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Abstract—In the area of Non-Intrusive Load Monitoring
(NILM), many approaches need a supervised procedure of
appliance modelling, in order to provide the informations about
the appliances to the disaggregation algorithm and to obtain the
disaggregated consumptions related to each one of them. In many
approaches, the appliance modelling relies on the consumption
footprint, which is a typical working cycle of the appliance. Since
the NILM system has only the aggregated power consumption
available, the recorded footprint might be corrupted by other
appliances, which can not be turned off during this period, i.e.,
the fridge and freezer in the household. Furthermore, the user
needs a facilitated procedure, in order to obtain a clean footprint
from the aggregated power signal in real scenario. Therefore, a
user-aided footprint extraction procedure is needed. In this work,
this procedure is defined as a NILM problem with two sources,
i.e., the desired appliance and the fridge-freezer combination.
One of the resulting disaggregated profiles of the algorithm
corresponds to the extracted footprint. Then, this is used for
the appliance modelling stage to create te corresponding Hidden
Markov Model (HMM), suitable for the Additive Factorial
Approximate Maximum a Posteriori (AFAMAP) algorithm. The
effectiveness of the footprint extraction procedure is evaluated
through the confidence of the disaggregation output of a real
problem, using a span of 30 days data taken from two different
datasets (AMPds, ECO). The experiments are conducted using
the HMM from the extracted footprint, compared to the con-
fidence of the same problem using the HMM from the true
footprint, as appliance level consumption. The results show that
the performance are comparable, with the worst relative F1

loss of 3.83%, demonstrating the effectiveness of the footprint
extraction procedure.

I. INTRODUCTION

The smart home energy monitoring in residential environ-
ments is an issue that has been arousing great interest in recent
years: in fact, an improved users energy awareness leads to
a conservative consumption, thus to a less waste of energy
and a reduction of excesses in the production phase [1], [2].
Furthermore, the plan of the usage of energy resources [3]
and the battery management for the storage [4] allows the
reduction of the overall energy costs.

For this purpose, the Non-Intrusive Load Monitoring
(NILM) is proposed as a mean to identify the contribution
of each appliance to the aggregated power demand of the
electrical system. This information is useful for the user, who
analyzes the percentage of the cost in the bill attributable to
each appliance, in order to have a more accurate analysis of
the energy cost.

Although different NILM algorithms operate on various
aggregated electrical signal [5], the proposed system disag-
gregates the active power Pa aggregated signal, since it is the
physical quantity directly related to the cost in the bill.

Among different NILM approaches, the supervised ones
reach better performance [6], [7], that is the resulting dis-
aggregated signals have a better correspondence with the
true appliance energy consumption. Therefore, those methods
results to be more reliable for the final user.

The supervised section in the NILM algorithms corresponds
to the appliance modelling stage, as showed in Fig. 1b, where
the training phase is carried out. A model is created starting
from the appliance level consumption (e.g., training set), in
order to represent each appliance in a parametric way, and
its parameters are used in the NILM algorithm in order to
disaggregate the portion of the aggregated power consumption
related to each appliance, as represented in Fig. 1c.

The power consumption profile of an appliance can be
depicted as the repeating of a working cycle, alternated by
time intervals when the appliance is turned off. The repetition
rate, related to the length of the off-intervals, depends on the
user consumption habit.

Therefore, in order to analyze the consumption features of
an appliance, it is sufficient to extract the working cycle in the
appliance level consumption, defined as the footprint, and to
exploit it as training set in the appliance modelling stage.

This stage of the supervised NILM chain is named footprint
extraction, as showed in Fig. 1a.

In literature, different approaches have been proposed to ex-
tract the appliance working cycle features from the aggregated
data. An unsupervised method, based on spectral clustering,
is proposed in [8]: the most different activation occurrences,
which can be denoted in the aggregated power, are saved; then,
they are grouped between the most similar, using the clustering
technique. A bayesian approach is used in [9], [10]: a generic
bayesian model for the appliance category is defined; then, it
is fitted on the activation within the aggregated power, using
a threshold schema on the likelihood function. Most of those
approaches have limitations, concerning the aggregated power,
where the appliance activation can be overlapped and it can
cause trouble in the extraction phase.

To overcome this, in a real scenario, the user interaction
with the system can be considered, in order to improve the
reliability of the footprint extraction: in those cases, the user
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Fig. 1: The Supervised NILM chain.

needs a facilitated procedure to determinate the appliance
activation instant and an easy way to interact with the en-
ergy monitoring system. Therefore, in this work a user-aided
footprint extraction procedure is proposed.

