of using the historical data and analyze Pareto front
for similar type of contracts from previous dates in order to
predict the current level of risk.

Fig. 6. Pareto Front for at-the-money 1 Year contract on 4 Mondays in
January, 2015 for Goldman Sachs Stock

Fig. 7. Pareto Front for at-the-money 1 Year contract on 4 Mondays in
January, 2015 for Google Stock

In order the analyze the accuracy of this strategy, we have
done back-testing using 6 months historical data from January
2015 to June 2015. We have considered data of 4 Mondays
of each month. In our strategy we analyze each and every
historical contract for the considered period and note that value
of probability or risk for each contract where, the error is
found to be minimum. Then we compute the average value
of probability or risk for each type of contract where it has
maximum chances of getting minimum error. Then we use
that average computed value as the average risk level for that
particular type of contract and use it to compute the option
price.

For example, If we want to evaluate a contract on 6th July,
2015 (Monday), we considered the probability of Mondays in
previous 6 months. We observe the Pareto front of all contracts
on all these 24 days and noted those solutions on their front,
which gives the minimum error. Further, we compute the
average probability for noted solution and consider it as the



current risk level. Further, using the computed risk level we
select a solution on Pareto front for the current contract and
use its pay-off value as the solution.

Also, we did some experiments to evaluate option price
for American style of contracts for 5 stocks and have noted
the error between real worth and the worth predicted using
our strategy. We also compared the results with other two
popular American option pricing techniques: Monte-Carlo
simulation [27] and Binomial Lattice model [2]. Results are
shown in Tables III-V . It is clearly observable that result
using this strategy are much better than the other conventional
techniques. Similarly, we can explore different risk selecting
strategies to predict the accurate worth of a contract.

From our experiments we made one more crucial obser-
vation that for similar type of contracts on different dates,
option prices listed on the exchange have same probability
of getting that option price. For example, for at-the-money 1
year contract on Apple on 4 Mondays in January 2015, option
price asked on the exchange was 4.08, 4.9, 4.64, and 4.52
respectively. Option parameter on all four dates is different,
that is, S0, σ, r are different on all the dates. However,
probability of attaining respective pay-off listed on exchange,
for all different dates, turns out to be same i.e. 0.718. This type
of behavior is also seen in all other contracts. This insight from
the analysis depicts that the market tries to price the contract
using same order of risk, which tends to be small. That is,
they try to give the minimum price of contract and our model
is able to capture that accurately, which further proves the
efficiency of our model.

TABLE III
COMPARISON OF ERROR BETWEEN NSFA, MONTE-CARLO SIMULATION

AND BINOMIAL LATTICE FOR AT-THE-MONEY OPTION PRICING

Maturity
Error using

FA
algorithm

Error using
Monte-
Carlo

Simulation

Error using
Binomial
Lattice

1Week 14 50 46
1Month 35 51 51
3Month 14.3 56 54.5
6Month 29.1 37.2 37.8
1Year 12.4 31.9 30.8

TABLE IV
COMPARISON OF ERROR BETWEEN NSFA, MONTE-CARLO SIMULATION

AND BINOMIAL LATTICE FOR OUT-OF-MONEY OPTION PRICING

Maturity
Error using

FA
algorithm

Error using
Monte-
Carlo

Simulation

Error using
Binomial
Lattice

1Week 20 55 48
1Month 28 55 52
3Month 20.7 55.9 53.4
6Month 25.2 35.8 37.2
1Year 14.8 33.1 34.6

VII. CONCLUSIONS

The main goal of this study is to solve option pricing
problem using the nature-inspired optimization techniques.

TABLE V
COMPARISON OF ERROR BETWEEN NSFA, MONTE-CARLO SIMULATION

AND BINOMIAL LATTICE FOR IN-THE-MONEY OPTION PRICING

Maturity
Error using

FA
algorithm

Error using
Monte-
Carlo

Simulation

Error using
Binomial
Lattice

1Week 12 52 45
1Month 24.5 45.8 47.1
3Month 10.6 47.4 44.2
6Month 22.1 34.3 35.6
1Year 10.7 30.4 30.9

Two major contributions from our study are: (i) proposal
of a novel model where we mapped option pricing problem
as a multi-objective optimization problem, (ii) design and
development of multi-objective Firefly algorithm that was used
to compute the solution for the option pricing problem.

We have proposed the pay-off from the option contract
and the probability of attaining that pay-off as the two ma-
jor optimization objectives and used them with new firefly
algorithms to find Pareto optimal solution(s). Since option
pricing is modelled as a multi-objective optimization problem,
we present not one but a set of solutions to the investor for the
option pricing problem. To the best of our knowledge this is
the first attempt of studying financial option pricing problem
as a multi-objective optimization using the firefly algorithm.

With our experiments, we were able to show the competency
of our model and accuracy and efficiency of our algorithm to
price American style of options. In this study, we designed
experiments in order to cover a spectrum of option contracts
with multiple strike prices, expiration dates and stocks. In all
these experiments, our algorithm was successful in finding the
Pareto front for option prices and that the solution computed
from all experiments captured the real market values very
accurately. Analyzing all the Pareto fronts, it was observed that
in 99% of the experiments, our algorithm was successful in
capturing the true option price as a solution on the Pareto front
with less than 2% error. That is, in almost all the experiments,
our algorithm was able to find a solution that is equal to
option price of a contract as available from real (historical)
market data. Therefore, we can conclude that using our model
and algorithm, an investor can accurately evaluate the option
contract for a given level of risk to enable him/her to decide
before entering the contract.

Moreover, we proposed a strategy using the historical data
to help investors to approximate decision variable (risk level)
in order to evaluate the accurate worth of a contract. This
strategy worked best with promising results for American
options. Our experiments showed significant results for this
strategy. Therefore, we conclude that the strategy of using
historical data to find the risk level is very efficient in terms
of accuracy and can be used by investors in real financial
market. This study can be extended and larger set of data (2-
5 years) for each stock can be used to get a more refined
historical risk level for any particular type of contract. Also, a
tool can be developed, which keeps refining the risk level value



continuously for multiple type of stocks on different indices.
However, for this tool, data becomes too big if we consider all
the listed stocks or contracts on the wall street and therefore,
various analytics from the field of big data may be needed
to tackle such an issues. We leave this as a important and
immediate future work.

Further, various other risk selection strategies can be ex-
plored and their effects can be studied for different trading
strategies. Our technique presents a set of solutions to the
user and lets user to choose any one solution but the basis
on which user selects the solution is something that needs
to be studied further. Basically how to use the Pareto front
in different ways and determining the decision variable (risk
level) can be seen as a new future study. Also, Pareto front
and its relation with different type of option trading strategies
can be analyzed in future. Our methodology can be extended
to price exotic options also such as Asian or Russian option
and its performance or results can be analyzed.
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