The easiest way to extract the footprint from the aggregated
power is to use the appliance alone, turning off all the other
devices in the electrical network, as described in [11]. This
approach results to be the more reliable for the user, thus it is
adopted in the presented work.

The appliance modelling stage employs the footprint, in
order to represent the appliance consumption behavior: despite
several works deal with model for the classification, such as
SVM, k-NN [12] or deep neural networks [13], the Hidden
Markov Model (HMM) is a widespread modelling technique
[14]–[16], since it is able to represent the behavior of the
appliance in working states and to regulate the transition
with a probability value. This representation is close to the
real appliance mode of operation, where each working state
corresponds to a power consumption value.

In this work, the disaggregation algorithm is based on
HMM, in particular the AFAMAP (Additive Factorial Approx-
imate Maximum a Posteriori) algorithm [8] is used.

The unavailability of the appliance level consumption,
for extract the footprint, represents one of the main issue
in the NILM supervised approach. In real scenarios, only
the aggregated power consumption is available to the user.
Therefore, the footprint extraction stage aims to extract the

appliance footprint from the aggregated power: this work
aims to investigate the performance of a footprint extraction
procedure based on the HMM and AFAMAP algorithm.

The outline follows. The problem formulation is described
in Section II, whereas Section III introduces the footprint ex-
traction procedure. The appliance modelling stage is described
in Section IV, and Section V presents the experiments and the
obtained results. Section VI draws the work conclusions.

II. PROBLEM FORMULATION

In this section, the concept of appliance footprint is de-
scribed, along with some examples related to a real dataset.
Furthermore, since the application scenario of the NILM is
related to domestic context, specific issues are introduced.

A. The appliance footprint

A working cycle of an appliance is the interval between the
power on and the power off by the user. In this time interval,
the appliance power consumption signal is defined as footprint.
Some examples of footprint taken from the ECO dataset [17]
are shown in Fig. 2, that reports the power consumption traces
recorded from the appliances located inside different Swiss
households.

The usage of an appliance differs every time, especially in
the case of equipments with different usage modes: e.g., the
operating cycles of a washing machine can be set in a different
way each time, or the operation of the dishwasher may vary
according to the selected rinsing cycle. The different usage
mode of the same appliance reflects on different footprint,
as shown in Fig. 2b: the power levels in the two footprint
of the dishwasher are the same, but they appear in different
orders, which demonstrate that the working state composing
the appliance working cycle are unique, but they are employed
in different orders, based on the user habits. Therefore, it
is necessary to record different occurrence of the appliance
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Fig. 2: Alike and different footprints for the same appliance,
in ECO.
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Fig. 3: Power consumption of continuously turned on appliances, in ECO.

footprint, in order to explore the different user habits in the
appliance usage.

On other hand, this aspect is not significant for appliances
with easier working principle, and a less complex circuit
composition. In this case, the usage pattern of the appliance
can not be different in times, thus the footprint appears to be
similar in each occurrence, as shown in Fig. 2a: the footprint of
the dryer follows the same trend in time, which demonstrates
the unique working cycle of the appliance and the unique way
of usage by the user.

B. The domestic context

The footprint extraction is a necessary step in supervised
NILM algorithms. In this context, the user exploits the ag-
gregated power sensing system. An easy method to record
the appliance footprint is to switch off all the appliances in
the household and to turn on only the appliance of interest
[5], [11]. In this way, the aggregated power consumption
corresponds to the appliance one.

The appliance switch on and off are detected by using a
threshold schema on the active power consumption: when
the value exceeds a threshold, the current is flowing in the
circuit and the appliance is turned on, whereas when the
value is below, the appliance is turned off. A threshold equal
to the value of 50 W is a good choice for most datasets,
nevertheless this value depends on the type of appliance and
the activation power consumption. The samples between those
two events are saved as the power consumption data related
to the footprint. Multiple usages of the same appliance define
different occurrences of the footprint.

In a household not all appliances can be turned off, e.g.,
the fridge and the freezer have to be continuously powered in
order to maintain the food inside in safe condition. As shown
in Fig. 3a and Fig. 3b, their power consumption are continuous
in time, with a periodic working cycle. In this scenario, the
aggregated consumption presents a continuous component,
resulting from the sum of the fridge and freezer consumption,
as shown in Fig. 3c. This signal can be modeled as the
consumption of a unique model, representing the combination
fridge-freezer as a composed appliance.

The presence of this component in the aggregated power
does not allow to acquire a clean footprint of the appliance

of interest, since all the appliances power signals are summed
up on the aggregated power. Therefore, the footprint results to
be corrupted and a procedure to clean it is needed.

III. THE FOOTPRINT EXTRACTION ALGORITHM

In this section, the procedure to extract a clean footprint is
presented, introducing the idea and the implementation details
related to a real NILM application.

A. The idea

In order to clean a corrupted footprint, a procedure to
separate the fridge-freezer consumption from the appliance
footprint one is needed.

The fridge-freezer contribution can be recorded on the
aggregated power turning off all the other appliances in the
household: in this way, the characterization of the fridge-
freezer combination is not afflicted by noise or other appli-
ances consumption, thus the extracted model results to be
highly reliable and accurate.

The steps to be followed are the following:
1) the consumption of the fridge-freezer combination is

recorded, in a adequate span of time to collect enough
data for the modelling;

2) a corrupted version of the appliance of interest footprint
is acquired;

3) the extraction procedure is applied to the recorded
footprint, using the a priori knowledge of the fridge-
freezer model and a generic model of the appliance.

The process of signal separation can be interpreted as a dis-
aggregation problem with 2 sources: therefore, the same NILM
algorithm, which is executed after the footprint extraction and
the appliance modelling step, can be exploited for the footprint
extraction step, as well. In order to obtain the disaggregated
traces, the NILM algorithm requires both the model of the
fridge-freezer combination and of the appliance of interest.
The first one is available, whereas the appliance model is
not available, because the footprint extraction step precedes
the appliance modelling step. Therefore, it is necessary to
provide a generic model, which represents the class related
to the appliance of interest, and which is suitably fitted on
the specific appliance features, e.g., a priori knowledge of the
maximum power consumption, in order to represent it as good
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Fig. 4: Footprint extraction algorithm flowchart.

as possible. This procedure introduces an uncertainty in the
appliance modelling stage, which might be the cause of the
error in the footprint extraction stage.

B. Implementation details

In this work, the NILM algorithm chosen for the disaggre-
gation step is the AFAMAP proposed by Kolter and Jaakkola
[8]: the algorithm requires the HMM of each appliance that
contributes to the aggregated power signal.

The HMM [18] of an appliance is represented by the
following parameters:

• the hidden states x ∈ 1, . . . ,m;
• the symbols emitted µj , where j = 1, . . . , n;
• the symbol emission probability matrix Mn×m;
• the state transition probability matrix P ∈ [0, 1]m×m;
• the starting state probability vector φ ∈ [0, 1]m.

In the algorithm, it is assumed that each state x of the HMM
corresponds to a working state of the appliance {ON1, ON2,
. . . , OFF}, so that the number of states m is equal to the
number of symbols n with M ≡ Im×m, and each symbol µj

corresponds to the value of power consumption of the working
state. The probability of transition between the working states
of the appliance is proportional to the number of transitions
from one state to the other within the footprint, i.e., when
the transition is not allowed, the probability is equal to zero.
Finally, the starting working state corresponds to the OFF
state, because the footprint starts at the turning on instant.

From the analysis carried out in Subsection III-A, the
availability of the HMM of both the fridge-freezer combination
and the appliance of interest is necessary. The first one is
obtained from the corresponding consumption recorded, thus
it is a model with high reliability: as showed in Fig. 3c, it is
a model with 4 working states, derived from the composition
of the 2 working states of the fridge and the freezer. Whereas,

for the appliance of interest, the model is not available, since
it is derived after the footprint extraction step. Therefore, a
generic HMM is exploited: it is obtained from a reference
dataset, under the assumption that all the appliances of the
same category acts in the same way, while passing from a
working state to another, so that the transition probability
matrix results the same for each appliance in the category.
Furthermore, it is assumed that the number of the working
states is the same for all the appliances of the same category,
since the working cycle of the appliance type observed in the
footprint: therefore, the number of states is defined a priori for
the appliance type, such as described in Table I.

For the appliances with a number of working states greater
than 2, it is assumed that the consumption values are propor-
tional each other: therefore, the consumption values in the
model are scaled based on the nominal (maximum) value,
which is given a priori to the algorithm.

In this way, the HMM represents the appliance as good
as possible, omitting the approximation on the consumption
values of the middle working state and the approximation on
the transition probability matrix.

After the AFAMAP algorithm execution, two disaggregated

TABLE I: Number of working states defined for each category
of appliance.

Appliance num. of states
Fridge 2
Freezer 2
Dryer 3

Washing machine 4
Dishwasher 3

Oven 3
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Fig. 5: Washing machine in ECO, household 1.

consumption profiles are obtained: the appliance one corre-
sponds to the extracted footprint. Starting from this, the HMM
representing the appliance is created, which is used in the
disaggregation algorithm to solve the NILM problem.

In order to reach a good generalization in the HMM
creation, the availability of different appliance footprints is
necessary, as described in Subsection II-A: this process allows
to mitigate the errors introduced in the footprint extraction
phase. A suggested value of occurrences to record is in the
order of 10.

In Fig. 4 the flowchart of the footprint extraction algorithm
is depicted. The diagram is composed of two sections: in the
left one, the contribution of the fridge-freezer combination is
recorded, from which the HMM is obtained; in the right one,
the appliance activations are recorded, to obtain the footprint
and the related HMM. This procedure is repeated for each
appliance footprint recorded, which needs to be extracted.

IV. THE APPLIANCE MODELLING

In order to execute the AFAMAP disaggregation algorithm,
it is necessary to generate the HMM of each appliance from
the extracted footprints.

As first step, the power consumption values associated to
each working state need to be extracted. This is achieved via
a clustering procedure.

As final step, the HMM is created using the well known
training techniques.

A. The clustering procedure

Clustering refers to the method of partitioning data which
are usually gathered near typical values. As result, the samples
are split up and assigned in groups in accordance with a dis-
tance metric. Then, each group is represented by the centroid,
namely the unique value in the center of the group, which
therefore represents all the elements related to the same group.

In the case of power consumption, the values in the footprint
are distributed around the typical value of consumption of
each state, as showed in Fig. 5a: 3 groups of data can be
observed from the histogram, which represent the 3 clusters.
The OFF state, with 0 W power consumption value, is added
at the end of the procedure, because the related samples are
not considered throughout the data recording: indeed, in order
to record the appliance activation using the threshold schema,
only the samples which exceed the threshold are considered.

Consequently, the clustering algorithm is executed on the
data. In this work, k-means [19] has been chosen: it requires
only the parameter m as input, corresponding to the number
of desired clusters to be obtained. This value has been set for
each appliance type as defined in Table I (i.e., the values in
the table include the OFF state, thus they have to be decreased
by 1). The algorithm selects the starting point to randomly
initialize the clusters within the data, and it finds the centroid
of each defined group following an iterative procedure.

Recording many footprints allow to reach a proper solution
during the iterative procedure in the algorithm: indeed, this
kinds of algorithm operates more effectively when a significant
amount of data is available for each cluster to find.

The cluster centroid represents the power consumption value
of the appliance in that working state: the inference of a
gaussian variable on the data related to the same cluster
is carried out. The resulting mean value corresponds to the
centroid of the cluster and the variance determines the width
of the cluster, as shown in Fig. 5b.

The levels with high variability are susceptible of great
variance in the consumption value, e.g., the state with higher
consumption, while the levels with lower variability have a
tighter interval, e.g., the OFF state, as shown in Fig. 5. The
variability in the levels is an information representative of the
appliance category, as well as of the user usage habits.



Fig. 6: A 4 states HMM.

TABLE II: An example of the HMM transition probability
matrix.

Destination state
ON1 ON2 ON3 OFF

St
ar

t
st

at
e ON1 0.832 0.085 0.081 0.002

ON2 0.080 0.690 0.202 0.028
ON3 0.012 0.028 0.916 0.045
OFF 3.1e-05 2.7e-05 0.002 0.998

B. The Hidden Markov Model

The HMM is a representation method based on the Finite
State Machine (FSM), in which the transitions between the
states are regulated by a probability matrix, proportional to
the time of permanence in the states and the number of times
the model pass from a state to another one. Fig. 6 shows an
example of HMM with 4 states.

The transition probability matrix P is obtained using the
Baum-Welch [18] training algorithm: in the specific case when
M ≡ Im×m, only the number of states m composing the
HMM and the observed sequence of symbols have to be
specified to the algorithm. Each HMM state is assigned to a
power consumption state, therefore to a cluster resulting from
the procedure described in Subsection IV-A.

Table II shows the transition probability matrix related to
the washing machine footprint showed in Fig. 5b. The highest
values in the matrix are the ones located on the diagonal,
which represent the probability of remaining in the same state,
respect to the transition to another one: indeed, for the state
where the permanence time is low, this value is lower than
the one of the state where the permanence time is higher. The
highest value is the one related to the OFF state, because the
activation of the appliance occurs after a long time in which
it is turned off.

Since the pause interval between two footprint is not
recorded, the user has to establish the time interval between
two appliance activations, e.g., the typical time of use in the
daytime or the number of activations per day of the appliance,
in order to calculate the OFF interval and to use this value for
the calculation of the transition probability related to the OFF
state.

The probability value which tends to zero denotes that the
transition is unlikely. In the practice, it is recommended to
avoid zero probability value, because it is evaluated in log
scale in the AFAMAP algorithm, and it tends to infinity. It is
recommended to fix the value to a little quantity, e.g., ' 10−5.

V. COMPUTER SIMULATIONS

The experiments have been conducted using different
datasets: the first one for the generic model extraction, and the
second one for testing the footprint extraction algorithm. The
disaggregation experiments have been conducted on the same
dataset, to evaluate the effectiveness of the footprint extraction
algorithm, compared to the use of the true appliance level
consumption, to create the appliance model.

The general model has been extracted using the AMPds
dataset [20]. The experiments on footprint extraction and
disaggregation are conducted on the ECO dataset [17], con-
sidering the households 1 and 2, whose appliances are:

• household 1: dryer, washing machine;
• household 2: dishwasher, oven.

The experiments include the the fridge-freezer combination,
present in each household.

A. The footprints extraction

Fig. 7 shows two example of extracted footprints, compared
to the original ones. In both cases, a good correspondence
between the temporal trends can be noticed, which denotes
that the model representing the fridge-freezer combination has
a high reliability and it allows to extract the appliance footprint
contribution in a suitable way. However, for several portions
of the footprint, the correspondence with the power level is not
correct: this might be due to the incorrect power levels of the
general model, which are obtained from a scaling operation
respect to the nominal consumption value. Indeed, the error is
introduced in the middle power levels, while for the maximum
power level the correspondence is exact. In the entire process,
the uncertainty introduced from the disaggregation algorithm,
used to separate the footprint from the consumption of the
fridge-freezer combination, needs to be considered.

B. The disaggregation results

The experiments have been conducted on a portion of 30
days of the ECO dataset. To evaluate the effectiveness of the
footprint extraction procedure, the disaggregation results have
been evaluated using:

• the models created using the appliance level consumption,
available in the dataset (true footprint);

• the models created using the extracted footprint, follow-
ing the procedure described in Section III.

The disaggregation results have been evaluated using the
Precision (P ) and Recall (R) metrics, defined in [21] in state
and energy based sense. To compare the performance of the
entire disaggregation system, the F-score (F1) metric averaged
across the appliances (AAA) has been used.
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Fig. 7: Comparison between the true and the extracted footprint for some appliances.

TABLE III: Disaggregation performance in ECO,
household 1.

Metric
Fridge-

Dryer
Washing

AAA Footprint
freezer machine

St
at

e
ba

se
d

P 0.506 0.657 0.909 0.691

Tr
ueR 0.568 0.821 0.948 0.779

F1 0.536 0.730 0.928 0.732
P 0.483 0.622 0.880 0.661

E
xt

ra
ct

ed

R 0.531 0.788 0.937 0.752
F1 0.506 0.695 0.908 0.704

E
ne

rg
y

ba
se

d

P 0.955 0.488 0.849 0.764

Tr
ueR 0.815 0.972 0.978 0.922

F1 0.879 0.650 0.909 0.835
P 0.953 0.422 0.809 0.728

E
xt

ra
ct

ed

R 0.790 0.976 0.982 0.916
F1 0.864 0.589 0.887 0.811

The parameters used in the AFAMAP algorithm were the
same employed in [21]. The disaggregation window parameter
has been set T = 60 min.

The disaggregation results are showed in Table III and
Table IV. For both metrics, the algorithms achieve good
performance: the best results are reached in the household 2
experiment, with a F1 of 0.898 in state based sense, and 0.956
in energy based sense. This is due to the relatively simple
problem studied in those cases: a disaggregation problem with
only 3 appliances, with highly distinguishable values of power
consumption, reveals to be solvable with high accuracy. The
experiments in Table IV shows a better performance respect
to the Table III one: the reason is the appliances footprints
and the resulting HMMs composition. Indeed, the second
problem is composed of models with a lower number of
states (e.g., 3 states for the dishwasher, 3 states for the oven,
respect to the 3 states for the dryer and 4 states for the
washing machine), thus the disaggregation problem results
to be simpler in the resolution, and the overall performance
reaches higher values. This trend was already introduced from
the author of the disaggregation algorithm [8], who shows

TABLE IV: Disaggregation performance in ECO,
household 2.

Metric
Fridge-

Dishwasher Oven AAA Footprint
freezer

St
at

e
ba

se
d

P 0.741 0.926 0.977 0.881

Tr
ueR 0.781 0.980 0.984 0.915

F1 0.760 0.952 0.980 0.898
P 0.735 0.855 0.972 0.854

E
xt

ra
ct

ed

R 0.773 0.974 0.982 0.910
F1 0.754 0.911 0.977 0.881

E
ne

rg
y

ba
se

d

P 0.983 0.873 0.973 0.943

Tr
ueR 0.944 0.983 0.984 0.970

F1 0.963 0.925 0.979 0.956
P 0.981 0.816 0.975 0.924

E
xt

ra
ct

ed

R 0.939 0.982 0.988 0.970
F1 0.960 0.891 0.982 0.946

that the higher is the number of states related to the HMM,
the higher is the complexity of the problem definition, and
lower is the disaggregation performance due to the more
difficult resolution. Regarding the first problem, the fridge-
freezer combination has the consumption values close to the
dryer ones, which leads to an ambiguity during the problem
resolution and a lower performance for the total problem. In
general, the appliance with the better performance is the one
with the higher power consumption value: for the first problem
the washing machine, for the second one the oven.

In both experiments the results corresponding to the true
footprint show higher performance respect to the extracted
footprints ones: it means that the footprint extraction procedure
introduces an error in the appliance modelling stage, which re-
sults in a error during the disaggregation algorithm resolution.
Nevertheless, the results of the extracted footprint experiments
show performance with an admissible relative loss: for the
household 1 experiment, the relative loss results of 3.83% in
state based sense, and 2.87% in energy based sense, while for
the household 2 experiment, it results of 1.89% in state based
sense, and 1.05% in energy based sense .



In conclusion, the models obtained after the footprint extrac-
tion procedure show a good correspondence with the original
ones, which means that the footprint extraction is sufficiently
reliable. Therefore, the footprint extraction algorithm intro-
duced in this work provides a convenient procedure to the
user for modelling the appliance at the cost of an acceptable
loss in disaggregation performance.

VI. CONCLUSION

In this work, a footprint extraction procedure has been
introduced as a solution for the appliance modelling in real
NILM scenarios. Indeed, in order to create the appliance model
and to use this in the disaggregation algorithm, the user needs
to record the appliance consumption profile. A facilitated
procedure is needed, in order to obtain a clean footprint from
the aggregated power signal in real scenario: therefore, a user-
aided footprint extraction procedure is defined. The solution
introduced here relies on the availability of a general model
for the appliance category to obtain the clean footprint. This
is the starting point of the modelling stage: in this work
the AFAMAP algorithm has been used, which relies on the
HMM for the appliance modelling. The resulting models
have been tested in a disaggregation problem, and they have
been compared with the same problem solved using the true
appliance model, i.e., the models created using the actual
footprint from the appliance level consumption. The results
have showed a moderate performance reduction compared to
the ideal case due to the footprint extraction stage.

For those reasons, the footprint extraction procedure intro-
duced in this work can be considered as an effective method
for the user employment in a real NILM scenario.

In the future works, the separation of the model representing
the fridge-freezer combination in the single component will
be evaluated, since the AFAMAP algorithm shows a better
working in the problem resolution using models with lower
number of states. In addition, a more complex model for the
power consumption in the working state can be exploited,
in order to better represent the operational working of the
appliance: for example, a Gaussian Mixture Model (GMM)
might represents a working state with a probability distribution
shape of the power consumption value more complex respect
to a simple Gaussian form. Moreover, more experiments will
be performed using different datasets in literature, in which a
more detailed study about the generalization performance can
be carried out, specially for the generic model selection.
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